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Abstract

The origins and pathways of atmospheric aerosols in Kenya are examined in
Nairobi for the three years (2015-2017) using HYSPLIT model and meteoro-
logical data. Aerosol concentrations in Kenya depended on the frequency of
the air mass from the northeastern Asian Continent and southeastern Mada-
gascar Island. There was a direct correlation of more pollutants during dry
and hot seasons (JJA) of the year. To study the reasons for the seasonal varia-
tions, the origins of the air mass flowing to Nairobi were analyzed by back-
ward air mass trajectory analysis. Monthly variations revealed that aerosols
are transported from different directions due to variation of winds flowing
and peak values were during July because of the increased emissions due to
higher temperature and stronger solar radiation during heating, while the
lowest value found in April was probably due to rain wash.

Keywords

Source Identification, Aerosol Particles, Mascarene, Azores, St. Helena,
Arabia

1. Introduction

Atmospheric tropospheric aerosol is the suspension of liquid and solid particles
with varying diameter mostly range from a few nanometers to tens of microme-
ters in the atmosphere. This aerosol plays an important role in solar radiation

budget, climate change, hydrology process, air quality and visibility through the
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effect of scattering and absorption of incoming solar energy from the sun (Levy
et al., 2007). The atmospheric tropospheric aerosol particles originate from a va-
riety of sources, both from primary and secondary sources, as well as natural or
anthropogenic ones. Understanding the importance of these sources for the
concentration and chemical composition of particles at different locations is a
key question in health (Van Pinxteren et al., 2010) and climate issues (Isaksen et
al., 2009), as well as in fundamental atmospheric chemistry studies. The tropos-
pheric aerosol particles in the atmosphere play an important role in meteorolog-
ical effects (Mahowald et al., 2002; Shao et al., 2006). The meteorological and
climatic importance of aerosols includes the absorption and scattering of solar
radiation from the sun and the modifications of the optical properties of clouds
and snow surfaces (Tegen & Fung, 1994).

Back trajectory techniques has been widely utilized worldwide for study the
source-sinking points and path of aerosols, for example (Jaffe et al., 1999) con-
firmed that anthropogenic emissions from Asia was having a significance im-
pacts in North America (Zachary et al., 2018) also confirmed that atmospheric
aerosols arriving at the ICIPE Mbita mainly depends on the prevailing trade
winds which are north-easterlies during wet season which had a big influence on
the transportation of trajectory pathways from Arabian Peninsula, while in dry
season, the winds were mainly south-easterlies which brought oceanic sea salt
aerosols from Indian Ocean and Madagascar Island. From the research, it can be
seen that back trajectories aid researchers to understand the origin of the at-
mospheric aerosols.

Air mass back trajectory analysis was performed as described by (Beukes et al.,
2013). Individual hourly back trajectories were compiled with the HYSPLIT 4.8
model, which was developed by the National Oceanic and Atmospheric Admin-
istration (NOAA) (Draxler & Rolph, 2013; Draxler et al., 1998). This model was
run with meteorological data of the GDAS archive of the US National Weather
Service’s National Centre for Environmental Prediction (NCEP) and archived by
the Air Resources Laboratory (ARL).

Each hourly arriving back trajectory was calculated for 120 hours (5 days)
backwards. An arrival height of 2000 m was chosen, since Nairobi is at altitude
of 1650 meters above sea level and furthermore, the dispersion models are very
useful to design strategies to reduce emissions and manage air quality in any
given region. The concentration of pollutants varies by wind direction at a re-
ceptor (Zhang et al., 2016).

The processes by which atmospheric aerosols are removed from the atmos-
phere by precipitation (wet removal process) can be divided into two categories
namely: in-cloud and below-cloud regimes. In-cloud processes which are go-
verning wet deposition of aerosols include inertial removal by cloud drops, nuc-
leation, and diffusion to cloud drops while below-cloud processes include iner-
tial removal by precipitation and diffusive removal on precipitation (Twomey,

1977). It has been found that in-cloud process is more efficient than below cloud
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due to the presence of the large total surface area of droplets within the cloud
compared to raindrops below cloud base (Asman, 1995; Walker et al., 2000).
After laying the basis for this study, a brief analysis of the introduction is pre-
sented in section one. Section two documents the methodology used and area of
study, while section three describes the discussion of the results. Besides, in the
same section, the climatic conditions of the area of study are described. In addi-
tion to that, the prominent features are also highlighted. Section four provides
summery and conclusions while last section gives the future scope for the study.
This research work presents a review of air-mass back trajectories and their
role in air pollution transport. It describes the concept, history, and basic calcu-
lation of air trajectories using HYSPLT model, MeteoInfo and Originlab models
which is used worldwide. These air masses are responsible for the source and
sinking of pollutants depositing in nearby area of interest. Forward and back
trajectories trace an air parcel’s path back in time and it indicates where the air
parcel should be or has been before it arrives the locations where it is analyzed
(Ha et al., 2017). Apart from meteorological data, this modal uses also vertical
movement of atmospheric circulation as input, and it displays the analysis of the

simulation outputs (Stein et al., 2015).

2. Materials and Methods
2.1. Area of Study

Kenya is situated within the low pressure region of ITCZ of 5°N and 5°S Figure
1. Nairobi is one of the largest city in Kenya serving as administrative capital.
This urban-industrial city is situated on latitudes and longitudes of 1.34°S and

36.87°E from the equator at an altitude of 1650 meters above sea level neighboring
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Figure 1. Geographical location of Kenya in green color. The broken red lines shows the
relative position of annual movement of the Inter-Tropical Convergence Zone (ITCZ)
during July and January. The blue letter H represent the semi-permeant high pressure
cells while red letter L represent the low pressure region. This Map was produced on 26%
November 2018 by Misiani Zachary.
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to the eastern edge of the Rift Valley while Ngong Hills, located to the west of
the city, are the most prominent geographical feature of the Nairobi region. Ac-
cording to Koppen climate classification (Kottek et al., 2006), the city has a sub-
tropical highland climate especially in the months of June to July season, the
evenings are cool with low temperatures of about 09°C and maximum of 24°C.

ITCZ is the single most important climatic phenomenon affecting seasonality
in Kenya, and its annual migration creates the 2 seasons experienced near the
equator known in East Africa as the northeast (NE) and southeast (SE) mon-
soons. The position of the ITCZ varies predictably throughout the year. Al-
though it remains near the equator, the ITCZ moves farther north or south over
land than over the oceans because it is drawn toward areas of the warmest sur-
face temperatures. The location of the ITCZ can vary as much as 40° to 45° of la-
titude north or south of the equator on land. It moves toward the Southern He-
misphere from September through February and reverses direction in prepara-
tion for Northern Hemisphere Summer (Chandra et al., 2018). The ITCZ is less
mobile over the ocean, although there is one exception the ITCZ migrates la-
titudinally on a seasonal basis. In July, when the sun is over the Tropic of
Cancer, the ITCZ reaches its northernmost position at about 15°N; in January
it reaches ~5°S when the sun is over the Tropic of Capricorn. The most impor-
tant consequence of this shifting is the annual alteration of wet and dry seasons
in Kenya.

As shown from the area of study, there are four semi-permeant high pressure
cells namely: Mascarene High to the southeast of Indian Ocean, St. Helena High
in South Atlantic Ocean, and Azores High to the North Atlantic Ocean while
Arabian High is situated on the Asian continent. Within these semi-permanent
pressure cells, there are also Mediterranean ridge along the Mediterranean Sea

and Mozambique Channel along Madagascar (Robert et al., 2008).

2.2.Data

The data for the above area of study was obtained from the Air Recourses La-
boratory HYSPLIT MODEL http://www.ready.noaa.gov/index.php and ECMWF
MODEL http://apps.ecmwf.int/datasets/data/cams.

2.3. Methodology & Software Used

ArcMap 10.3.1 which is a component of ESRI’s ArcGIS Geographical Informa-
tion System (GIS) was utilized for drawing maps. A shapefile was created for
each month from the corresponding back trajectory dataset and projected in
ArcMap as an individual layer. Each data point of back trajectory shapefiles
represents a geographical location in latitude and longitude degrees, height
above mean sea level and time in hours before arriving to the area of study Fig-
ure 2.

Back trajectories were also used throughout this research work to analyze the
source and sinking points of air mass using ARL, HYSPLIT4 and NOAA. For the
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Figure 2. Methodology.

purpose of this research ECMWF was also used in conjunction with MeteoInfo
and Originlab for the analysis of the mass concentration & dispositions of the
aerosols overlaid with the global UV wind vector and global mean sea level
pressure data. This model is referenced with archived meteorological data for the
computation of the back trajectories for six hourly data. Each trajectories that
was created started at Nairobi 1.34°S and 36.87°E, 00Z time at three different le-
vels; near surface, middle and upper levels of 1700, 2000 and 3500 meters above
ground level and was calculated back 120 hours before it was exported as a GIS
shapefile.

After arrangement of the data into monthly, seasonal and yearly a study rela-
tionship was done to investigate if there was any relationship between the aero-
sols and meteorological parameters whereby the conclusion was finally reached

Figure 2.

3. Results and Discussion
3.1. Monthly Trajectories Analysis

In order to understand and monitor the major sources of aerosols arriving at
Nairobi, the HYSPLIT4 model of NOAA for backward trajectories analysis was
used (Draxler & Hess, 1998). A monthly 5days back trajectories at different alti-
tudes of 1700, 2000 and 3500 meters above mean sea level was used since the this
site is at an altitude of Nairobi 1650 m (Zachary et al., 2018).

Generally observations show Figure 3 and Figure 4 most of the trajectories
for January, February, September and December are originating from the north-
ern hemisphere in south west direction. Most of the trajectories at the altitude of
1700 m and 2000 above mean sea level red and green cycles respectively starts
from Saudi Arabia as it propagates through Yemen, Somalia, and Indian Ocean
then enters into Kenya at the border of Somalia and Kenya through arid and
semi-arid northeastern province Figure 3(a), Figure 3(b), Figure 3(i), and
Figure 3(1) (Zachary et al.,, 2018). This was predominantly due to North east
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monsoon that is occasioned by intensification of the Arabian Ridge when northern

hemisphere is experiencing winter season, and there is higher pressure gradient
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Figure 4. Typical five day HYSPLIT-4 backward trajectories analysis results ending at 00Z over Nairobi (1.34°S, 36.87°E, 1650
above mean sea level (AMSL)) at different altitude of 1700 (red lines), 2000 (green lines) and 3500 (blue lines) meters above
mean sea level on monthly for 2016. (a) - (1) represent January to December respectively.

from northern hemisphere to southern hemisphere which create general flow of
NE monsoon winds from north to south (Simiyu et al., 2018).

During the wet seasons of March-May (MAM) and September-November
(SON), the air mass trajectories origin was easterly which indicates the presence
of the ITCZ over Kenya. From the trajectory distribution, there is a general eas-
terly component whereby the trajectories are oscillating generally from easterly
to southeasterly component which follows the position of the ITCZ Figure 3(c),
Figure 3(d), Figure 3(j), Figure 3(k), Figure 4(c), Figure 4(e), Figure 4(i),
Figure 4(j) and Figures 5(c)-(e), Figure 5(k).

During dry season of JJA when the northern hemisphere is experiencing
summer, the dominant winds over Nairobi is generally between southerly and
southeasterly direction. The trajectories originate from far Indian Ocean as it

propagates through Madagascar Island. Through the application of a simple
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techniques of wind analysis it can be seen that a persistent high-speed of winds
of about (15 to 25) knots in the form of low level jet stream exists in the lower
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layers which originates from the tip of Madagascar Island to reach the Kenyan
coastline as southerly (Zachary et al., 2018). This winds turn to Southwest upon
crossing the equator. As this maritime winds passes through steep eastern
mountain slopes of Madagascar, most of its water vapor is retained in the lower
layers, hence this air masses become dry with more sea salt particles and dust.
The narrow fetch of Mozambique Channel Figure 1 does not allow this air
masses to replace the lost moisture. The upper convergence along the equatorial
region during July leads to the sinking motion of the aerosols particles into the
area of interest and also due to the effect of topographical intensification of the
flow, the speed is generally reduced as winds converges into western parts of
Kenya leading to more concentration of sea salts and dust particles to the area of
study.

3.2. Monthly Concentration & Dispositions Analysis

HYSPLIT aerosols mass concentration maps Figures 6-8 it can be inferred that
both nearby and far source areas such as Somalia, Indian Ocean and Madagascar
Island contributed to the atmospheric aerosols arriving to Nairobi. The concen-
tration distribution as shown by the wind analysis maps is a general distribution
of aerosols follows the general flow of winds. During the months of Decem-
ber-February, North East Monsoon—(NEM) winds are dominate to the area of
study. This results of the general wind flow portrays other results from same
(Muhati et al.,, 2007) which showed that most easterlies winds are dominant
winds the months of January and November over Nairobi. NEM starts from
Himalayas and also due to westerly depression then it travel towards South West
as it passes through the Arabian sea and ends up in the Indian Ocean as it closes

equator. The dry winds from the north carries both fine mode and coarse mode
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aerosols particles, travels towards the Indian Ocean there they may pick up sea

salts particles and moisture.
During the wet seasons March-April-May (MAM) and September-October-

November (SON) Figure 6, Figure 7 and Figures 8(b)-(d), Figures 8(i)-(k) the
South East Monsoon (SEM) winds flows southeast direction from Indian
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monthly average 2015.
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Figure 7. HYSPLIT aerosols mass loading concentration (mass/m?®) between 0 and 1650 m above mean sea level (AMSL) for
monthly average 2016.

Ocean. So during this period along with the wind movement the pollutants tra-
vel and spread its effects accordingly. The monsoon fetches sea salt pollutants
and dust particles along with its moisture from Indian Ocean and sheds the pol-
luted rain water in various part of Kenya. April is the perk month during the
long rain season, as it can be seen from the Figure 6, Figure 7 and Figure 8(c)
mostly aerosols comes from nearby surrounding areas as compared to other
months.

With the oscillation of the winds between Northeast, east, southeast and
south, there is a great contribution of pollution when the trajectories are Easter-
lies and Southerlies and mostly during hot-dry season of DJF & cold-dry JJA
season. Dry seasons having less rainfall washout effect most of the pollutants this
time are highest.

3.3. Mean Sea Level Surface Pressure and Global Wind Flow

In general, the global atmospheric pressure belts shift northward in July North-
ern Hemisphere summer and southward in January Southern Hemisphere
summer following the changing position of the sun’s direct rays as they migrate
between the Tropical of Cancer and Tropical Capricorn (Okoola & Raphael,
1999). During Northern Hemisphere winter (DJF), the Arabian High and Azores
High pressure cells have a higher pressure of 1030 hPa compared to Southern
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Figure 8. HYSPLIT aerosols mass loading concentration (mass/m®) between 0 and 1650 m above mean sea level (AMSL) for

monthly average 2017.

Hemisphere Mascarene and St. Helena 1020 hPa Figures 9-11 January. This
leads to the development of a pressure graduate from north to south. Because of
the Coriolis Effect, the northern trade winds move away from the subtropical
high in a clockwise direction out of the northeast Figure 9 January, Figure 10
January and Figure 11 January. The air mass during this season passes over the
drier India, Saudi Arabia, Yemen, and Somalia land mass and therefore it carries
a lot of dust particles toward Kenya (McClanahan, 1988; Zachary et al., 2018).

Over eastern Asia, there is a strongly developed anticyclone during the winter
months that is known as the Arabian High. It can be seen that NE monsoons
dominate during the Southern Hemisphere summer (December-February),
while the SE monsoons are observed during the Northern Hemisphere summer
(June-August) Figure 9 July, Figure 10 July and Figure 11 July. (Chandra et al.,
2018).
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(January) and summer Northern Hemisphere (July) 2016.
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Figure 11. Average sea-level pressure (in bars) and global streamlines wind flow, winter in the Northern Hemis-
phere (January) and summer Northern Hemisphere (July) 2017.

During JJA, the Southern Hemisphere experiences winter season while North-
ern Hemisphere there is summer. The Mascarene High and St. Helena High
pressure cells become stronger than the pressure in the Northern Hemisphere of
Azores and Arabian High. This lead to the creation of pressure gradient from
south to north. The anticyclone over the North Pole is greatly weakened during
the summer months in the Northern Hemisphere, primarily because of the
lengthy (24-hour days) heating of the oceans and landmasses in that region
while the land-masses, which developed high pressure cells during the cold win-
ter months, have extensive low pressure cells slightly to the south during the
summer. This creates South East Monsoon winds. This monsoon winds passes
through Madagascar Island and Indian Ocean carries dust aerosols and sea salt
along with toward Kenya Figures 6-8 JJA (Zachary et al., 2018).

A transition period occurs from the NE to SE monsoons during the period of
the Northern Hemisphere spring and autumn seasons. During March-May and
October-November periods, Kenya received long rains and short rains respec-
tively. This transition is characterized by convergence of low-level equatorward
moving air masses from both hemispheres. These low-level air masses constitute

the monsoonal flows and the zone of convergence is the ITCZ.

4. Summary and Conclusion

Seasonal weather variation plays a critical role in the monthly variations of

aerosols in Kenya. We have likewise demonstrated that there is a strong rela-
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tionship between atmospheric pressure, winds and 120-hour back trajectories.
Monthly variation of aerosols occurrence was definitely non-uniform, as aero-
sols were mostly concentrated in the hot and dry seasons of JJA and DJF. While
in wet seasons of MAM and OND, most aerosols were removed from the at-
mosphere through wet scavenging process.

The majorities of trajectories, mass concentration and disposition of aerosols
are azimuthally confined in wide intervals of 045° - 180° on angle composs di-
rection, indicating that a northeasterly distribution of aerosols transport was
prominent during northern hemisphere winter (DJF) while southeasterly distri-
bution of aerosols transport was prominent during southern hemisphere winter
season JJA.

The results also indicate that back trajectories, mass concentration and dispo-
sition is positively correlated with general flow of winds governed by pressure
gradient from both hemisphere. It is apparent that seasonality is a major factor
affecting annual patterns of aerosols in Kenya. The annual migration of ITCZ
northward and southwards from the equator, the changes of atmospheric pres-
sure from the semi-permanent high pressure cells which creates pressure gradu-
ate, monsoon winds were the important factors for the atmospheric aerosols

transportation in Kenya.

Future Work

Our findings here that both trajectory and air mass are acting in tandem to in-
fluence aerosols transportation from source-sink region. We strongly encourage
other researchers to investigate the joint relationship between air mass, temper-
ature, humidity and back trajectories including other pollutant species like O;,

PM, SO,, and CO over the same region.
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