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ABSTRACT 

Clinicians need to predict the number of invol- 
ved nodes in breast cancer patients in order to 
ascertain severity, prognosis, and design sub-
sequent treatment. The distribution of involved 
nodes often displays over-dispersion—a larger 
variability than expected. Until now, the nega-
tive binomial model has been used to describe 
this distribution assuming that over-dispersion 
is only due to unobserved heterogeneity. The 
distribution of involved nodes contains a large 
proportion of excess zeros (negative nodes), 
which can lead to over-dispersion. In this situa-
tion, alternative models may better account for 
over-dispersion due to excess zeros. This study 
examines data from 1152 patients who under-
went axillary dissections in a tertiary hospital in 
India during January 1993-January 2005. We fit 
and compare various count models to test 
model abilities to predict the number of involved 
nodes. We also argue for using zero inflated 
models in such populations where all the ex-
cess zeros come from those who have at some 
risk of the outcome of interest. The negative 
binomial regression model fits the data better 
than the Poisson, zero hurdle/inflated Poisson 
regression models. However, zero hurdle/inflated 
negative binomial regression models predicted 
the number of involved nodes much more accu-
rately than the negative binomial model. This 
suggests that the number of involved nodes 
displays excess variability not only due to un-
observed heterogeneity but also due to excess 
negative nodes in the data set. In this analysis, 
only skin changes and primary site were asso-

ciated with negative nodes whereas parity, skin 
changes, primary site and size of tumor were 
associated with a greater number of involved 
nodes. In case of near equal performances, the 
zero inflated negative binomial model should be 
preferred over the hurdle model in describing 
the nodal frequency because it provides an es-
timate of negative nodes that are at “high-risk” 
of nodal involvement. 

Keywords: Nodal Involvement; Count Models; 
Breast Cancer 

1. INTRODUCTION 

Accurate prediction of the number of involved nodes in 
breast cancer patients helps in grading severity of dis-
ease, avoid extensive axillary surgery dissections and as- 
sists with treatment decisions such as the use of neoadju-
vant chemotherapy [1,2]. Many studies have been per-
formed to predict nodal status in breast cancer patients. 
Most of them merely predict the presence/absence of 
involved nodes rather than the number of involved nodes 
[3]. Until now, only two studies have tried to predict the 
number of involved nodes in breast cancer patients. 
Guern and Vinh-Hung [3] found that a negative binomial 
model describes the number of nodal involvement better 
than the Poisson model due to excess variability, a con-
dition called over-dispersion. Another study showed that 
the negative binomial model provides a better fit as com- 
pared to the Poisson model for the total number of in-
volved nodes in breast cancer patients in a meta-analysis 
[4]. These studies used a negative binomial model, whi- 
ch posited that the over-dispersion occurred entirely due 
to unobserved heterogeneity and/or nodal clustering. 
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However, count data often involve over-dispersion not 
only due to unobserved heterogeneity and/or clustering 
but also due to the preponderance of zero frequency 
(negative node in the case of cancer) [5]. Consequently, 
the nominal Poisson or the negative binomial distribu-
tions may not satisfactorily account for excess variability 
if this variability is indeed due to excess zeros. In such 
situations, use of these models may likely underestimate 
the probability of negative node status, and may provide 
misleading results. Zero hurdle or zero inflated regres-
sion models can be used to increase predictability in 
situations with excess zeros.  

In count data, the observed zeros can be either struc-
tural zeros (e.g., the subject is at no risk of the event of 
interest) or sampling zeros (e.g., the subject is indeed at 
some risk of the event of interest). It has been suggested 
that zero hurdle models are more appropriate in case of 
excessive sampling zeros while zero inflated models 
should be preferred in cases of mixtures of zeros i.e., 
involvement of both types of zeros [6]. In breast cancer, 
all the patients are indeed at some risk of having nodal 
involvement and thus all zeros are strictly sampling ze-
ros. Thus, according to the prevailing wisdom, zero hur-
dle models could be employed to predict the nodal fre-
quency among breast cancer patients. 

In epidemiologic studies, generally count data in-
volves zeros at some risk of outcome of interest. In such 
circumstances, there exists alternative ways to conceptu-
alize the so-called structural zeros and sampling zeros. 
Using the epidemiological parlance, we can conceptual-
ize zeros in terms of disease on-set and disease progres-
sion. In breast cancer patients, a lack of nodal involve-
ment (observed zero) may be because the cancer is de-
tected early enough in the disease progression (closer to 
the time of disease onset) or the cancer itself is of slow 
progression and/or absence of risk factors for high rate 
of disease progression. These kinds of zeros may be 
identified as true or structural zeros. The rest of the zeros 
may be observed in the presence of various risk factors 
leading up to a high rate of disease progression. These 
latter types of zeros can be identified as false or sam-
pling zeros. Thus, within the framework of zero inflated 
models, excess zeros can be modeled as a mixture of 
true zeros and false zeros. Note that the false zeros can 
also arise either due to chance, false recording and/or 
due to false observation. It has been reported that some 
of the involved (positive) nodes may be recorded as 
negative due to misclassification by the pathologist (re-
ferred to as reporting error) [7]. One study reported that 
non-dissection of complete axillary lymph nodes might 
provide false negative nodes [8]. These false negative 
nodes may be more likely to be found among patients 
with a high risk of nodal involvement. This indicates a 

need of estimation of false negative nodes so that they 
can follow up or be reassessed for diagnostic accuracy. 
In these situations, we suggest use of the zero inflated 
models, not only to account for excess zeros, but also to 
estimate the proportion of false zeros or patients with 
zeros at high risk of nodal positivity.  

Significant applications of zero hurdle and zero in-
flated models have been made in various fields of re-
search [9-11]. In recent years, the application of these 
models and their comparisons with other count models 
has also increased in medical and health fields [12-19]. A 
review of the application of such models in health re-
search is also reported [20]. Extensions of these models 
for describing correlated data have also been reported 
[21-24]. These studies illustrate that zero hurdle/inflated 
models should be used if over-dispersion in the data is 
due to excess zeros. Results also indicate that zero hur-
dle models should be preferred if only at-risk zeros are 
present in the population. However, to our knowledge, 
the relative performance of zero hurdle and inflated 
models in predicting the number of involved nodes has 
not been addressed. In this paper, prediction of the 
number of involved nodes is made using Poisson regres-
sion (PR), negative binomial (NB), zero hurdle Poisson 
(ZHP), zero inflated Poisson (ZIP), zero hurdle negative 
binomial (ZHNB) and zero inflated negative binomial 
(ZINB) models. Zero hurdle models in many epidemi-
ologic studies like the present one may satisfactorily 
account for excess zeros, perhaps even as good as zero 
inflated models. We arguably demonstrate that the zero 
inflated models have an added advantage over the for-
mer in describing the event of interest in relation to the 
disease process itself, including identification of the 
factors involved in predicting the disease onset and dis-
ease progression. 

2. MATERIALS AND METHODS 

2.1. Subjects 

We utilized one of the largest breast cancer datasets 
available in India to assess the number of involved nodes 
distribution. The data were extracted from the comput-
erized database of breast cancer patients maintained at 
the Department of Surgical Oncology, Institute Rotary 
Cancer Hospital (IRCH), All India Institute of Medical 
Sciences (AIIMS), New Delhi, India, a tertiary care cen-
ter, during the period from January 1993 to January 2005. 
The dataset was updated using the original records kept 
in the record section of IRCH. Data from all patients 
who underwent surgery for breast cancer, including axil-
lary lymph node dissections, were included in this study. 
Patients with recurrent breast cancer, bilateral breast 
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carcinoma, any evidence of metastasis, unknown primary 
site and male breast carcinoma were excluded from the 
study.  

Covariates and their forms were chosen based on 
breast cancer literature and an exploratory analysis of 
this dataset.Patients’ age at presentation was stratified as 
younger (below 35 years) and elder (more than or equal 
to 35 years). Duration from onset of symptoms until 
presentation was classified as less than or equal to 2, 2-4, 
4-8 and more than 8 months. Parity was categorized as 
nulliparous, single/doubleparous, and multiparous. Other 
covariates included menopausal status (post/pre); family 
history of breast cancer (absent/present); primary side 
(left/right); skin changes (no/yes); neoadjuvant chemo-
therapy (no/yes); primary site {medial (lower inner 
quadrant and upper inner quadrant)/lateral (lower outer 
quadrant and upper outer quadrant)/central (multiple, 
central and others)}; tumor type (infiltrating ductal car-
cinoma/infiltrating lobular carcinoma and others); and 
pathological tumor size was according to TNM classifi-
cation (< = 2/2-5/> 5cm). The neoadjuvant chemother-
apy and total number of dissected nodes were only used 
in the model for adjustment, because these variables are 
highly associated with involved nodes. The study popu-
lation consisted of all cases of breast cancer and the 
outcome in question was the number of involved nodes 
in a patient. Patients with negative nodes (zeros) were 
divided into two groups-those with “at low risk” of 
nodal involvement and those with “at high risk” of nodal 
involvement. A patient with negative nodes and having a 
relatively low risk of nodal involvement was defined as 
“at low risk” zero and labeled, in the context of model-
ing, as a “true or structural” zero. The remaining patients 
with negative nodes and a relatively high risk of nodal 
involvement due to the presence of various risk factors 
were defined as “at high risk” zeros. In the context of 
modeling, we label them as “false or sampling” zeros. 

2.2. Statistical Models 

The Poisson regression model (PR) describes count out-
comes or proportion/rates. Generally, the PR model ex-
plains less variability of counts than the observed vari-
ability. As a result, this often gives misleading relation-
ships between covariates and outcomes. Excess variabil-
ity can be adjusted within the PR framework using infla-
tion approaches of standard errors of the regression co-
efficients [25]. As such, it may be the appropriate model 
to use for drawing correct inferences in the case of 
over-dispersion due to unobserved heterogeneity and/or 
clustering/temporal dependency. However, it may not be 
the most appropriate in the case of excess zeros, as ex-
pected in assessing the distribution of number of in-
volved nodes. In the PR model, yi is the number of in-

volved nodes for the ith patient, and λi is the mean num-
ber of involved nodes. If the number of involved nodes 
follows a Poisson distribution, its probability mass func-
tion can be expressed as: 

 
i iλ y

i
i i i i

i

e λ
f y |x , y 0,1, 2 , i 1, 2,.... , 0

y !
n



      (1) 

If i’s are regression coefficients corresponding to the set 
of considered covariates xi’s, and k is the number of 
considered covariates, then the PR model can be ex-
pressed using Eq.1 as: 

 i 0 1 1 2 2 klog λ β β x β x β x     k       (2) 

As an alternative to the PR model, the negative bino-
mial (NB) model has an inbuilt provision to account for 
over-dispersion due to unobserved heterogeneity and/or 
temporal dependency [26]. As a result, this model helps 
not only in adjusting the standard errors of the regression 
coefficients but also provides a more flexible approach 
for prediction of the count outcome. Under the assump-
tion of over-dispersion being merely due to unobserved 
heterogeneity and/or temporal dependency, the NB model 
was used. The unobserved heterogeneity may be due to 
unobserved predictors and/or too much variation in some 
of the clinical and pathological cofactors. Temporal de-
pendency in nodes may be occurring due to clustering of 
nodal involvement within patients. The NB model is 
expressed as: 
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i
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In this model,  is the over-dispersion parameter due 
to unobserved heterogeneity and λi is the mean number 
of involved nodes. The NB regression model can be ob-
tained similar to Eq.2 by using Eq.3.  

The NB model may not be appropriate if the over- 
dispersion is due to excess zeros because it underesti-
mates the probability of zeros and consequently underes-
timates the variability present in the outcome. In such 
situations, alternative models such as zero inflated/hur- 
dle models that account for over-dispersion due to ex-
cess zeros are useful. 

Zero hurdle models are typically used when the excess 
zeros arise from an “at risk” population. Under the as-
sumption that over-dispersion results from excess zeros 
arising from an “at risk” group, zero hurdle Poisson 
(ZHP) was used. In this model, all zeros are considered 
to be observed from a non-counting process, as opposed 
to a counting process. Within this model, all zeros are 
typically described through logistic regression, whereas 
positive counts are described through a zero truncated 
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mates the relative proportion of these at “low risk” and 
at “high risk” zeros. Further, this can be used to identify 
subjects with a high likelihood of being in one or the 
other type of zero classification using the risk factors. In 
zero inflated models, occurrence of zeros is considered 
as a result of two distinct processes. Some of the zeros 
(zeros at “high risk”) are considered to be observed from 
counting process and others (zeros at “low risk”) from 
non-counting process. As an inbuilt mechanism within 
these models, true zeros are typically described through 
logistic regression, whereas false zeros are described 
through simple count model. Like hurdle models, the 
zero inflated models also provide two sets of results. 
However, the interpretation of regression coefficients 
under inflated models is different from the hurdle mod-
els. Modeling binary process provides factors associated 
with negative nodes in a “low risk” population as com-
pared to a “high risk” population, whereas modeling 
count process provides factors associated with the extent 
of the number of involved nodes, including false nega-
tive nodes given that patients are in a high risk popula-
tion. Here, the probability of observing negative nodes is 
the sum of observing negative nodes (true) under the 
logistic model plus the probability that a individual is 
not in the binary process, and the probability that nega-
tive nodes (false) under the considered count model. If 
the count process follows the Poisson distribution then it 
is called a zero inflated Poisson (ZIP) model. To under-
stand the ZIP model, consider the occurrence of at “low 
risk” negative nodes with probability pi under a logistic 
model, whereas that of involved nodes (including at 
“high risk” false negative nodes) with probability (1-pi) 
under the Poisson model, having a mean number of in-
volved nodes (λi,), the ZIP distribution can be expressed 
[28] as: 

Poisson model. In the ZHP model, pi is “at risk” negative 
nodes  under logistic model. Assuming the mean num-
ber of involved nodes (λi) under zero truncated Poisson 
model, the ZHP distribution may be expressed [27] as: 

If γi’s and i’s are respective regression coefficients 
under logistic and zero truncated Poisson models corre-
sponding to considered covariates (xi’s), and the number 
of considered covariates is k in each of the models, then 
using Eq.4 regression models can be expressed as: 
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The ZHP model provides two sets of results. These 
results can also be obtained separately by fitting both a 
logistic regression and zero truncated Poisson model. 
This is why hurdle models are referred to as two-part 
models. The binary process model identifies factors as-
sociated with the presence/absence of nodal involvement, 
whereas modeling count process yields factors associ-
ated with an increase in the number of involved nodes 
given that the patient has involved nodes. Note that the 
ZHP model accounts for over-dispersion due to excess 
zeros but not due to unobserved heterogeneity and/or 
temporal dependency in nodal involvement. In the latter 
case, one may use the zero hurdle negative binomial 
(ZHNB) model by considering count process as zero 
truncated negative binomial distribution. Substituting a 
zero truncated negative binomial distribution in Eq.4 
yields the ZHNB distribution, and it can be expressed as 
Eq.6. 

Zero inflated models are typically used when the ex-
cess zeros are a mixture of two types of zeros-true 
(structural zeros) and false (sampling zeros). We propose 
to categorize the negative nodes in our population as a 
mixture of two types, those with very low/no risk of 
nodal involvement (true zeros) and those with high risk 
of nodal involvement (false zeros). In this way, use of 
the zero inflated model framework not only accounts for 
the extra variability due to excess zeros but also esti-  

 
   

   
 

i

i i i i

y
i i i i

i i i
i

p 1 p exp λ ,y =0

f y |x exp λ λ
1 p  ,y 1;0 p 1;λ 0

Γ y

  


 
i    


(7) 

 

     
  

i

i i

y
i ii i

i i i i
i i

 p                                    ,  y 0

exp λ λf y |x
1 p , y 1; 0 p 1; λ 0; i 1, 2, ,n

y ! 1 exp λ




        


                       (4)

   
 

   

i

i i

1/α y-1 -1
i i

i -1 -1i i 1/α-1 i i-1
i-1

i

p                                                                                                      ,  y 0

Γ y α α
1 pf y |x

α αα
1 Γ y 1 Γ α

α





    
    

                

i,  y 1



 




             (6)

   

Openly accessible at  



A. K. Dwivedi et al. / HEALTH 2 (2010) 641-651 

Copyright © 2010 SciRes.                               Openly accessible at http://www.scirp.org/journal/HEALTH/ 

645645

  
If γi

’s and i
’s are respective regression coefficients 

under logistic and Poisson models corresponding to con-
sidered covariates (xi’s), and the number of considered 
covariates is k in each of the models, then using Eq.7, 
regression models can be expressed as: 
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If the count process does not follow the Poisson 
model then one may use the zero inflated negative bi-
nomial (ZINB) model by considering count process as a 
negative binomial distribution. In contrast to ZIP, the 
ZINB model accounts for the over-dispersion due to 
both types of zeros as well as due to unobserved hetero-
geneity and/or temporal dependency. Substituting nega-
tive binomial distribution in Eq.7, the ZINB distribution 
can be expressed as: 

2.3. Model Comparisons 

The PR, NB, ZIP, ZHP, ZHNB and ZINB models were 
used to describe the number of involved nodes in breast 
cancer patients. The covariates found to be significant in 
univariate analysis with any of the regressions were in-
cluded into all the regression models to maintain the 
comparative findings. The nested models (e.g., PR ver-
sus NB and ZIP, NB versus ZINB, and ZHP versus 
ZHNB) were compared using a likelihood ratio. Signifi-
cant result of the likelihood ratio test of comparison (PR 
versus NB, NB versus ZINB, and ZHP versus ZHNB) 
indicates the presence of over-dispersion due to hetero-
geneity and/or temporal dependency. The non-nested 
models (PR with ZHP, PR with ZHNB, PR with ZINB, 
NB with ZHP, NB with ZIP, NB with ZHNB, ZHP with 
ZIP, ZHP with ZINB and ZHNB with ZINB) as well as 
nested models were also compared using the Vuong test 
[29]. Significant and better fit of comparisons (PR with 
ZHP/ZIP, and NB with ZHNB/ZINB) explores whether 
or not the over-dispersion is due to excess zeros.  

To compare the predictive performance of the models, 
various indices such as log likelihood, Akaike Informa-
tion Criterion (AIC), Bayesian Information Criterion 
(BIC), mean squared prediction error (MSPE) and mean 
absolute prediction error (MAPE) were also obtained. A 
probability plot (observed probability minus predicted  

probability of positive nodes versus number of positive 
nodes) was constructed for each model. The probability 
plot was constructed after truncation at 10 positive nodes 
for ease of visual comparison. The best-fitted model was 
also validated using the leave-one-out cross validation 
method [30]. The p-values less than 5% were considered 
as significant results. STATA 9.0 package was used for 
all statistical analyses. 

3. RESULTS 

A total of 1152 patients were found to be eligible for this 
study. Of those in the study, the presence of involved 
nodes was found in 705 (61.2%) patients. The mean and 
standard deviation of the number of involved nodes per 
patient were 3.9 and 5.6 respectively (median 1 and 
range: 0-33). Median number of total dissected nodes 
per patient was 14 (range: 1-46). The mean age was 47.7 
(standard deviation, 11.1) years and range 20-86 years. 
The distributions of covariates considered in the analysis 
are shown in Table 1. 

A descriptive comparison reveals that the cofactors 
parity, skin changes, primary site and pathological tumor 
size were consistently associated with outcome across all 
models. Three additional covariates, age, menopausal 
status and tumor type, were statistically significant only 
in the PR model. There was good concordance in the 
assessment of statistical significance in all aspects among 
ZHP, ZIP and NB models. A similar relation could also 
be seen between the ZINB and ZHNB models in pro-
viding factors associated with the extent of nodal in-
volvement. In other words, parity, skin changes, primary 
site and tumor size were found associated with a greater 
number of involved nodes in both models. However, the 
ZHNB model provided primary site, skin changes and 
pathological tumor size associated with presence of 
positive nodes whereas ZINB model provided only pri-
mary site and skin changes associated with presence of 
positive nodes in at high-risk population. 

The significant Pearson chi square goodness of fit (gof) 
test (p < 0.001) along with other characteristics of model 
fit indicated that the PR model produced a poor fit for 
nodal involvement data. In the NB model, the estimated 
dispersion statistic (α) was 1.73 (95% CI: 1.54, 1.95). A 
significant likelihood ratio test (p < 0.001) of dispersion  
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Table 1. Zero inflated negative binomial model for number of involved nodes. 

Variables N 
Logistic Portion* 

Odds Ratio (95% CI) 
NB Portion 

Risk Ratio (95% CI) 

Age (year)    

> 35 977 1.00 1.00 

< = 35 175 0.98 (0.54, 1.80) 1.12 (0.90, 1.38) 

Symptom duration (month)    

< = 2 376 1.00 1.00 

3-4 263 0.74 (0.43, 1.26) 1.00 (0.82, 1.23) 

5-8 266 1.13 (0.71, 1.81) 1.17 (0.95, 1.43) 

> = 9 247 0.73 (0.43, 1.24) 1.08 (0.88, 1.33) 

Parity    

Nulliparous 47 1.00 1.00 

P1/P2 445 1.18 (0.26, 5.31) 1.82 (1.20, 2.77) 

Multiparous 660 1.67 (0.38, 7.44) 1.95 (1.29, 2.95) 

Menopausal    

Post Menopausal 587 1.00 1.00 

Pre Menopausal 565 0.69 ( 0.45, 1.04) 1.01 (0.85, 1.18) 

Primary side    

Left 583 1.00 1.00 

Right 569 0.87 (0.60, 1.26) 0.91 ( 0.79, 1.06) 

Primary site    

Medial (UIQ + LIQ) 235 1.00 1.00 

Lateral (LOQ + UOQ) 681 0.62 (0.40, 0.96) 1.29 (1.05, 1.60) 

Central/Multiple/Other 236 0.38 (0.19, 0.74) 1.24 (0.97, 1.58) 

Skin changes    

No 746 1.00 1.00 

Yes 406 0.38 ( 0.23, 0.62) 1.40 (1.19, 1.66) 

Tumor type    

Other/ILC 78 1.00 1.00 

IDC 1074 0.62 (0.31, 1.22) 1.14 (0.82, 1.57) 

Tumor size (centimeter)    

< = 2 236 1.00 1.00 

2-5 666 0.63 (0.40, 1.01) 1.28 (1.03, 1.59) 

> 5 250 0.61 (0.34, 1.09) 1.49 (1.17, 1.91) 

*The odds ratio of negative nodes in low risk group 
All the results are adjusted in relation to neoadjuvant chemotherapy as well as total number of dissected nodes 

 
statistic from zero favored the NB model over the PR 
model. Recall that more than one third of the patients 
had negative nodes, indicating an excess of negative 
nodes. Intuitively, this suggests that over-dispersion is 
most likely due to excess negative nodes. Firstly, all 
negative nodes were considered to arise from an at-risk 
group, justifying use of the ZHP model. Further, to esti-
mate false negative nodes, it was considered that some 
of these negative nodes might be observed among pa-

tients who had a “low risk” of nodal positivity (true ze-
ros) and some proportion might be observed among pa-
tients who had “high risk” of nodal involvement (false 
zeros). With this more natural consideration, the ZIP 
model was used. Both the Vuong test (V = 12.60 and p < 
= 0.001) and the significant likelihood ratio test favored 
the ZHP model over the PR model. However, the com-
parison of ZHP and ZIP using Vuong test (V = 2.01 and 
p = 0.04) slightly favored the ZIP model. The results of 



A. K. Dwivedi et al. / HEALTH 2 (2010) 641-651 

Copyright © 2010 SciRes.                               Openly accessible at http://www.scirp.org/journal/HEALTH/ 

647647

Vuong tests also favored the NB model over the ZHP 
model (8.86, p = < 0.001) and the ZIP model (8.84, p < 
0.001). As observed through improved fit of the NB 
model over PR and ZHP/ZIP models, it clearly indicates 
that over-dispersion is involved due to unobserved het-
erogeneity and/or clustering. In addition, ZHP/ZIP pro-
vided evidence of over-dispersion due to excess negative 
nodes, in comparison to the PR model. Hence, a model 
incorporating over-dispersion due to excess negative 
nodes as well as unobserved heterogeneity simultane-
ously was expected to provide improved predictability of 
number of involved nodes. Accordingly, ZHNB and 
ZINB models were used to predict number of involved 
nodes. Under ZHNB and ZINB models, the estimated 
dispersion parameters of zero truncated negative bino-
mial and NB models were observed different than zero 
as [(α = 0.70; 95% CI: (0.56, 0.87)] and [(α = 0.71; 95% 
CI: (0.57, 0.89)] respectively. This suggests that ZHNB/ 
ZINB models are more appropriate than ZHP/ZIP mod-
els in describing the number of involved nodes. The bet-
ter fit of ZHNB/ZINB models over the NB model sug-
gests that over-dispersion is not only due to excessive 
negative nodes but also due to unobserved heterogeneity 
and/or clustering. The result of the Vuong test showed 
no difference between ZHNB and ZINB models in pre-
dicting nodal frequency (1.53, p = 0.13). 

The model fit characteristics are shown in Table 2. 
The minimum BIC was observed for the NB model, fol-
lowed by ZHNB/ZINB models. However, other validity 
indices of the model (maximum log likelihood, mini-
mum AIC, MSPE and MAPE) favored ZHNB/ZINB 
models over all other models. The plot of observed mi-
nus predicted probability of involved nodes at each 
count is shown in Figure 1. The PR model underesti-
mates probability of occurrence of negative node and 
overestimates occurrence of one positive node. The line 
of difference between observed minus predicted prob-
ability of positive nodes was close to the reference zero 
line, showing better fit of ZHNB/ZINB models than the 
other models. There is virtually no difference between 
ZHNB and ZINB models in all aspects of describing the 
number of involved nodes. The ZINB model provides  

slightly smaller validity indices as compared to ZHNB. 
Finally, the ZINB model was assessed by the leave one 
out cross validation method. The MSPE in cross valida-
tion of the ZINB model was the lowest of all the models 
(0.0007), indicating that the ZINB model performs well 
for predicting nodal involvement in future patients. The 
ZINB model predicts that 70.6% all negative nodes are 
at “low risk” zeros, and the remaining 29.4% are at 
“high risk” for negative nodes. This indicates that almost 
30% of the patients observed as negative for nodal in-
volvement are at “high risk” of nodal involvement based 
on cofactors. 

Table 1 displays the estimates of regression coeffi-
cients for various cofactors of both portions of the ZINB 
model. For ZINB, the results of both parts of the models 
together help in understanding the role of the factors on 
nodal distribution. The logistic portion showed that me-
dial primary site and absence of skin changes signifi-
cantly increased the chance of negative nodes in breast 
cancer patients. Negative binomial portion reveals that 
the risk of a greater number of involved nodes was 82 
percent higher in single/doubleparous patients versus 
nulliparous patients, given that the patients are in a high- 
risk group. Further, this was 95 percent higher among 
multiparous patients. The patients with lateral site in-
volvement had 1.29 times higher likelihood for having a 
larger number of positive nodes than patients with the 
medial site. Women with skin changes had 1.39 times 
more involvement of higher positive nodes as compared 
 

 

Figure 1. Plots of observed minus predicted probability of 
positive nodes versus number of positive nodes for six models. 

 
Table 2. Comparison of model fit characteristics. 

 PR NB ZHP ZIP ZHNB ZINB 

Log Likelihood –4093.9 –2598.6 –3019.7 –3018.4 –2553.7 –2551.1 

AIC 8221.8 5233.1 6107.4 6104.8 5185.4 5172.2 

BIC 8307.6 5324.0 6279.0 6276.5 5382.3 5348.9 

MSPE 4764.0 139.1 632.5 627.62 52.9 49.2 

MAPE 27.5 6.2 13.1 13.0 4.8 4.7 
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to their counterparts. The chance of increased positive 
nodes was 28 percent higher among patients with 2-5 cm 
tumor size, in comparison to patients with less than 2 cm 
tumor size. It was again 1.49 times more likely among 
patients with more than 5 cm tumor size as compared to 
less than 2 cm tumor size. 

4. DISCUSSION 

The number of involved nodes is one of the most impor-
tant therapeutic and prognostic factors for breast cancer 
[1]. Clinicians need to predict the number of involved 
nodes in breast cancer patients in order to improve health 
outcomes. To the best of our knowledge, few studies 
have described the number of involved nodes in breast 
cancer patients, and tested statistical models to accu-
rately predict involved node number. As for most of the 
count data, studies also found excess variability in nodal 
distribution than that expected by a Poisson model. They 
also generally assume the cause of over-dispersion to be 
solely due to unobserved heterogeneity, and therefore 
used the NB model to fit and describe nodal frequency 
[3,4]. However, data with nodal involvement often in-
volve excess zeros, which also cause over-dispersion. 
This indicates a need to explore fitting zero hurdle and 
zero inflated models, which can also account for vari-
ability due to excessive zeros. In the current paper, we 
fitted various count models to identify putative causes of 
over-dispersion, and to assess the predictive performance 
of these models with regard to the nodal status in a 
population of patients with breast cancer. We also illus-
trated the significance of using zero inflated models in 
count data involving zeros that emanate from the sub-
jects that are all “at-risk” of the event of interest. 

The ZHNB/ZINB regression models provide the best 
fit when predicting the number of involved nodes in 
breast cancer patients. This confirms that the distribution 
of the involved nodes contained over-dispersion not only 
due to unobserved heterogeneity but also due to exces-
sive negative nodes (zeros). As expected, the PR model 
had the worst prediction ability for nodal frequency. 
Accounting only one source of over-dispersion, either 
due to excessive zeros or due to unobserved heterogene-
ity, the prediction ability of nodal frequency improved as 
indicated by NB, ZHP, ZIP models. However, use of 
ZHNB/ZINB models, which assumes involvement of 
more than just one source of over-dispersion, provided 
smaller prediction error.  

The ZHNB and ZINB models were consistent and 
similar for factor-identification in the extent of nodal 
involvement as well as for prediction of number of posi-
tive (involved) nodes. In the current study, we focused 
on predicting nodal frequency. On that basis, either model 

can be used to predict number of involved nodes. Due to 
ease of interpreting the results of ZHNB model, it can be 
preferred over ZINB model. These findings are sup-
ported by Rose et al. [6], who also found good concor-
dance between the ZHNB and ZINB models on vaccine 
adverse data—a case of only “at risk” zeros similar to 
the data used in our study. They suggested that the model 
selection should be determined based on study objec-
tives and the data generating process. They recommend 
using the ZHNB model due to involvement of only “at 
risk” zeros. However, Baughman [31] suggested that 
model choice should be based on the rationale behind 
the consideration of data generating mechanism. Gilt-
horpe et al. [32] suggested that the zero inflated models 
should be used according to the underlying disease 
process i.e., considerations of disease onset and disease 
progression. In our opinion, zero hurdle models should 
be preferred if data consist of zeros which are all coming 
from the subjects at “no-risk” of the outcome of interest, 
and over-dispersion is due to excess zeros. In such cases, 
zeros from the “no-risk” population arise from a non- 
counting process. However, zeros coming from an “at 
risk” population belong to the count process, thus influ-
encing model choice based on the rationale behind the 
data generation of the “at risk” population. In the present 
study, if diagnosis is close to or at disease onset, the risk 
of finding the event of interest (nodal involvement) 
would be minimal, whereas if the diagnosis is late and 
during disease progression, the risk of the event of inter-
est would be relatively high. Previous studies note that 
the distribution of involved nodes often consists of some 
proportion of false negative nodes, which may often 
arise in the “high-risk” group [7,8]. There is ample evi-
dence to consider “at risk” zeros, at least in breast cancer, 
as a mixture of “low-risk” and “high-risk” zeros, thus, 
suggesting the use of zero inflated models. Use of the 
ZINB model not only gives estimate of the false nega-
tive nodes i.e., zero at “high risk” of nodal involvement, 
but also provides slightly better predictive performance 
than the ZHNB model.  

The ZINB model estimated about 30 percent of the 
zeros that can be considered false/at “high risk” negative 
nodes, suggesting that these patients are at high risk of 
nodal involvement. Among these, some patients might 
have been observed or reported falsely as having nega-
tive nodes. If so, then those patients might have been 
under-treated and/or misclassified, resulting in an inac-
curate predicted prognosis. This model will help to iden-
tify such patients, and reduce misclassification. There is 
a need to develop a sound strategy to classify patients at 
“high risk” zeros and “low risk” zeros. This issue is un-
der investigation by us, and is the subject of a future 
publication. 
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The mean square prediction error was found to be 
35.4% less using ZINB as compared to the NB regres-
sion model. In addition, the predictive performance of 
the ZINB model was significantly better than the NB 
regression model, indicating that the NB model may not 
always be appropriate for describing nodal distribution. 
The leave-one-out cross-validation assessment of the 
developed ZINB model provided the minimum mean 
square prediction error compared to the other developed 
models, indicating that the model performs well, even 
for future patients, in comparison to other models.  

This study is the first report to analyze patterns of 
nodal involvement in breast cancer, using a large dataset 
collected in India. In our study, 61.2% of the patients 
had the presence of involved nodes. Sandhu et al., using 
a different Indian dataset, also reported a 61.6% nodal 
involvement [33]. A different study, also using a popula-
tion from India, reported an even higher nodal positivity 
rate of 80.2% [34]. In our study, both presence of other 
than medial primary site and skin changes among pa-
tients are associated with high risk of nodal involvement 
and with a greater number of involved nodes. In addition 
to these two factors, higher parity and larger tumor size 
are also associated with an increased risk of a higher 
number of involved nodes, given that the patients are in 
high risk population. These factors are consistently found 
to be associated with the presence of involved nodes in 
other studies [35-41], and are directly or indirectly con-
sequences of late diagnosis. Overall, these findings con-
firm the need for ongoing efforts to minimize diagnostic 
delay in patients suspected of having breast cancer.  

One limitation to our study is that it uses a dataset not 
designed for our analysis. Important covariates, such as 
lymphatic vascular invasion and S-phase function, were 
not included in this database. These covariates could be 
significantly associated with involved nodes, as reported 
in various studies [42-45]. In addition, instead of ad-
justment of these results in relation to dissected number 
of nodes, an attempt could be made to model the propor-
tion of positive nodes in patients through count data 
models or binomial models. 

5. CONCLUSIONS 

The ZHNB/ZINB regression models can be used to de-
scribe nodal distribution more appropriately than the NB 
model. However, the ability of the ZINB model to more 
accurately estimate at “high-risk” zeros while having a 
comparatively lower prediction error, as compared to the 
ZHNB model, suggests that it is the best model for pre-
dicting and describing the number of involved nodes. 
Many of the factors associated with nodal involvement 
may be a result of diagnostic delay of breast cancer pa-

tients, indicating the need to minimize delay in diagnosis 
of breast cancer patients. There is also a need to further 
investigate the consequences of using zero inflated mod-
els, as an alternative to zero hurdle models, in at- risk 
populations. 
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