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ABSTRACT 

The examination of wave motions is traditionally based on the differential equation of D’Alambert, the solution of 
which describes the motion along a single dimension, while its bidimensional extension takes on the concept of plane 
waves. Considering these elements and/or limits, the research is divided into two parts: in the first are written the dif- 
ferential equations relating on the conditions two/three-dimensional for which the exact solutions are found; in the sec- 
ond the concepts are extended to the analysis of the propagation of wave motions in porous media both artificial and 
natural. In the end the work is completed by a series of tests, which show the high reliability of the physical-mathemati- 
cal models proposed. 
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1. Introduction 

The mathematical theory, that analysed the propagation 
of elastic impulses, has its origin from the mechanics of 
the wave motions the latter are defined as the integral of 
a force generated naturally (example: earthquake) or arti- 
ficially (example: geophysical prospecting; vehicular 
traffic), time-averaged: 
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Also, the wave nature assumed for the analysis of the 
phenomenon implies the propagations time of the im- 
pulse in accordance with the relationships between the 

dynamic elastic modules—longitudinal (Ed), tangential 
(Gd) and volumetric (Kd)—through the dynamic Pois- 
son’s ratio (νd) in turn dependent on the speed of com- 
pressions waves (vS): 
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Known these elements (Figure 1(a)), the analysis of  
 

 

Figure 1. (a) The dynamic modules belong to the initial phase of the stress-strain curves, relevant to the field of small defor- 
mations, the limit of which is set at ε = 1% [1,2]: identification of motion parameters of two identical periodic waves, but out 
of phase between their (Δδ = π/2). 
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the vibratory phenomenon is attributable to the study of 
elastic behaviour of the individual waves, that exploit the 
properties of sine and cosine functions and are repeated 
periodically in the initial characteristics of the motion, 
expressed in terms of amplitude A, frequency f and phase 
costant δ (Figure 1(b)); other fundamental parameters of 
the motion are: the period: 

1
T

f
 ,                   (3) 

the angular pulsation (or angular frequency): 

2
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T
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And the number of the wave: 
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In turn the Equations (4) and (5) can be combined to 
derive the expression of velocity: 
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Given that the real motions (example: earthquake) can 
be simulated by the addition of a suitable number of 
monochromatic waves (Figure 1(b)) each characterized 
by its own amplitude, frequency and phase (Figure 2). 

Under these conditions, a mathematical model of gen- 
eral validity and its extension to the porous media will be 
described in the continuation of research. 

1.1. The 1-D Equation of D’Alambert 

The analysis of vibratory motions originates from the  
 

 

Figure 2. Schematic reproduction of an artificial impulse 
and of the sixteen monochromatics components [3]. 

D’Alembert’s differential equation [4,5] which analyze 
the propagation of monodimensional waves in function 
of the vectorial component u of the movement (variable 
between A = 0 and A = 1—Figure 1(b)) in a media with 
speed vx: 
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The solution of this problem, provided by the author, 
has been perfected by Euler [6] in the following form ex- 
pressed in relation to of the elements described by the 
Equations (3)-(5): 
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In fact, calculated the second derivatives of the Equa- 
tion (8) as a function of space and time: 
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you can replace the Equations (9b), (9d) and (6) in the 
Equation (7) to obtain the identity: 

2 2 2 2
x xk k    .             (10) 

Alternatively, can be introduced
an

1.2. The Plane Waves 

bert equation to the two-di- 

1.3. The Phenomenon of Dispersion 

ratory motion 

 only Equations (9b) 
d (9d) to obtain the Equation (7). 

The extension of D’Alem
mensional case is an unsolved problem that has required 
the introduction of isotropic homogeneous media in 
which the motions are propagated as circular waves (Fig- 
ure 3); at considerable distances from the source, small 
portions of the circular waves can be approximated by 
plane waves which propagate in a straight line according 
to directions normal to the wave fronts represented by the 
rays; in this way the analysis of the phenomenon is fa- 
cilitated, as limited to the study of the suns rays having 
evidently rectilinear trajectories in homogeneous media 
and curvilinear in those non-homogeneous. 

Each monochromatic components of a vib
which propagates in a homogeneous medium travels at 
the same speed, in turn, dependent on the angular fre-  
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Figure 3. In homogeneous isotropic media the P and 

uency and the wave number through Equation (6); in 

S 
waves propagate according to concentric spheres (circles in 
the plane) at a great distance can be approximated by the 
wave fronts plans generically definited plane wave. 
 
q
this case, indicated with ρ the density of the medium, it 
proves [7] that the following equations are valid, for elas- 
tic waves compressional (P) and cutting (S): 
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Besides, it is also the relationship vP > vS for the Equa- 
tio

2. General Equation of the Wave Motion 

 de- 

of the equation of motion will be of the type: 

n (2a). In inhomogeneous media, for which the speed 
varies along the path, each frequency component of the 
vibratory motion is instead equipped with its own speed, 
such as to arrive to a generic receiver at different times. 
The described phenomenon, known as the dispersion of 
the phases, implies that in the means of non-dispersive 
(homogeneous) the vibratory motion arrives at the re- 
ceivers with the same initial shape; on the contrary, in 
dispersive media is possible to identify a group velocity 
(if you choose to characterize the group through the ana- 
lysis of the maximum amplitude) and a phase velocity of 
each component, so that a signal emitted by the source 
arrives distorted at the receiver. Obviously, means in the 
two non-dispersive group velocity and phase are. 

Denote by s(x,y,z) the displacement vector in space,
fined with respect to a reference system coordinated, 
having components u, v e w; consequently, if the Equa- 
tion (7) describes the motion of a disturbance which is 
propagated only in the direction x, the generalized form 
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2.1. The Equation of Wave Motion in Space 
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The Equation (12), expressed in matrix and exte
form, in the case of the means non-dispersive, reduces
the form: 

2
2 2

2 jv


t
  

s s ,             (13a) 


2 2 2 2
2v

 2 2
2 2 2 2x y zv v

t x y z

 
 




   
s u v

in which vj identifies the column vector of th
Then, the solution can still be expressed using the 

ree- 
di



w
,     (13b) 

e speed. 

Equation (8) on condition to take account of the th
mensionality of the phenomenon: 
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By repeating the procedure previously seen wit
tion (7) of the motion 1D, you get in sequence: 
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In Equation (16), replace the components of 
ity, expressed according to Equation (6), finally to prove 
the validity of the proposed solution: 

the veloc- 
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The latter also demonstrates that the fundamental pe- 
riod of the wave (and consequently the frequency fun- 
damental) corresponds to the period (a
the individual components. 
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nd frequency) of 

In conclusion, for orthotropic media and from the 
structure of Equation (14), which is easily seen that the 
waves propagate according ellipsoids scalene (Figure 
4(a)); similarly, for the cond

g waves with the form of ellipsoids of revolution (Fig- 
ure 4(b)) while the condition vz = vy = vx leads to the 
development of spherical waves (Figure 4(c)). In this 
regard, we can rewrite Equation (16) creating the condi- 
tions: 
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we come to the equation of an ellipsoid:  
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e Laplacian content in Equation 
general (13a)—2s—is the quadratic form of the diver- 
gence of the vector functions that, for positives values in 
a generic point P denotes the existence of an
flow in the neighborhood of P; so, to the condition im- 
posed vz > vy > vx corresponds w > v > u which describes 

dent of tem- 
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the law of conservation of energy. 
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2. The Equation of Wave Motion on a Plane 

In case of the plane x z the Equation (13b) is reduced on 
the form: 
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whose solution is a special case of the Equation (14): 
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Figure 4. Three-dimentional geometry of waves: (a) Scalene 
ellipsoid (vz > vy > vx); (b) Ellipsoid of revolution (vz > vy = vx); 
(c) Sphere (vz = vy = vx). 
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Again, the procedure is applied now known we arr
at the identity relation: 
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which proves the accuracy of the solution according to 
l or 

circular forms. 

3. The Propagation of Waves in  

propagation in porous media has 
been addressed previously in [8] from the law of mass 
balance for two-phase media now extended to three- 

the propagation of the waves on a plane with elliptica

Porous Media 

The problem of waves 
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phase drives: 
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aseous (ρa) capable of describing a struc- 
terstitial inter- 

onnected with the speed, through 

In other words, must be considered as a porou
consists of three continuous elastic means that occ
sa

Th

same impulse, through the solid skeleton and 
phases fluid and gases contained in the 
in this way we obtain a system of three equations for the 
pr

In the Equation (28) appear porosity (n), the degree of 
saturation (S) and the density of the solid phase (ρs), 
fluida (ρw) and g
ture consisting of a skeleton solid with in
connected pores between them (Figure 5). 

Since the mass is c
the Equations (11), (2a) and (2b) shows a dependence of 
the type: 
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me region of space and which interact between them 
carving up the propagation of the same elastic pulse. 

3.1. Speed of Compression Waves in  
Porous Media 

e problem outlined can be mathematically simplified if 
one analyzes the propagation of three waves decoupled 
from the 

pores (Figure 6); 

opagation of compression waves in anisotropic porous 
media: 
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Figure 6. The basic hypothesis involves the schematization 
of porous media in three continuous elastic means and in 
this way an impulse can be decoupled into three compo- 
nents which propagate without mutual interaction. 
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Analyzing the Equation (30) analyzing the equation it 
turns out that the first bracket identifies the anisotropic 

sional 
aves; the following brackets indicate instead the com- 

ponents related to the isotropic liquid and vapor phases 
through the corresponding elastic moduli volumetric (Kw 
e Ka). 

The symbol E*
d,i identifies a law of variation 

longitudinal elastic modulus dynamic, determined from 
[11] and [12] and based on the introduction of factors of 
co

component, relative to the propagation through the solid 
skeleton, linked with only the elastic modulus being able 
to neglect the effect of the transverse contraction [10] for 
having brought the problem to three one-dimen
w

of the 

ntraction seen in [13]: 
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In the Equation (31) appear the parameterwhich re- 
presents a material constant and must be determinated 
experimentally, meanwhile the value of ρ, presents in the 
Equations (30) changes as a function of the porosity ac- 
cording to the law (28) of the mass balance. 

Once defined the general structure of the equations, 
the problem can be further simplified if one considers 
that the speed of propagation of the impulses in water 
and air are approximately vw ≈ 1500 m/s and va ≈ 340 m/s 
which would alter the Equations (30): 
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mponents of the shear waves are 6, of which three in- 
dependent mathematica

 

 

,
, 1 1500

340 1

d z
P z

E
v n n S

n S



 
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.    (32c) : 

 

In conclusion, the same way as seen with the
tions (13) ÷ (19) related to the generalized
waves, the Equations (30) and (32) describe scalene el- 
lipsoidal waves, ellipsoid of revolution or spherical with 
respect to the relationships between the elastic modulus 
of the soil skeleton that affect the dynamic response
the anisotropic component. 

3.2. Velocity of the Shear Wave on Porous Media 

In the determination of the speed of shear waves is nec- 
essary to consider: 1) the physical impossibili
to propagate in fluids; 2) their polarization on mutually 
orthogonal planes (waves SV e SH); 3) their development 
in 

 Equa- 
 theory of 

 of 

ty of waves 

all directions with respect to the source; 4) to Equation 
(11b); 5) a law of variation of Poisson’s ratio: 

 0 1d d n    .               (33) 

Finally, the Equations (2a), (31) and (34) can be com- 
bined with each other: 

  ,
, 1 d xy

S xyv n


 G 
   
  

,         (35a) 
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, 1 d xz

S xz

G
v n



 
   
  

,          (35b) 

  ,
, 1 d yz

S yz

G
v n



 
   
  

.  

Equations (35), compared with th
demonstrate the existence of time dif
of the shear wave—compared to compression—which 
must necessarily increase with the increase of the dis- 
tance from the source. 

3.3. Tests of Model Validation 

        (35c) 

e Equations (32), 
ferences of arrival 

The graph of Figure 8 illustrates the experimental re- 
sults, conducted on both dry rocks that saturated water, 
expressed in terms of rate of change of P-waves as a  
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Figure 7. Components of the seismic moment tensor [14]. 
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Figure 8. Comparison between the experimental data of the 
speed of samples of dry rocks and waterlogged [15] and the 
theoretical results predicted by the model. 
 
function of porosity. In detail, as reported in [15], it is 
possible to note that the increase due to saturation is very 
evident both in the lava issued from Etna (ET; near Cata- 
nia, Italy) than in the Campi Flegrei (CF, Italy near 
Naples) both characterized by a low overall porosity of 
approximately in the range n = 5% - 20%, on the con- 
trary, in tuffs and ignimbrites (having a porosity in the 
range n = 30% - 60%), the increase of speed found in the 
saturated state is significantly higher than the lava rocks. 

At the same graph have been superimposed the theo- 
retical laws of variation of P-waves velocity, and their 
tabulated data, calculated using Equations (28), (31) and 
(32c); as can be noted from the same theoretical model 
fails to approximate, for  = 2.126 introduced in the cal- 
culation of , the speed difference between the dry and 
saturated ro s with the increase of the porosity. 

Final interpretation of the results with the theoretical 
model must be considered that the theoretical behavior of 
lava rocks (lavas of Etna and Campi Flegrei) and pyro- 
clastics (tuffs and ignimbrites) was standardized in terms

composition (Basalts and Trachytes alkaline in the first 
case, the variable in the second case [16]) induces to as- 
sume the existence of different starting values of the dy- 
namic elastic modulus and density; in other words, the 
same experimental results are not comparable to each 
other if not qualitatively, as indeed demonstrated by the 
dispersion of its employee data from the variation of the 
physical properties quoted. 

The second test was performed using the experimental 
data contained in [17], relating to the correlations vP-n 
and vS-n measured in samples of alumina ceramic (Al2O3) 
known for the acid resistance and low thermal conductiv- 
ity so as to be used as a catalyst in the chemical industry 
and as a graft material in the biomedical; therefore, with 
reference to Figure 9(a), it turns out that the theoretical 
model describes with high accuracy the performance of 
the P-waves in the ceramic (per  = 1.46) while S waves 
are sufficiently approximated by n < 15% and approxi- 
mated for n > 15%. 

The Figure 9(b), in turn, illustrates the extension of 
the theoretical model to the entire range of variability of 
porosity, between a material infinitely compact (n = 0%) 

10 ), expressed in terms of 
 samples and saturated and S- 

dE

ck

 
of ρ and of dE , although the different mineralogical 

waves velocity. In this case the elements are key findings 
 

and infinitely porous (n = 
P-waves velocity for dry

0%

 

Figure 9. (a) Comparison between the experimental data of 
the speed of samples of alumina ceramics [17] and the the- 
oretical results predicted by the model; (b) Extension of the 
model to the entire field of porosity. 
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in the test: 1) the P-waves velocity for saturated samples 
is slightly lower than that responsible for the dry sam- 
pl

respectively are linear and non-lin- 
ea

odulus. 
The last test was conducted using the experimental re- 

sults contained in [18] and related to the propagation of 
P-waves in a generic group of rocks not necessarily re- 
lated to each other (Figure 10); Also in this case, the 
theoretical model is able to approximate (per  = 2.381) 
the dynamic behavior generally using the same starting 
values of the density and the dynamic elastic modulus. 

4. Conclusions 

The analysis of wave motions takes origin by the differ- 
ential equation of D’Alembert [4,5], the solution of which, 
based on the properties of the trigonometric sine and co- 
sine functions, simulates the propagation of an elastic 
wave in a continuous medium 1-dimensional, and its ex- 

ts that make up 
th

these equations are valid for continuous media, 
w

e 
- 

 existence of three continuous 
 with interparticle voids paths from 

different types of rocks and in samples of alumina ce- 
ramics. 

Ultimately, the tests showed that the proposed models 
fail to accurately simulate the behavior of a particular 
material or group of materials that share the same origin 
while further applications may be later developed: 1) in 

 

es n < 60%; 2) for n > 60% the P-waves velocity of 
saturated samples becomes greater than that of the dry 
samples while the model manifests a marked non-linear- 
ity; 3) for n = 100% the speed of the saturated samples is 
reduced to that of water (point A) while that of the sam- 
ples dried in the air (point B). Finally, as expected, n = 
100% for the S-waves velocity vanishes. 

The trends of the P-waves velocity associated to the 
fields 0 < n < 0.6 and 0.6 < n < 1depend on the laws of 
variation adopted for ρ and E*

d that, described by Equa- 
tions (28) and (31), 

r; which means that, while the density varies linearly 
for 0 < n < 1 the elastic modulus assumes a-heating an 
approximately linear for n < 0.6 and not linear for n > 
0.6. Consequently, the increase of speed setting attribut- 
able to fluid phases fails to compensate—for n < 0.6— 
the effects adducts by variations in density and elastic 
m

tension to the floor is brought back to the simplified con- 
cept of circular waves reduced to plane waves. 

After a brief review of the main elemen
e rolling waves of D’Alembert, was written the differ- 

ential equation governing the wave motion in space (gene- 
ralized theory) to follow, it was found that the exact so- 
lution shows that the waves take the form of ellipsoids 
scalene in orthotropic means which, in turn, reduce to the 
ellipsoids of revolution in the means transversely isotropic 
and spherical waves in isotropic media; in the same way, 
which step consequent, the 3D equation has been reduced 
to the 2D field whose solution leads to waves having 
elliptical shapes that are reduced to circular waves. But be 
aware that 

hich can be described by assigning them appropriate 
scalar and vector fields defined by means of functions 
regular and continuous over the entire domain configura- 
tion. 

Which next step, given the nature of the particle actu- 
ally real media (with particular reference to geomaterial), 
the equations have been applied to porous media, th
description of which is based on concepts known in Geo
technical that predict the
media (solid skeleton
water and air) that interact between them carving up the 
propagation of the same impulse elastic divided into the 
components of compression and shear. Finally, the search 
has been completed with some tests based on known ex- 
perimental data relating to the propagation of waves in 

 

Figure 10. Comparison between the experimental velocity of P
diction of the proposed model is extended to the field of poros

-waves of a generic group of rocks [18] and the theoretical pre- 
ity. 
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the field seismological, considered that the Equations (30) 
reduce to Equations (11a) for means infinitely porous, as 
in
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