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Abstract 
The intraseasonal timescale is critical in Central Africa, because the resources of the region are 
highly rainfall dependent. In this paper, we use 1DD GPCP rainfall product to investigate the dif-
ferences in the space-time structures of the 25 - 70-day intraseasonal variability of rainfall, over 
the Western Central Africa (WCA) and the Eastern Central Africa (ECA), with different climate fea-
tures. The results of Empirical Orthogonal Functions (EOFs) analysis have shown that the amount 
of variance explained by the leading EOFs is greater in ECA (58.4%) than in WCA (49.8%). For both 
WCA and ECA, the power spectra of the Principal Components (PCs) peaked around 40 days, indi-
cating a MJO signal. The seasonality of ISO is evident, but this seasonality is much noticeable in 
ECA where almost 80% of the total yearly ISO power occurs during November-April season, 
against only around 60% for WCA. Moreover, the lagged cross correlations computed between 
WCA and ECA PCs time series showed that most of the WCA PCs led ECA PCs time series with a 
timescale of 8 - 12 days, revealing that the eastward propagation could potentially be the rela-
tionship between WCA and ECA modes. The interannual variations in the ISO activity are weak 
in WCA, when compared with ECA where the signal exhibits larger interannual variations, quite 
linked with ENSO. 
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1. Introduction 
It is well-known that climate variability and change are a crucial problem in many tropical regions. Amongst 
these regions, the Central Africa (CA) is particularly attractive because of the variety of its topography and sur-
face conditions (Table 1). Furthermore CA is particularly vulnerable to climate change, because the economy of 
many countries is based on agriculture and livestock activities. 

The CA extends from 15˚S to 15˚N and 5˚E - 45˚E mainly over the land and part of Atlantic and Indian 
oceans on its edges (Figure 1). The topography of the region is much varied, including highlands, mountains, 
and plateaus (Figure 1(a)). Then higher frequencies climate variability, from daily to intraseasonal timescales is 
a significant source of vulnerability in the region. The western part of the region (15˚S - 15˚N; 5˚E - 30˚E) rece-
ives intense precipitation throughout the year, especially over the Congo Basin (Figure 1(b)). This subregion is 
almost covered by the Congo forest (Figure 1(c)), which keeps it quite relatively wet throughout the year. The 
eastern part (15˚S - 15˚N; 30˚E - 50˚E) is characterized by widely diverse vegetations ranging from desert to 
forest over relatively small areas. The topography of the region is complex and then influencing climate, be-
cause it leads to the orographically induced rainfall and affect local climates [1] [2]. This region has suffered 
from both excessive and deficient rainfall in recent years [3] [4]. The difference between the East and West 
boundaries of CA is approximately 3000 m in surface elevation, and 3000 mm in annual mean rainfall. Then the 
two subregions (ECA and WCA), separated from each other by the Rift Valley, are very different in terms of 
topography, surface conditions and precipitation (Table 1).  

The ITCZ (Inter-Tropical Convergence Zone) is a classical and dominant feature of atmospheric dynamics 
over the region [5] [6]. Then the rainfall over CA is highly seasonal. The peak of ITCZ precipitation belt shifts 
from north to south of the equator during November-December and returns to north during March-April. The 
ITCZ precipitation maximizes near 10˚N during summer, while it peaks near 10˚S during winter. Around the 
equator (6˚S - 6˚N), the mean annual rainfall is divided into four periods or seasons: December-February (DJF), 
March-May (MAM), June-August (JJA), and September-November (SON).  

As stated earlier, the intraseasonal timescale is crucial in CA, because the resources of the region are highly 
rainfall dependent. Intraseasonal Oscillations (ISO) refer to cycles operating at timescales shorter than a season-
al cycle. In the past three decades, the lack of infrastructure to measure rainfall led many authors to the use of 
satellite data, such as Outgoing Longwave Radiation (OLR) to study the intraseasonal variability in some tropi-
cal regions [7]-[13]. Furthermore it was found in many studies that in Africa rainfall variability, there exists two 
dominant frequency bands at intraseasonal timescales. For example, analysis was made for Africa and signals 
over 10 - 25-day and 25 - 60-day periods were found in convection and precipitation in the western region [13].  

An important characteristic of the MJO (ISO) is its irregularity within the year, and from year to year, as well 
as the spatial variations in its intensity and speed. In fact the modulation of the level of MJO activity and its 
possible predictability is one of the greatest challenges and it has been the key subject of many researches (e.g. 
[14]-[20]). Moreover in the regions as CA where climate varies over few kilometers, it is interesting to extract 
many ISO indices, depending on the climate zone. Indeed the CA region represents a notable gap in the study of 
the tropical climate system. Significantly, the structures of the Intraseasonal Oscillations (ISO) in Central Africa  

 
Table 1. Comparison of some geographical features between eastern and western central Africa. 

 Western Central Africa (WCA) Eastern Central Africa (ECA) 

Average topography Lower than 700 m Greater than 1500 m 

Vegetation Almost covered by the Congo forest From desert to minor forests over relatively small areas 

Mean annual rainfall Greater than 1600 mm Lower than 700 mm 

Borders Rift Valley-Atlantic ocean Rift Valley-Indian ocean 
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(a)                                                          (b) 

 
(c) 

Figure 1. (a) Surface elevation over the study area based on 30-min topographic data (m) from Digital Elevation Model 
(DEM) of the US Geological Survey. The study domain (15˚S - 15˚N, 5˚E - 45˚E) and the division line between WCA and 
ECA are shown on the plot. (b) Annual mean rainfall, the plot is based on 1DD GPCP precipitation for the period 1996-2009 
and the unit of precipitation is mm. (c) Mean vegetation cover, the vegetation density is interpreted as the green level of the 
surface (source people.virginia.edu). 
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are only discussed by few authors. More recently, [19] used one-Degree Daily Global Precipitation Climatology 
Project (1DD GPCP) higher resolution rainfall product to study the ISO patterns in CA, but they considered the 
whole area (15˚S - 15˚N, 0˚N - 50˚N) and did not take into account the contrast patterns between western and 
eastern parts of the region with different climate features. Fortunately, only [19] addressed this issue. It was 
proved that there are two dominant frequency bands in the intraseasonal rainfall variability, 10 - 25-day and 25 - 
70-day respectively, but they studied this difference in the intraseasonal oscillations only for 10 - 25-day fre-
quency band. So the present study is a continuity of the work done by [19], for the 25 - 70-day frequency band. 

We use the same methods as [19] to assess the detailed spatial and temporal patterns of the leading modes of 
ISV of rainfall over the region, both throughout the year and from year to another. 

The paper is organized as follows: In the next section, the data and methods used will be described. Section 3 
will present the main results obtained and the analyses. Finally, Section 4 is devoted to a few discussions and 
conclusions. 

2. Data and Methods 
2.1. Data 
For this study, we used the 1DDGPCP rainfall data. The GPCP algorithm combines precipitation estimates from 
several sources, including infrared (IR) and passive microwave (PM) rain estimates and rain gauge observations 
[20]-[22]. The IR data came mainly from the different Geostationary Meteorological Satellites but data from 
polar-orbiting satellites were also used to fill in the gaps at higher latitudes. The IR based estimates used the 
Geostationary Operational Environmental Satellite (GOES) precipitation index (GPI) described by [23]. The 
microwave data come mainly from the Special Sensor Microwave Imager (SSM/I) on board the Defense Me-
teorological Satellite Program. The PM estimates were used to adjust the GPI estimate. Then, the multi-satellite 
estimate was adjusted towards the large-scale gauge average for each gridbox. The gauge-adjusted multi-satel- 
lite estimates were then combined with gauge analysis using a weighted average, where the weights are the in-
verse error variances of the respective estimates. The current products include a monthly analysis at 2.5˚ × 2.5˚ 
longitude-latitude grids, a 5-day (pentad) analysis at the same spatial resolution, and a daily product at a special 
resolution of one degree. The one-degree daily (1DD) product does not use PM rain estimates and gauge mea-
surements directly [21]. SSM/I data were used within the frame work of the threshold-matched precipitation in-
dex (TMPI) to delineate rain are as in the IR data. Gauge data were involved indirectly when the 1DD product 
was scaled so that monthly accumulations of 1DD matched the monthly GPCP product. The monthly and pentad 
analyses extend from 1979 to current, while the daily product is available starting from October 1996. The daily 
products are made available 2 to 3 months after the end of each month. The product used in this paper is the 
one-degree daily precipitation data available on the NOAA website  
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. After some global and regional validations [24]-[26], 
the GPCP rainfall estimates are actually being used widely in place of gauge observations or to supplement 
gauge observations in the climate variability studies. 

The Niño-3.4 region (5˚S - 5˚N, 160˚E - 150˚W) sea surface temperature anomaly (SSTA) index was also 
used, to define the strength of ENSO and identify individual El Niño and La Niña events [27]. These Monthly 
observed SSTA are adapted from the National Oceanic and Atmospheric Administration (NOAA Climate Di-
agnostics Center). 

2.2. Methods 
Depending on the purpose of analysis, some frequencies may be of greater interest than others, and it may be 
helpful to reduce the amplitude of variations at other frequencies by statistically filtering them out before view-
ing and analyzing the series. The Lanczos filtering [28] used in this study is one of the Fourier methods of fil-
tering digital data. Its principal feature is the reduction of the amplitudes of Gibbs oscillation. The Fourier coef-
ficients for the smoothed response function are determined by multiplying the original weight function wk, by a 
function that Lanczos called “sigma factors”. Then the weight function of relation becomes [29]: 

sin 2π sin π
π π

c
k

kf k nw
k k n

= ⋅                                  (1) 

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html
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where sin 2π
π

c
k

kf
w

k
=  are the traditional Fourier weights. The Lanczos filter is widely used for filtering climate 

data time series. 
Commonly, some form of time series or spectral analysis is used for extracting periodic signatures from a set 

of data pertaining to climate variations. Fourier series provides an alternate way of representing data: instead of 
representing the signal amplitude as a function of time, we represent the signal by how much information is 
contained at different frequencies. A Fourier series takes a signal and decomposes it into a sum of sines and co-
sines of different frequencies. 

( ) ( ) ( )0 1 cos 2π sin 2πn nnf t a a nt b nt+∞

=
= + +∑                         (2) 

where ( )f t  is the signal in the time domain, and an and bn are unknown coefficients of the series, which can 
be found by simple integration. In atmospheric sciences, we generally work with discrete data points, not an 
analytical function that we can analytically integrate. It turns out that taking a Fourier transform of discrete data 
is done by simply taking a discrete approximation to the integrals. Inversely, the Fourier Transform generates 
values of amplitudes and phases averaged over the entire time series for each frequency component or harmonic. 
The amplitude of signal can then be represented as a frequency, and the dominant frequencies are highlighted. 

The Wavelet Analysis (WA) is a time series analysis method that has increasingly been applied in geophysics 
during the last three decades (e.g. [30] [31]). It is becoming a common tool for analyzing temporal variations of 
power within a time series. The transformation in time series from the time space into the time-frequency space 
show that, the WA is able to determine both the dominant timescales of variability and how they vary with time. 
WA has several attractive advantages over the traditional spectral analysis, especially when dealing with time 
series with time-varying amplitudes. In contrast to the Fourier Transform, that generates values of amplitudes 
and phases averaged over the entire time series for each frequency component or harmonic, Wavelet Transform 
provides a localized instantaneous estimate of the amplitude and phase for each spectral component of the series. 
This gives WA an advantage in the analysis of non-stationary data in which the amplitude and phase of the har-
monic components may change rapidly in time or space. While the Fourier Transform of the non-stationary time 
series would smear out any detailed information on the changing features, the WA keeps track of the evolution 
of the signal characteristics throughout the time series. Further details on wavelet analysis can be found in [32]. 

In the last several decades, meteorologists have in fact put major efforts in extracting important patterns from 
measurements of atmospheric variables. As a result Empirical Orthogonal Functions (EOF) technique has be-
come the most widely used way to do this [33]-[35]. The original purpose of EOFs was to reduce the large 
number of variables of the original data to a few variables, but without compromising much of the explained va-
riance. Lately, however, EOF analysis has been used to extract individual modes of variability (e.g. [15] [17] 
[28]-[30] in a data time series. In the EOF analysis, the time-dependent deviations from the long-term mean are 
decomposed into a sum of products of fixed spatial patterns pk and time-dependent amplitudes kα  (the princip-
al components) as follows: 

( ) ( ) ( ),i k i kf x t p x tα= ∑                                 (3) 

where the principal components kα  are uncorrelated to one another and described subsequently a maximum of 
variance in the original anomalies field f. Under these conditions the EOFs kp  are eigenvectors of the cova-
riance matrix of f.  

The eigen value λk corresponding to the kth EOF gives a measure of the explained variance by kα . It is usual 
to write the explained variance in percentage as: 

1

100 %k
p

i
i

λ

λ
=

⋅

∑
                                      (4) 

Rotated EOF (REOF) is a technique simply based on rotating EOFs. REOF techniques have been adopted by 
atmospheric scientists since the mid-eighties as an attempt to overcome some of the previous short comings such 
as the difficulty of physical interpretability. The technique, however, is much older and goes back to the early 
fourties. The technique is also known in factor analysis as factor rotation and aims at getting simple structures. 
In meteorology the objective was to alleviate the strong constraints of EOFs, namely orthogonality/uncorrelation 
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of EOFs/PCs, domain dependence of EOF patterns, obtain simple structures, and be able to physically interpret 
the patterns. Initially, a standard EOF analysis is performed and an EOF subset is retained; and subjected to va-
rimax rotation. Some think that the resulting patterns are more physically interpretable. The patterns may still be 
domain dependent. 

The above described mathematical tools (Lanczos filtering, Fourier analysis, wavelet analysis and EOFs 
analysis) are simultaneously used in this paper. Briefly the long-term OLR anomalies are firstly passed through 
the high-pass Lanczos filter with 120 days cut off in order to remove low frequencies modes such as inter-  
seasonal and interannual variability. Morlet wavelet is applied to the output time series to extract the relevant 
information. After the wavelet analysis, the timescales where the intraseasonal signal power is relatively high 
are detected. The original time series are now passed through a band-pass Lanczos filter to retain only the cycles 
with periods within the relevant timescales. The filtered data-sets have then been subjected to EOF analysis with 
varimax rotation and the leadings PCs are retained according to the Scree test [33] and the North criteria [34]. 
After the PCs time series have been extracted, we studied the variations in the ISO magnitude and frequency 
used statistical methods.  

3. Results and Discussions 
3.1. Spectral Analysis 
In [35], they firstly carried out the spectral analysis on the daily rainfall time series, to highlight the dominant 
frequency band. Then for every day, we averaged the data of all grid points in WCA and ECA. The spectral 
analysis was then performed on the two daily area mean time series obtained. Using classical Fourier analysis, 
the power spectra in the two sub-regions showed the dominance of the intraseasonal variability in Central Afri-
can rainfall (Figure 2). At intraseasonal timescales, the highest peaks of rainfall variability are centered near 50 
days, and extended over the longer periods (35 - 80 day, corresponding to frequencies 0.0125 - 0.03 day−1). 
However, this dominance is less pronounced in WCA, because of many relative peaks observed at different fre-
quencies, even in synoptic scale. The fraction of total variance occurring in the 35- to 80-day range is 0.33 for 
WCA and 0.48 for ECA. On the other hand, Wavelet analysis helped us to have some additional information 
(Figure 3(a), Figure 3(b)). Figure 3 clearly revealed two dominant bands of higher wavelet powers in the ECA 
spectrum (10 - 25 days and 25 - 70 days), both in WCA and ECA. But the relative importance of synoptic scale 
in WCA rainfall do not allows the intraseasonal timescales to be well-highlighted. This confirms that in WCA,  

 

   
(a)                                                      (b) 

Figure 2. Calculated spectrum (solid black), red noise curve (green solid) and the curves indicating the upper (red dashed) 
and lower (blue dashed) confidence bounds, for WCA (left) and ECA (right) sub-regions. 
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(a)                                                  (b) 

Figure 3. Annual mean wavelet power of the rainfall anomalies averaged over WCA (a) and ECA (b). A 120 days cut off 
high pass filter was applied to long term anomalies in order to remove low frequencies variability such as interseasonal and 
interannual variability. 

 
the mechanisms that induce variability are much varied. At the synoptic scale, the spectral power peaks near 5 
days both in the two sub-regions. This result is consistent to that found by some previous authors (e.g. [13] [17] 
[28] [29] [35] [36]) with daily OLR datasets over West Africa. The seasonality of ISO is clearly revealed, show- 
ing the maximum wavelet power during the beginning and end of the year (December-April). This seasonality 
can be explained by the location of study area along the equator [37]. 

3.2. Intraseasonal Oscillations 
From the spectral analysis performed above and following the work of [35], we filtered the rainfall anomalies in 
this study between 25 - 70 days, to derive the space-time structures of the leading EOFs of intraseasonal varia-
bility of rainfall, corresponding to this frequency band. Once more, all these analyses are performed separately 
in ECA and WCA. The leading modes are retained, and spatial loadings associated with a given mode are ob-
tained by computing the correlation coefficients between the corresponding PC’s time series and the filtered data 
field. 

The 25 - 70-day mode is also known as the “African MJO” mode [17], in reference to the Madden-Julian Os-
cillation detected over the Indian and West Pacific sectors [38]. Over WCA, The first two EOFs exhibit a nega-
tive correlation, while the third EOF exhibits a positive correlation with the 25 - 70-day filtered rainfall data 
(Figure 4). Over ECA, the first and third EOFs exhibit positive correlation with filtered precipitation, while the 
second shows negative loadings. The power spectra of the three leading EOFs peaks near 45 days both over 
ECA and WCA (Figure 5), indicating MJO signal. The amount of the total variance explained by the leading 
EOFs is smaller in WCA (49.8%) than ECA (58.4%), suggesting that 25 - 70 days filter rainfall time series in 
WCA also have more degree of freedom than ECA time series, in consistency with the previous analyses.  

As for 10 - 25 days mode [35], the amplitude time series reveals a difference between ECA and WCA rainfall 
oscillations. WCA experiences oscillation almost throughout the year (Figures 6(a)-(c)), while the ISO are 
highly seasonal in ECA (Figures 8(d)-(f)) with significant oscillations during October-April. 

3.3. Annual and Interannual Variation in the ISO Activity 
Since it was shown in the previous studies that the ISO undergo harsh variations within the year and from year 
to another, we address the issue in this study much quantitatively, by plotting the ISO strength in the two subre-
gions (WCA and ECA) during the study period. In fact the ISO are affected by the seasonal cycle through one or 
more seasonally dependent energy sources [39]. The seasonal forcing governs the amplitude of the intraseasonal 
oscillations. Equally, the ISO provides feedback—turning the annual cycle “on” and “off”. One of the greatest 
challenges of climate variability studies remains to show accurately how these seasonal variations can affect the 
local annual cycle of rainfall over a given region. An answer to this question may greatly contribute to improve 
regional models in the tropics. 

In order to study much quantitatively the annual variations of ISO strength, an ISO index was built, by taking 
the total daily 25 - 70-day wavelet powers, of the leading principal components [28] [29] [35]. The times series  
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Figure 4. Correlation coefficient map (loadings) between rainfall anomalies field and PCs for WCA ((a)-(c)) and ECA ((d)- 
(f)). PCs were computed using the whole time series of daily rainfall for the period 1996-2009. Contour intervals are plotted 
every 0.05 and correlations in between −0.2 and 0.2 are omitted. The negative correlations are represented as dashed line and 
the positive correlation the solid lines. 
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Figure 5. Power spectra of PC1 (bold solid), PC2 (thin solid), and PC3 (thin dashed), respectively over WCA (left top and 
left bottom) and ECA (right top and right bottom). The scale of the x-axis is in days for all plots and the power dimensionless 
because the anomalies field is normalized. 
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Figure 6. Principal components (scores) time series of the 25 - 70-day filtered rainfall data over WCA (left) and ECA (right). 

 
obtained have then in WCA and ECA been normalized for easy comparison. In Figure 7 is represented the cu-
mulative percentage mean power, as function of the day of the year. Once again, it can be seen that in the east-
ern part of the region (Figure 7(a)), the ISO activity is highly seasonal, when compared with WCA (Figure 
7(b)). Both in the two subregions, the concavity of the curves changes around 120 and 320 days, but this change 
is sharper in ECA, when compared with WCA where the cumulative power increase almost uniformly. For both 
WCA and ECA, this percentage increases rapidly with time between 0 - 120 days and 320 - 365 days approx-
imately. Moreover this value remains roughly constant between 120-320 days, corresponding to May-October 
season. Table 2 and Table 3 show a summary of the seasonality of the ISO. It is well seen that for WCA, about 
60% (60.71%, 57.92%, 59.43% for EOF1, EOF2 and EOF3, respectively) of the annual ISO activity occurs 
during November-April season, while in ECA this percentage reaches up to around 80% (79.30%, 78.02%, 
78.81% for EOF1, EOF2 and EOF3, respectively). 

It was proved by many previous studies that an important characteristic of the MJO (ISO) is its irregularity 
from year to another [7] [17] [39] [40]. One central question generally asked is how the ISO activity varies from 
year to year and how this interannual variability is linked with ENSO? Previous observation and modeling stu-
dies generally indicated that peak of MJO activity often precedes El Niño. Figure 8(a) & Figure 8(b) shows the 
interannual variations in the ISO and ENSO signals. The two time series have been normalized for easy com-
parison. It can be seen from this figure that the ENSO experienced the highest fluctuations during the end of the 
years 1990’s and the beginning of the years 2000’s. For the two subregions, the evolution of ISO activity during  
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(a) 

 
(b) 

Figure 7. Cumulated percentage of mean ISO power for EOF1 (thin black), EOF2 (black dashed), and EOF3 (red), for WCA 
(a) and ECA (right). 

 
Table 2. Distribution of the total annual ISO power in WCA, for October-April and May-September seasons. 

 EOF1 EOF2 EOF3 

October-April 60.71% 57.92% 59.43% 

May-September 39.27% 42.08% 40.47% 

 
Table 3. Same as Table 2, but for ECA. 

 EOF1 EOF2 EOF3 

October-April 79.30% 78.02% 78.81% 

May-September 20.70% 21.98% 21.19% 
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(a) 

 
(b) 

Figure 8. Interannual variations in the ENSO and ISO amplitude for the two subregions (WCA and ECA). The correspond-
ing subregions are indicated on the top of each plot. 

 
the end of the years 1990’s and early 2000’s are similar. The difference clearly appears toward the end of the 
study period. ECA is characterized by very low ISO activity during the years 2005-2008, while during the same 
period, the WCA experienced quite higher ISO activity in many years. The MJO and ENSO are dominant at-
mospheric and oceanic variability with different timescales, thus their relationship, is most likely nonlinear [41] 
[42]. However one should note that especially in ECA, the higher ISO activity often occur during cold or normal 
SST years, while the lower ISO amplitude are typically associated with warm SST years (Table 4). 

3.4. Relationship between WCA and ECA Modes 
It is well-known that the slow eastward propagation at an average speed of 5 m∙s−1 is one of the most fundamen-
tal features that distinguishes the MJO from other phenomena in the tropical atmosphere, especially convective-
ly coupled Kelvin waves, which propagate eastward at greater speeds of 15 - 17 m∙s−1. This eastward propaga-
tion could potentially be the relationship between WCA and ECA modes of intraseasonal variability. In fact the 
correlation coefficients computed between the ISO indices of the same subregion end relatively high reaching up 
to 0.66 for PC1-PC3 (ECA) (Table 5). This suggests different mechanisms that induce rainfall variability at 
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intraseasonal timescales in the two subregions. However the cross correlation between the indices of the differ-
ent subregions are very low, except few of them, that reached up to 0.32 (Table 6), revealing once more that the 
eastward propagation could potentially be the relationship between WCA and ECA modes. Moreover in Figure 
9 are displayed the lagged correlations between the WCA and ECA PC’s time series. This figure clearly reveals 
that the observed PC’s time series exhibit a characteristic lead/lag structure. The relatively high maximum posi-
tive correlation indicates that most of the WCA PC’s leads ECA PC’s time series with a time scale 8 - 12 days. 
This result suggests a zonal propagation of EOF modes found in the Section 3.2. Averaging filtered data between 
15˚N - 15˚S, and plotting lagged correlation as a function of longitude, succinctly captures ISO propagation 
(Figure 10). Regression of the ISO indices [35] with filtered GPCP and 850 hPa zonal wind is performed using 
the data over the central Africa (15˚N - 15˚S; 0˚E - 50˚E). The eastward propagation of the ISO is associated with 
low-level convergence. The 850 hPa convergence anomalies lead the convection, showing enhanced easterlies 
(westerlies) ahead (behind) enhanced rainfall as the ISO propagates through the global tropics. The average du-
ration of an intraseasonal event to move from 0˚E to 50˚E is about 10 days for a frequency around 40 days. 

4. Summary and Conclusions 
In this paper we have investigated the intraseasonal oscillations of rainfall over central Africa, using 1DD GPCP 
rainfall product, with an emphasis on the comparison between the western central Africa and the Eastern parts of 
the region. The classical spectral analysis showed the strong prominence of intraseasonal scale in central African 
climate, especially in ECA where the peak of the power spectrum is much sharp than WCA. On the other hand,  

 
Table 4. Mean ISO and ENSO normalized indices for the two subregions, within the period 1997-2008. 

Year ISO index WCA ISO index ECA ENSO index 

1997 0.18 −0.14 1.92 

1998 −0.63 −0.75 0.17 

1999 −1.53 0.65 −1.60 

2000 −0.22 0.15 −1.30 

2001 0.65 1.75 −0.28 

2002 0.07 −0.8 1.20 

2003 −1.6 −0.21 0.47 

2004 0.09 2.05 0.68 

2005 −1.51 −0.6 0.16 

2006 0.92 −0.1 0.23 

2007 1.81 −0.08 −0.71 

2008 0.11 0.63 −0.99 

 
Table 5. Correlation coefficients between WCA and ECA annual mean ISO power. 

 WCA ECA 

PC1-PC2 0.58 0.47 

PC2-PC3 0.64 0.57 

PC1-PC3 0.49 0.66 

 
Table 6. Cross-correlation coefficients between WCA and ECA annual mean ISO power. 

 ECA 

WCA 

 PC1 PC2 PC3 

PC1 0.13 0.32 0.14 

PC2 −0.15 0.22 0.25 

PC3 −0.04 −0.37 −0.05 
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Figure 9. Lead-lag correlation between ECA and WCA 25 - 70-day PC’s time series. Positive correlations at positive time 
lags indicate that convection over WCA leads that over the ECA. 
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Figure 10. ISO composite based on the correlation between band-pass (25 - 70-day) filtered 850-hPa zonal wind (contours) 
and precipitation (colors) upon ISO index time series. The reference time series is the central Africa precipitation time series. 
The ISO index was computed using the average wavelet power.  

 
a wavelet analysis revealed two dominant frequency bands in the intraseasonal rainfall variability in CA (10 - 25 
days and 25 - 70 days), in accordance with the previous Fourier analysis. Moreover the seasonality of the ISO 
power is also revealed, because the maximum power is observed during the beginning and end of the year (Oc-
tober-April). But this seasonality is much highlighted in ECA, unlike WCA where the signal persists throughout 
the year.  

The leading eigenvectors explain about 49.8% (that are 19.5%, 15.7% and 14.6% for EOF1, EOF2 and EOF3, 
respectively) of total intraseasonal rainfall variability for WCA and 58.4% for ECA (that are 24.7%, 16.9% and 
16.8% for EOF1, EOF2 and EOF3, respectively). The spatial loadings showed either positive or negative corre-
lation coefficient between the PC’s time series and 25 - 70-day filtered rainfall anomalies field. Both in ECA 
and WCA, the power spectra of the three leading EOFs peaked near 40 - 50 days, suggesting a MJO signal. As it 
could be expected from wavelet analysis above, the seasonality of the oscillations ISO is much clear in ECA, 
when compared with WCA. The lagged cross-correlations calculated between WCA and ECA PC’s time series 
showed high maximum positive around 8 - 12 days, indicating that most of the WCA PC’s time series leads 
ECA PC’s time series with a time scale 8 - 12 days. This result confirmed that the relationship between WCA 
and ECA modes could be the eastward propagation of ISO signal through the global tropics.  

To study much quantitatively the variations of ISO strength, an ISO index was built by averaging the daily 
wavelet power corresponding to each PC, to form a daily ISO index time series. The plot of ISO indices re-
vealed that the ISO are highly seasonal, especially in ECA. In fact, almost 80% of the total yearly ISO power 
occurs during November-April season for ECA, against almost 60% for WCA. 

The plots of interannual variations of ISO and ENSO indices clearly show that the signal over ECA exhibits 
larger interannual variations than WCA. It has also been seen that ENSO and ISO fluctuated much during the 
end 1990’s and beginning 2000’s (1997-2008). Furthermore especially in ECA, the higher ISO amplitude gen-
erally corresponds to La Nina years (highly negative SST anomalies) or ENSO-neutral years, while the lower 
ISO amplitude generally corresponds El Nino years (highly positive SST anomalies). 

The main conclusion that arises from these results is that the intraseasonal rainfall variability detected in 1DD 
GPCP rainfall reveals many different patterns in ECA and WCA. The major differences between WCA and 
ECA modes of variability are the annual and interannual variations in ISO strength. In fact the variations in 
WCA are weak, compared to ECA where the signal exhibits large annual and interannual variations. But the 
1DD GPCP rainfall product is actually available over a short period (less than 20 years) and can’t allow us to 
perform long-term analyses such as the interannual variations in the ISO activity and the relationships with low 
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frequency phenomena such as ENSO. 
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