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Abstract 
Groundwater quality is a major environmental aspect which needs to be analyzed and managed 
depending on its spatial distribution. Utilization of insufficient management of groundwater re-
sources in Gaza Strip, Palestine, produces not only a reduction in quantity but also deterioration in 
quality of groundwater. The aim of this study is to provide an overview for evaluation of ground-
water quality in the Gaza Strip area as a case study for applying spatially distributed by using 
Geographic Information System (GIS) and geostatistical algorithms. The groundwater quality pa-
rameters, pH, total dissolved solids, total hardness, alkalinity, chloride, nitrate, sulfate, calcium, 
magnesium, and fluoride, were sampled and analyzed from the existing municipal and agricultural 
wells in Gaza Strip; maps of each parameter were created using geostatistical (Kriging) approach. 
Experimental semivariogram values were tested for different ordinary Kriging models to identify 
the best fitted for the ten water quality parameters and the best models were selected on the basis 
of mean square error (MSE), root mean square error (RMSE), average standard error (ASE), and 
root mean square standardized error (RMSSE). Maps of 10 groundwater quality parameters were 
used to calculate the groundwater quality index (GWQI) map using the index method. In general, 
the results showed that this integrated method is a sufficient assessment tool for environmental 
spatially distributed parameters.  

 
Keywords 
Groundwater, Water Quality, GIS, Geo-Statistics 

 

 

 

*Corresponding author. 

http://www.scirp.org/journal/gep
http://dx.doi.org/10.4236/gep.2016.42011
http://dx.doi.org/10.4236/gep.2016.42011
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


A. S. Gharbia et al. 
 

 
90 

1. Introduction 
Nearly three billion people live without access to adequate sanitation systems necessary for reducing exposure to 
water-related diseases. The failure in solving this crisis leads to poor water quality in natural water resources 
especially groundwater [1] [2]. Gaza Strip faces both groundwater quality and quantity issues as the considera-
ble amount of water demand is fulfilled from groundwater. Increasing in population, urban development, and 
agriculture are just some of the factors which have an impact on the water quality in this area. In addition, cli-
mate changes have severe negative impacts on groundwater of the Gaza coastal aquifer [3]-[5]. 

Many researchers applied geostatistical approach for analysis of spatial variations of groundwater characteris-
tics [6]-[9]. The measurement of pollutant concentration at all location is not always possible from time and cost 
perspectives in data collection stage [10]. Therefore, prediction of values at other locations based upon selec-
tively measured values represents a viable alternative. In this case, to predict the concentration of pollutants at 
unmeasured locations, the geostatistical techniques can be used [11]. The basic idea in using geostatistics is that 
the characteristics of earth have some spatial continuity up to a certain lag distance. The geostatistical concepts 
and its applications are reported by different researchers around the world. Kriging method theorizes the spatial 
correlation between the sample points. Kriging is mostly used for mapping spatial variability [12]. Kriging is a 
special case from IDW and other interpolation methods by taking into consideration the difference of estimated 
parameters. Geostatistical approach and Kriging methods have several advantages, such as giving fair predic-
tions with minimum variance and taking the spatial correlation between the data listed at various places. On the 
other hand, Kriging gives information on interpolation errors about the reliability of estimates [13]-[15]. 

Many researches depend on evaluation the groundwater quality on calculating Water Quality Index [16]-[20]. 
The Water Quality Index (WQI) is considerably used to appreciate the convenience of surface water as well as 
groundwater for drinking, domestic and agriculture purposes. Generally, the WQI and Geographic Information 
System (GIS) are used to evaluate and map the spatial distribution of groundwater quality. The previous 
groundwater quality studies in Gaza Strip [21] [22] show that groundwater recharge zones are represented as 
points and are used as sources for transportation of contaminant to groundwater. Groundwater quality maps are 
dynamic for identifying locations that are involved in groundwater contamination [23]. 

The area that will be studied on this paper is Gaza Strip, which is a part of the Palestinian coastal flat located 
in an arid to semi-arid region. It is surrounded by Egypt from the south, the green line from the North, Nagev 
desert from the East and the Mediterranean Sea from the West. Gaza Strip is located on the south-eastern coast 
of the Mediterranean Sea, between longitudes 34˚20" and 34˚25" east, and latitudes 31˚16" and 31˚45" north 
(Figure 1). The total surface area of the Gaza Strip is 360 km2, where about 1.8 million Palestinian people live 
and work. Gaza Strip is classified as one of the most densely populated areas in the world. The Gaza Strip is di-
vided geographically into five governorates: Northern, Gaza, Mid Zone, Khanyounis and Rafah as shown in 
Figure 1 [1] [3] [24] [25]. The coastal aquifer is the only aquifer in the Gaza Strip and is composed of Pleisto-
cene marine sand and sandstone, intercalated with clayey layers. The maximum thickness of the different bear-
ing horizons occurs in the northwest along the coast (150 m) and decreases gradually toward the east and south-
east along the eastern border of Gaza Strip to less than 10 m. The base of coastal aquifer system is formed of 
impervious clay shade rocks of Neogene age (Saqiyah formation) [26] (see Figure 1). The total groundwater use 
in year 2012 was about 182 million cubic meters per year (Mm3/year), of which the agricultural use was ap-
proximately 87.5 Mm3/year, domestic and industrial consumption about 94.5 Mm3/year. The groundwater level 
ranges from 18 m below mean sea level (msl) to about 4 m above mean sea level [3]-[5] [24] [25] [27]-[29]. 

The main aim of this study is to assess and evaluate groundwater quality for parameters such as pH, TDS, to-
tal hardness, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, and fluoride levels by using a GIS based 
geostatistical algorithms and water quality index in the study area. 

In this study, the calculation of geostatistics and groundwater quality index was based on the following 10 
water quality parameters: pH, Total Dissolved Solid (TDS), Total Hardness, Alkalinity, and Chloride, Nitrate, 
Sulfate, Calcium, Magnesium, and Fluoride. Parameters were chosen according to many factors, such as the sig-
nificance of the parameter and the availability of data. Chloride (Cl−) and TDS selection was related to the high 
concentration on groundwater; additionally, they are index for salinity, and there effects on human health. As for 
Nitrate ( )3NO− , it is one of the major parameters that affects human health. Finally, Ca, Mg and SO4 are related 
to agricultural activities. The Ca+ and Mg+ cations are indexes for groundwater hardness, and the high content of 
these cations in water may affect its acceptability to the consumers in terms of taste and scale deposition. High  
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Figure 1. Location map of Gaza strip and a typical geological cross section (section A-A) for coastal aquifer [28] [29]. 

 
levels of ( )2

4SO − , can cause dehydration and gastrointestinal irritation, and may also contribute to the corrosion 
of pipes and distribution systems. The high concentration of sewage and industrial waste may be the cause of 
high alkalinity in the polluted water.  

2. Methods and Data 
Groundwater samples were collected and analyzed by the Palestinian Water Authority (PWA) and the Ministry 
of Health (MOH). The samples were collected from 325 groundwater wells during the last three months in the 
year 2014. The research work described here used this data set, which was provided by PWA and MOH. 

2.1. Geostatistical Development Models Approach 
Several techniques are available in literature for interpolation, but Kriging methods are the best way for normal 
distribution data [30] [31]. As such, Kriging was used in this study for spatial variation analysis. Kriging method 
has three steps. 

2.1.1. Exploratory Data Analysis 
Exploratory data analysis was executed to explore data and to check data consistency and uniformity, removing 
outliers and identifying statistical distribution. The histograms and normal Quantile-Quantile plot (QQ plots) 
were plotted as shown in Table 1 to check the normality of the observed data. Histogram and QQ Plot analy- 
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sis were executed for each water quality parameter and it was found that all the analyzed parameters pH, total 
dissolved solid, total hardness, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, and fluoride showed 
mostly a normal distribution by calculating of mean, median, standard deviation (SD) skewness and kurtosis for 
each sample (Table 2). 

2.1.2. Structural Analysis of Data 
Spatial correlation or dependence can be quantified with semivariograms (variograms). Applying Kriging ap-
proach with semivariograms model is related to the expected squared difference between paired data values z(x) 
and z(x + h) to the distance lag h, by which locations are separated [32]-[36]. 

( ) ( ) ( ) 21
2

y h E z x z x h= − +                                  (1) 

For discrete sampling sites the function is written in the form: 

( ) ( )
( ) ( ) ( ) 2

1

1
2

N h
i ii

h z x z x h
N h

γ
=

 = − + ∑                           (2) 

where z(xi) is the value of the variable z at location of xi, h is the lag, and N(h) is the number of pairs of sample 
points separated by h. For irregular sampling, it is rare to be exactly equal to (h). A semivariogram plot is ob-
tained by calculating values of the semivariogram at different lags. The models (circular, spherical, exponential, 
and Gaussian) provide information about the spatial structure for the Kriging interpolation, the ordinary Kriging 
method was used in the present study because of its simplicity and prediction accuracy in comparison to other 
Kriging methods [32]-[36]. 

2.1.3. Prediction 
Four types of semivariogram models (Circular, Spherical, Exponential, and Gaussian,) were tested for each wa-
ter quality parameters (pH, TDS, total hardness, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, and 
fluoride) for the selection of the best one. Predictive performances of the fitted models were checked on the ba-
sis of spatial cross validation tests. The values of mean error (ME), mean square error (MSE), root mean error 
(RMSE), average standard error (ASE) and root mean square standardized error (RMSSE) were estimated to test 
the performance of the developed models. If the predictions are unbiased, the ME should be near zero. However, 
this statistic has some important drawbacks: it depends on the scale of the data and is insensitive to inaccuracies 
in the variogram. So, usually the MSE is used to standardize the ME, being ideally zero, i.e., an accurate model 
would have a MSE close to zero. In addition to making predictions, each of the Kriging techniques gives the 
Kriging variances which estimate the variability of the predictions from the known values [32]-[36]. 

( ) ( )*
1

1ME n
i ii

z x z x
N =

 = − ∑                                (3) 

 
Table 2. Descriptive statistics and concentration standards and guidelines of groundwater quality parameters. 

Parameter N Min. Max. Mean Median SD. Skewness Kurtosis WHO PWA 

pH 325 6.69 8.76 7.52 7.45 0.41 0.66 3.03 6.5 - 8.5 6.5 - 9.5 

TDS (mg/l) 325 118 16,616 2096.20 1649 2088.80 3.82 22.31 500 1500 

Hardness 325 34 4419 629.42 453 580.25 3.23 16.00 250 600 

Alkalinity 325 35.4 797 277.16 267 103.70 0.99 5.11 200 400 

Cl−  (mg/l) 325 35.8 9116 850.96 580 1159.50 4.27 25.70 250 600 

3NO−  (mg/l) 325 8 528 113.72 102.55 71.72 1.37 6.60 45 70 
2
4SO −  (mg/l) 325 0 1447 228.72 158 216.36 1.82 7.86 200 400 
2Ca +  (mg/l) 325 10.2 764 108.56 84 104.38 3.36 16.7 75 100 - 200 
2Mg +  (mg/l) 325 2 683 88.33 64 83.86 3.21 16.46 30 150 

F−  (mg/l) 325 0.12 1.87 1.01 0.98 0.41 0.13 2.19 1 1.5 
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where σ*2(xi) is the Kriging variance for location xi. After conducting the cross validation process, maps of krig-
ing estimates were generated which provided a visual representation of the distribution of the water quality pa-
rameters. 

2.2. Groundwater Quality Index 
The Water Quality Index is one of the most effective tools to provide information on the quality of water to the 
concerned citizens and policy makers. It becomes an important parameter for the assessment and management of 
groundwater [37]-[40]. The WQI concept is related to the comparison of the water quality parameter with re-
spective regulatory standards (WHO standards) and provides a single number that express overall water quality 
at certain location based on several water quality parameters [37]-[42]. The WQI summarizes large amount of 
water quality data into simple terms, i.e., excellent, good, bad, etc., which are easily understandable and usable 
by the public. However, by combining multiple parameters into a single index, a more comprehensive picture of 
the pollution state is provided. When mapping the index, the areas of high and low water quality can be easily 
specified [37]-[42]. The water quality index for the purposes of this study was calculated following three steps. 
For the first step, a weight (wi) was assigned to each of the ten parameters according to its relative importance in 
the overall quality of water for drinking [18]. The maximum weight 5 was assigned to nitrate due to its impor-
tance on public human health. Magnesium as low harmful has given weight 2. For the second step, the relative 
weight (Wi) was computed by: 

1

n
i i ii

W w w
=

= +∑                                     (8) 

where: (Wi) is the relative weight, (wi) is the weight for each parameter and (n) is the number of parameters. For 
the third step, a quality rating scale (qi) for each parameter was assigned by dividing its concentration in each 
water sample by its respective standard (WHO standard) [2] and the result was multiplied by 100 to express it in 
percentage. 

100i
i

i

C
q

S
= ∗                                      (9) 

where: (qi) is the quality rating, (ci) is the concentration of each pollutant in water sample in mg\L, (Si) WHO 
standard concentration. For computing the WQI, the Si was determined for each chemical parameter. The sub- 
index of ith quality parameter can be determined by: 

i i iSI W q= ∗                                      (10) 

1
WQI n

ii
SI

=
= ∑                                     (11) 

The computed WQI values are classified in to five types as shown in the Table 3. 

3. Results and Discussions 
3.1. Geostatistical Model 
The Kriging variances must be accurately calculated because they have an important influence on some applica-
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tions of Kriging, e.g., the probability Kriging. If the RMSE is close to the ASE, the prediction errors were cor-
rectly assessed. If the RMSE is smaller than the ASE, then the variability of the predictions is overestimated; 
conversely, if the RMSE is greater than the ASE, then the variability of the predictions is underestimated. The 
same could be deduced from the RMSSE statistic. It should be close to one. If the RMSSE is greater than one, 
the variability of the predictions is underestimated; likewise if it is less than one, the variability is overestimated. 
After conducting the cross validation process, maps of Kriging estimates were generated which provided a visu-
al representation of the distribution of the groundwater quality parameters. 

The corresponding sill, nugget, and range values of the best fitted theoretical models were observed and re-
ported in Table 4 and Table 5. The best fitted variogram models are shown in Table 6. Subsequently, thematic 
maps for groundwater quality parameters were generated using ordinary Kriging. 

Table 4 represents characteristics parameters of best fitted semivariogram models for every groundwater 
quality parameters by check all types of models and chose the best one fitted model in the study area region.  

 
Table 3. Water quality classification based on WQI value. 

WQI value Water quality 

<50 Excellent water 

50 - 100 Good water 

100 - 200 Poor water 

200 - 300 Very poor water 

>300 Water unsuitable for drinking 

 
Table 4. Characteristics parameters of variogram models. 

Parameter Fitted 
Model 

Nugget 
(C0) 

Sill  
(C0 + C) 

Lag Size 
(Km) 

Range 
(Km) ME RMSE ASE MSE RMSSE 

pH Spherical 0.067 1.44 2711.55 32,247.66 0.0005 0.0175 0.0673 0.0084 0.2587 

TDS Circular 0.000 1.11 782.83 5860.20 −0.1007 96.8730 113.8267 0.0007 0.8388 

Total 
Hardness Gaussian 0.000 1.17 588.10 6767.17 1.1389 26.1619 41.6183 0.0111 1.1865 

Alkalinity Gaussian 0.004 0.90 1291.33 8047.39 −0.0120 4.7312 4.5745 −0.0005 1.0212 

Chloride Spherical 0.000 1.14 748.61 6367.48 0.3697 53.3323 60.5252 0.0059 0.8785 

Nitrate Exponential 0.014 0.81 1463.46 5808.93 −0.0235 4.5187 5.1932 −0.0022 0.9142 

Sulfate Circular 0.000 1.13 1223.91 14,686.89 0.0039 10.0084 13.1104 0.0042 0.7479 

Calcium Spherical 0.082 1.05 811.32 6083.68 0.6250 5.8355 15.5445 0.0549 0.6599 

Magnesium Exponential 0.000 0.98 654.68 5905.52 0.1023 3.8939 5.8448 0.0060 1.0617 

Fluoride Gaussian 0.020 1.28 1099.43 13,193.19 −0.0001 0.0170 0.0372 −0.0128 0.5598 

 
Table 5. Parameters spatial dependence of variogram models. 

Parameter Nugget (C0) Sill (C0 + C) [C0/(C0 + C)]% 

pH 0.067 1.44 5% 

TDS 0.000 1.11 0% 

Total Hardness 0.000 1.17 0% 

Alkalinity 0.004 0.90 0% 

Chloride 0.000 1.14 0% 
Nitrate 0.014 0.81 2% 
Sulfate 0.000 1.13 0% 

Calcium 0.082 1.05 8% 
Magnesium 0.000 0.98 0% 

Fluoride 0.020 1.28 2% 
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Table 4 shows the best fitted model for each parameter for prediction of pH, TDS, total hardness, alkalinity, 
chloride, nitrate, sulfate, calcium, magnesium, and fluoride. The ratio of nugget variance to sill expressed in 
percentages (Table 6) can be used as a criterion for classifying the spatial dependence of groundwater quality 
parameters. If this ratio is less than 25%, then the variable has a strong spatial dependence; if the ratio is be-
tween 25% and 75%, the variable has a moderate spatial dependence and greater than 75%, the variables shows 
only weak spatial dependence. All parameters of groundwater quality have strong spatial structure. The MSE 
values were close to zero and their corresponding to RMSSE values close to one represent a good prediction 
model. Small values of RMSE and ASE for all the ten water quality parameters also show good agreement of 
the model. 

3.2. Spatial Variation of Groundwater Quality Parameters 
Spatial distribution of groundwater quality parameters such as pH, TDS, total hardness, alkalinity, chloride, ni-
trate, sulfate, calcium, magnesium, and fluoride concentrations were carried out using geostatistical techniques 
in GIS. Ordinary Kriging was used to obtain the spatial distribution of groundwater quality parameters over the 
area. The distribution maps clearly detect that the water quality levels are poor with respect to the measured 
quality parameter as shown in Table 7.  

3.3. Groundwater Quality Index 
Groundwater quality index map was derived from ten water quality parameters. These maps were processed in 
GIS environment to get the output map (water quality index map) as shown in Figure 2. The ranges and class of 
the groundwater quality index of WQI map is given in Table 8. 

4. Conclusions 
Geostatistical analysis techniques, such as Kriging, are considered to be useful techniques for the monitoring, 
evaluation and management of groundwater resources. This study uses Kriging geostatistical technique and the 
WQI to map the spatial variability of groundwater quality. The groundwater quality analyses were done for Ga-
za Strip using GIS based geostatistical algorithm. 

Geostatistical analyses (Ordinary Kriging) were carried out for distribution analysis of various water quality  
 

 
Figure 2. Groundwater quality index map. 
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Table 8. Groundwater quality classes of the final output. 

Water quality class Description of water quality Area (Km2) Percentage of area 

100 - 200 Poor 127.421 35.395% 

200 - 300 Very poor 218.247 60.624% 

>300 Unsuitable for drinking 14.332 3.981% 

 
parameters. Results showed that impairment and poor groundwater quality for the Gaza Strip affect directly the 
people public health. The study illustrates geostatistical techniques for water quality assessment and investigates 
spatial variations of water quality using WQI as a beneficial tool for the planners and decision makers to devise 
policy guidelines for efficient management of the groundwater. 
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