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Abstract 

As Hainan Island belonged to tropical monsoon influenced region, vegetation coverage was high. It 
is accessible to acquire the vegetation index information from remote sensing images, but pre-
dicting the average vegetation index in spatial distributing trend is not available. Under the condi-
tion that the average vegetation index values of observed stations in different seasons were 
known, it was possible to qualify the vegetation index values in study area and predict the NDVI 
(Normal Different Vegetation Index) change trend. In order to learn the variance trend of NDVI 
and the relationships between NDVI and temperature, precipitation, and land cover in Hainan Isl-
and, in this paper, the average seasonal NDVI values of 18 representative stations in Hainan Island 
were derived by a standard 10-day composite NDVI generated from MODIS imagery. ArcGIS Geos-
tatistical Analyst was applied to predict the seasonal NDVI change trend by the Kriging method in 
Hainan Island. The correlation of temperature, precipitation, and land cover with NDVI change 
was analyzed by correlation analysis method. The results showed that the Kriging method of 
ARCGIS Geostatistical Analyst was a good way to predict the NDVI change trend. Temperature has 
the primary influence on NDVI, followed by precipitation and land-cover in Hainan Island. 
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1. Introduction 
During the last years, powerful and versatile geostatistical tools have been developed for geoscience applications. 
Geostatistics is a methodology for incorporating the spatial and temporal coordinates of observations in data 
processing [1]. The applications of geostatistics have spread from the original metal mining topics to more di-
verse fields such as soil science, oceanography, hydrogeology, agriculture, and environmental science [2]. Re-
cently GIS has emerged as an innovative and important component of many projects; the Geostatistical Analyst 
represents a major step in bridging the gap between GIS and geostatistics. ArcGIS Geostatistical Analyst is an 
extension to ArcGIS Desktop (ArcInfo, ArcEditor, and ArcView) that provides a variety of tools for spatial data 
exploration, anomaly identification, optimum prediction, uncertainty evaluation, and surface creation. ArcGIS 
Geostatistical Analyst is a complete package for spatial data preprocessing, geostatistical analysis, contouring, 
and post-processing. It also includes interactive graphical tools with robust parameters for default models to help 
newcomers to create prediction and standard errors. In the present study, the NDVI predicting was accomplished 
by the ArcGIS Geostatistical Analyst model. Geostatistical Analyst model can generate optimal surfaces from 
sample data and evaluate predictions for better decision making. It will be a good way to predict the Seasonal 
NDVI Change in Hainan Island. 

The vegetation overcast was high and the change is not obvious in tropical region. NDVI is sensitive to the 
vegetation’s growth condition, productivity and other biophysical and biochemical characters, so the change of 
NDVI can reflect the vegetation’s growth conditions [3]-[5]. The spatial variance of vegetation is complex and 
ubiquity; in order to learn the variance trend of NDVI in a region, a new method was required to quantify the 
NDVI values analysis. If the average NDVI value of every station in different seasons was known, it was possi-
ble for us to qualify the NDVI value, and the predicting of NDVI change trend can be carried out. ArcGIS 
Geostatistical Analyst was applied to analyze the seasonal NDVI change trend by the Kriging method, based on 
the MODIS data of limited NDVI values.  

The spectral characteristics of green leaves are highly absorptive of energy in visible blue, yellow, and red 
wavelengths (0.4 - 0.5, 5.7 - 0.7 microns) of the electromagnetic spectrum, but highly reflective in the near 
infrared wavelengths (0.7 - 1.1 microns). Spectral responses of vegetation are further modified based on the leaf 
density and structure of the canopy. The relative differences in red (RED) and near infrared (NIR) spectral cha-
racteristics form the basis of several vegetation indices, which are designed to assess the condition of vegetation. 
The Normalized Difference Vegetation Index (NDVI), is expressed as 

Pn PrNDVI 100.
Pn Pr

−
= ×

+
                                (1) 

Pn and Pr represent the near infrared (NIR) and red spectral reflectance values respectively. NDVI is a good 
indicator of the ability for vegetation to absorb photo synthetically active radiation. Environmental factors such 
as soil, geomorphology and vegetation can influence NDVI values.  

NDVI data are derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua plat-
forms). Vegetation can influence the energy balance of earth-atmosphere, which plays an important role in cli-
mate, water, biochemistry cycles, and the sensitive indexes to climate and human dimension [6]. NDVI is fig-
ured out by the reflect bands which can reflect the growing situation of vegetation indirectly, so it was widely 
used in quantified research. As relationships between NDVI and climatic factors depend on location, more de-
tailed analyses are needed for a variety of regions for a better understanding of temporal variation of precipita-
tion and temperature [7]. Precipitation and temperature directly influence water balance, causing changes in soil 
moisture regime which in turn influences plant growth. In different areas, the indexes will lead to different roles 
in effecting the NDVI [8]. The variability of NDVI in temporal and space distribution not only is the result of 
climate but also leads to sensitive respond to short time climate fluctuate. Therefore, using the temperature, 
precipitation, and land-cover to discuss the relation of NDVI in Hainan Island is useful to confirm the influ-
enced role on vegetation index change, which will benefit to study the relationship between vegetation with 
climate change. 

This study addressed two key questions. Firstly, ArcGIS Geostatistical Analyst was applied to predict the 
seasonal NDVI change trend by the Kriging method in Hainan Island and check the predicting method. Second-
ly, the correlation of temperature, precipitation, and land cover with NDVI change was explored and discussed.  
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2. Data and Methods 
2.1. Study Area 
Hainan Island belongs to tropical monsoon region. Tropical marine monsoon with plenty of sunshine, moderate 
rainfall. Annual average temperature 22.9˚C whereas 20˚C in winter. The hottest month is August, with a 29.5˚ 
average. Hainan Island, also known as Qiong, is the second largest island in China with an area of 34,000 square 
kilometers, including 18 cities.  

2.2. Data 
MODIS images of 2004 were acquired by the Terra and aqua satellites. The images were downloaded from the 
NASA Earth Observing System Data Gateway free access server. MODIS is a new generation Imaging Spec-
troradiometer, which has moderate spectral resolution with 36 spectral bands that cover the wavelength range 
from 0.4 to 14 Am, and three spatial resolutions of 250, 500, and 1000 m, respectively, and a swath of 2330 km 
[9].  

2.3. Methods 
MODIS surface reflectance for the visible near infrared wavelengths were corrected for atmospheric effects at 
the data centre using a bidirectional reflectance distribution function. For conform the national geo-database of 
China, we transformed MODIS images from ISIN to UTM WGS 84 coordinate system using the MODIS repro-
jection tool. In this study a standard 10 day composite NDVI generated from MODIS imagery was used. By far 
the most extended method for multitemporal compositing is the Maximum Value Composite (MVC) [10], which 
is computed by selecting the image values of the day when the Normalized Difference Vegetation Index (NDVI) 
is maximum in the time series. This criterion is simple to calculate and has been proven very useful for moni-
toring vegetation cover all over the earth [11]-[14]. The NDVI was also used to test the sensitivity differences 
between two indexes. NDVI was developed to optimize the vegetation signal with improved sensitivity in high 
biomass regions and improved vegetation monitoring through a de-coupling of the canopy background signal 
and a reduction in atmosphere influences [15]. 

The Kriging method of ARCGIS Geostatistical Analyst was applied to predict the change range of NDVI with 
an external drift (KED) [16]. Geostatistics is concerned with a variety of techniques aimed at understanding and 
modeling spatial variability through prediction and simulation [17] [18]. Geostatistics exploits the presence of 
spatial auto-correlation and joint dependence in space and time that occur in most natural resource variables [19]. 
KED is a variant of kriging allowing the use of secondary information known at every location (exhaustive), 
which is assumed to reflect the local spatial trend of the primary variable [16]. KED simulates the trend under 
the assumptions of a linear relationship between primary and secondary variables in the secondary variable. The 
algorithm of KED employs a non-stationary random function model, where stationarity is limited within each 
search neighborhood, yielding more local detail than ordinary kriging [17]. The KED estimator is: 

( ) ( ) ( ) ( )* KED
KED 1 .n u

a aaZ u u Z uλ
=

= ∑  

( )*
KEDZ u  is the KED estimator at location u, ( )KED

a uλ  are the KED weights corresponding to the n samples 
at location u, and Z(ua) are the sample values within the search neighborhood [16]. 

The relations between temperature, precipitation, land cover and NDVI were calculated by correlation analy-
sis method. 

3. Result 
3.1. Measured NDVI 
2004 was one of most severe drought year in Hainan Island. The NDVI satellite-derived information on vegeta-
tive cover was by the method maximum value composite (MVC), which is computed by selecting the image 
values of the day when the normalized difference vegetation index (NDVI) is maximum in the time series. So 
the seasonal average NDVI values were computed by maximum value composite (MVC) methods, firstly the 10 
day NDVI values of every month were collected, then all pixes imagery mean NDVI values included in every 
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stations region range of Hainan Island were computed, finally the average NDVI in every seasons were com-
puted (Table 1). 

3.2. Predicting NDVI Trend 
The Kriging model was the best linearity and correctitude method, which was regarded as the most Exactly way 
in spatial data predicting and simulating and analyzing [20] [21]. Based on the NDVI values of 18 stations in 
Hainan Island, the trend of four seasonal predicting values were given (Figure 1).  

From the predicting picture, the NDVI value of north of island is low, but the middle of island is high, south 
of island was in sequence. The NDVI variance in south is not obvious, the value is about 40 - 45, the middle 
city-wuzhishan city is the highest value in the whole island, especially in third season (Jul to Sep). In the north 
city the value increase from Jan to Sep, but decrease from Oct to Dec, the mean NDVI value in the whole year 
was still low. 

3.3. Comparison of the Measured and Predicted NDVI Values 
In order to check up the method reliance in predicting NDVI value in Hainan Island, it is necessary to compare 
the predicting value with the measured value in January to March based on selectively eighteen stations. The 
measured values were acquired by the way in maximum value composite (MVC) and the predicting values were  

 

   
(a)                                                         (b) 

   
(c)                                                         (d) 

Figure 1. Predicted NDVI range of four quarters in Hainan Island. (a) January to March; (b) Apr to Jun; (c) Jul to Sep; (d) 
Oct to Dec.                                                                                                    
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Table 1. Mean NDVI of 2004 in Hainan Island.                                                                        

Stations January to March Apr to Jun Jul to Sep Oct to Dec 

Haikou 27.3 29.2 35.6 22.0 

Wenchang 30.7 30.6 34.3 21.7 

Qionghai 39.0 39.0 43.3 31.0 

Wanning 41.3 37.0 42.3 34.7 

Linshui 39.0 39.3 40.3 36.0 

Sanya 42.3 44.3 41.0 44.3 

Ledong 38.3 42.7 40.7 44.0 

Dongfang 36.3 41.3 40.7 39.7 

Changjian 40.3 39.7 42.3 40.3 

Danzhou 31.7 38.3 41.0 33.7 

Lingao 27.0 34.7 36.3 26.7 

Chengmai 30.3 35.7 38.0 27.0 

Dingan 29.7 34.7 42.0 27.0 

Tunchang 36.7 41.3 48.3 33.0 

Qiongzhoung 44.7 44.6 51.3 44.7 

Baisha 42.7 43.3 51.0 46.7 

Wuzhishan 48.7 42.0 43.3 50.3 

Baoting 45.0 43.7 47.0 47.7 

 
counted by Kriging interpolation model in ArcGIS Geostatistical Analyst. The measured values, predicting val-
ues and standardized error equation were shown in Figure 2 and Figure 3. Measured values and predicting val-
ues equation pass the f-test way, and the error range between in 0.7% - 20%. This indicated that Kriging inter-
polation model in ArcGIS Geostatistical Analyst can content with the need in NDVI predicting. 

3.4. Analysis of Driver Factors of NDVI 
Variations of NDVI are closely linked with precipitation. There is a strong linear [22] or log-linear [23] rela-
tionship between NDVI and precipitation in cases where monthly or seasonal precipitation is within a certain 
range. Variations in climatic factors, in particular precipitation and temperature, have a strong influence on vari-
ation in NDVI for a given site [7]. The NDVI satellite-derived information on vegetative cover had revealed 
large seasonal fluctuations in the spatial extent and vigor of land vegetation caused largely by seasonal precipi-
tation variations. 

In different areas, the indexes will lead to different roles affecting the NDVI [8]. The variability of NDVI in 
temporal and spatial distribution is not only result of climate but also lead to sensitive respond to short time cli-
mate fluctuated. Therefore, using the temperature, precipitation, land-cover to discuss the relation of NDVI in 
Hainan Island is useful to determine the role index, which will benefit to studying the relationship between ve-
getation with climate change.  

As the relationships between NDVI and temperature, precipitation, land cover depend upon location, more 
detailed analysis are needed for a variety of regions to better understand temporal variation of temperature, pre-
cipitation and land cover. For consideration the Hainan Island located in the tropical area, the land-cover va-
riance was not obvious during the whole year. So this factor was not taken as main factor. Temperature and pre-
cipitation were two main factors to influence the variance of NDVI. By the analysis on relations between aver-
age NDVI and average temperature (Figure 4) and relations between average NDVI and average precipitation 
(Figure 5) in selectively seven stations, the correlation coefficients were acquired (Table 2). 
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Y = 0.615∗x + 13.440 

Figure 2. Measured and predicted NDVI value.                                              
 

 
Y = −0.045∗x + 1.526 

Figure 3. Measured and standardized error NDVI value.                                     
 

Table 2. The correlation coefficients of monthly average temperature, precipitation with NDVI.                                 

Study area 
Monthly temperature Monthly precipitation 

Co-relation F-test Co-relation F-test 

Haikou 0.63 4.36 0.44 0.0110 

Danzhou 0.72 2.98 0.42 0.0024 

Qionghai 0.61 3.88 0.05 0.0089 

Qiongzhong 0.57 3.86 0.42 0.0040 

Dongfang 0.35 3.48 0.01 0.0032 

Lingshui 0.36 5.02 0.02 0.0094 

Sanya 0.47 4.31 0.32 0.0039 
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Figure 4. Monthly average temperature of Hainan Island in 2004.                              

 

 
Figure 5. Monthly precipitation of Hainan Island in 2004.                                   

 
The results also show that temperature is an important factor for plant growth, but its variation is a contribut-

ing factor only at specific times of the growing season. Within season analyses show strongly correlation be-
tween NDVI and temperature indices. In Table 2, the result can be drawn that relations between temperature 
and NDVI is significant and the co-relation values passed the F-test, a = 0.05.  

Relations between precipitation and NDVI was not obvious and failed the F-test, a = 0.05. Correlation coeffi-
cients between precipitation and NDVI varied depending upon combinations of time duration and time lag, and 
also early, middle or late growing season, whereas cropland correlation coefficients were intermediate, and cor-
relations for forests were weakest. Correlation coefficients for additional combinations of duration and lag were 
not calculated because preliminary analysis of a subset of combinations showed that only the immediate two pe-
riods of temperature were significantly related to NDVI [7]. 

Temperature was more significant to influence NDVI than precipitation. Temperature will be the main driver 
factor to NDVI, followed by precipitation, land-cover. 

4. Discussion and Conclusions 
There were many ways to derive vegetation index from remote sensing image such as, Normal Different Vege-
tation Index (NDVI), Ratio Vegetation Index (RVI), Difference Vegetation Index (DVI), Soil-Adjusted Vegeta-
tion Index (SAVI), and Modified Soil-Adjusted Vegetation Index (MSAVI). Hainan Island belongs to tropical 
area; vegetation-cover change is not distinctness within different seasons. But Normal Different Vegetation In-
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dex (NDVI) was sensitive to vegetation growth situation; therefore this NDVI way was chosen to derive vegeta-
tion index of different seasons in all stations in Hainan Island. In order to quantity the vegetation condition, it is 
necessary to learn the average NDVI values in different stations, which support the data for the next predicting 
NDVI values in whole island.  

ArcGIS Geostatistical Analyst combined by GIS and Geostatistics was applied to analyze the seasonal NDVI 
change trend by the Kriging method based on the MODIS data in Hainan Island, which was compared with the 
measured NDVI in January to March; the result indicated that the Kriging method of ARCGIS Geostatistical 
Analyst was a good way to predict the NDVI change trend.  

Temperature, precipitation, and land-cover are the main factors which influence the change of vegetation in-
dex and the impact is not same in different regions. On the basis of vegetation index derived from MODIS im-
agery, the driving factors of temperature, precipitation, and land-cover were analyzed by correlation analysis 
method. Correlation coefficients between temperature and NDVI were significant and the correlation coeffi-
cients passed the F-test, a = 0.05. Correlation coefficients between precipitation and NDVI failed the F-test, a = 
0.05. The changes of vegetation index were primarily influenced by temperature, followed by precipitation and 
land-cover in Hainan Island.  
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