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Abstract 
Walnuts are one of nature’s more waste-heavy products. 67% of the nut is 
shell and husk, low value by-products that are rich in phenolic compounds. 
The phenolic compounds extracted from walnut shells are potentially good 
natural sources of antioxidants for the food and pharmaceutical industries. In 
this study, phenolic compounds were extracted using an ultrasonic bath, an 
ultrasonic probe and a standard shaking method. The extraction yield 
achieved with an ultrasonic probe was 51.2 mg GAE/g DW, two times higher 
than both the shaking method and the ultrasonic bath method which were 
20.6 mg GAE/g DW and 25.8 mg GAE/g DW, respectively. Phenolic extrac-
tion was further improved by a size reduction of the walnut shells. The best 
extraction yield of 52.8 mg GAE/g DW was attained when the particle size 
was between 45 - 100 mesh. The ultrasonic probe treatment is the best me-
thod for extraction of phenolic compounds from walnut shells. Scanning 
electron microscopy (SEM) imaging indicated that the ultrasonic probe 
treatment could better rupture the hard structure of the cells, increasing the 
penetration of solvents and thus the extraction yield. 
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1. Introduction 

Walnuts (Juglans regia) are cultivated worldwide for their edible kernels which 
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are enclosed in a hard shell [1]. The worldwide walnut production of the whole 
nut in 2014 was approximately 3.45 million tons, meaning that around 2.3 mil-
lion tons of walnut shells are left behind since the shell comprises 67% of the to-
tal weight of a walnut [2]. The shell is composed of 22.2% (wt.) hemicellulose, 
25.5% (wt.) cellulose and 52.3% (wt.) lignin [3]. This structural composition al-
lows for the shell to be hard, nontoxic, biodegradable and renewable [3]. Scle-
renchyma cells are also present in the shell and support tissues that are no longer 
expanding [4]. The secondary walls of walnut shells form thick, rigid and hard 
layers with lignified cells [5]. 

As agricultural waste, walnut shells are burned in the winter to produce heat, 
but this usage method is energy inefficient and pollutes the air [2]. Walnut shells 
are rich in phenolic acids and related polyphenols that, as shown in other stu-
dies, bear numerous health-promoting effects [6]. As the need for natural anti-
oxidants is dynamically increasing in the food industry, agricultural and food 
waste is becoming an ideal substance from which to extract phenolic compounds 
as natural antioxidants [7]. Currently, increased research efforts are focused on 
the recycling of inexpensive waste products from the food, forest and agricultur-
al industries due to the environmental and economic benefits [8] [9]. 

Walnuts exhibit greater antioxidant capacity than any other nut [10] as the 
shell is mainly composed of lignin, a strong phenolic source. Natural antioxi-
dants, like phenolic compounds, are gaining relevance for their positive effects 
on human health such as decreasing the risk of degenerative diseases by reduc-
ing oxidative stress and inhibiting macromolecular oxidation [1] [11]. Other 
health benefits include a wide range of physiological properties, such as an-
ti-allergenic, anti-atherogenic, anti-inflammatory, antimicrobial, antioxidant, 
antithrombotic, cardioprotective and vasodilatory effects [8] [11]. Transparency 
Market Research has predicted that the global demand for polyphenolic com-
pounds in 2018 will be expected to reach 873.7 million USD with a 6.1% of an-
nual growth rate from 2012 to 2018 [12]. Phenolics are also used in the food in-
dustry as a food stabilizer and currently are considered more powerful and po-
tent antioxidants than vitamin C, vitamin E and carotenoids [13] [14]. 

Novel extraction methods to obtain nutraceuticals from plants include shak-
ing extraction, ultrasound-assisted extraction (UAE), microwave-assisted extrac-
tion [9], supercritical fluid extraction [15], ohmic heating [16] and pressurized 
liquid extraction [9]. Among these techniques, UAE is relatively efficient and 
cost effective [17] [18] [19] [20]. The mechanical action of ultrasound cracks 
suspended sample particles which increases the contact surface area between the 
solid and liquid phases, causing greater penetration of solvent into the sample 
matrix and resulting in quicker diffusion of the solute from the solid phase to the 
solvent [17] [18] [21]. The ultrasonic extraction of biological materials requires 
relatively high power and densities of over 30 W/cm2 with frequencies between 
20 and 500 kHz. The injection of high intensity ultrasonic vibrations into a liq-
uid causes a number of non-linear physical phenomena such as cavitation and 
acoustic streaming that alters the reaction and diffusion kinetics and accelerates 
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the extraction of chemical substances from the sample particles suspended in the 
liquid [22] [23]. 

The main method for ultrasound-assisted extraction of chemicals from agri-
cultural waste involves the use of ultrasonic baths. Ultrasonic vibrations are ap-
plied through probes to the walls of the bath and then transmitted into the liq-
uid. Acoustic energy is applied indirectly to the medium containing solid sample 
particles, leading to energy loss and reduced vibration intensity in the liquid. Al-
ternatively, in an ultrasonic probe system, ultrasonic vibrations are directly ap-
plied to the extraction liquid, effectively transmitting ultrasonic energy to en-
hance cavitation and acoustic streaming [23] [24]. At higher ultrasonic energies, 
the extraction of organic compounds from plants is improved due to severe 
acoustic cavitation. The collapse of cavitation bubbles creates regions of high 
temperature and pressure as well as shock waves that provide greater penetra-
tion of the solvent into the cellular material and help mass transfer to and from 
interfaces for the disruption of cell walls and release of cellular materials [22] 
[23] [24] [25]. Still, little research has been found in literature on the effective-
ness of using ultrasonic probes directly on liquid mediums for phenolic extrac-
tion from walnut shells. The objective of this study is to determine the effect of 
UAE on phenolic yields from walnut shells and to analyze the impact of different 
treatment methods on the structure of walnut shells. 

2. Materials and Methods 
2.1. Chemicals 

All chemicals including ethanol, Folin-Ciocalteu reagent and gallic acid were 
obtained from Fisher Scientific. 

2.2. Materials 

Walnut shell chips (moisture content 7.41%) were provided by Sierra Orchards 
in California. The walnut shell powder was screened through 45 (0.354 mm) and 
100 (0.150 mm) mesh after being grinded by a spice grinder (Model No. WSG 
30, Waring Products, USA). The samples were stored in the refrigerator for fur-
ther use. 

2.3. Extraction of Phenolic Compounds 
2.3.1. Shaking Method 
1.5 g of ground walnut shell powder (dry weight) was suspended in 30 mL of 
50% (v/v) ethanol/water at 25˚C. For 15 min in the dark, the mixture was placed 
in an incubator shaker (Environmental Incubator Shaker, G24, New Brunswick 
Co., Inc., Edison, NJ, USA) at 150 rpm. After the treatment the sample was im-
mediately centrifuged (Allegra® 6, Beckman Coulter, Inc., Indianapolis, IN, 
USA) at 3000 rpm for 15 min. The supernatant was collected for phenolic con-
tent analysis, and the precipitate was oven dried overnight at 45˚C for SEM 
analysis. 
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2.3.2. Ultrasonic Bath Method 
1.5 g of ground walnut shell powder (dry weight) was suspended in 30 mL of 
50% (v/v) ethanol/water at 25˚C. The mixture was placed in the dark for 15 mi-
nutes in an ultrasonic water bath (SharperTek®, Pontiac, MI, USA) set at a fre-
quency of 40 kHz (500 W). After the treatment, the sample was immediately 
centrifuged at 3000 rpm for 15 min. The supernatant was collected for phenolic 
content analysis, and the precipitate was oven dried overnight at 45˚C for SEM 
analysis. 

2.3.3. Ultrasonic Probe Method 
1.5 g of ground walnut shell powder (dry weight) was suspended in 30 mL of 
50% (v/v) ethanol/water at 25˚C. The mixture was agitated with an ultrasonic 
probe in the dark for 15 min. The ultrasonic equipment consisted of an amplifier 
(Model VCF1500, Sonics & Materials, Newtown, CT, USA), an air-cooled pie-
zoelectric converter (Model CV-294, Sonics and Materials, Newton, CT, USA) 
and a probe of 19 mm immersed 1 cm deep into the mixture. The drive fre-
quency was set at 22.95 kHz with an output power of 1500 W. After the treat-
ment, the sample was immediately centrifuged at 3000 rpm for 15 min. The su-
pernatant was collected for phenolic content analysis, and the precipitate was 
oven dried overnight at 45˚C for SEM analysis. 

2.4. Quantification of Total Phenolic Compounds 

The total phenolic content was determined by the Folin-Ciocalteu method [26] 
with some modifications. 0.5 mL of the extracted solution was mixed with 2.5 mL 
of Folin-Ciocalteu reagent (10-fold diluted). After three minutes of mixing, an 
additional 2 mL of 7.5% sodium carbonate solution was added. The reaction was 
then heated at 45˚C for 15 min. The absorbance was read at 765 nm using a 
blank of water and reagents. The phenolic content was calculated as gallic acid 
equivalents from the calibration curve of gallic acid standard solutions (0.01 - 
1 mM) and expressed as mg gallic acid equivalents (GAE) per gram of dry 
weight (DW) of walnut shell (mg GAE/g DW) using the following equation: 

( )210.179 0.0592 0.999A C R= ∗ + =                 (1) 

where A is the absorbance and C is the concentration (mg GAE/g DW). 

2.5. Scanning Electron Microscopy (SEM) 

A Quanta 3D FEG SEM (FEI, USA) from the Purdue Life Science Microscopy 
Facility was used to image the walnut shell and powder before and after treat-
ment. The instrument was operated at 10.0 kV. Samples were sputter-coated 
with a thin layer of gold-palladium for 60 s at room temperature before imaging. 

2.6. Statistical Analysis 

Analysis of the variance (ANOVA) was conducted using SPSS, Version 23.0 sta-
tistical software (SPSS Inc., Chicago, IL, USA). All experimental results were re-
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ported as means of triplicate measurements. 

3. Results and Discussion 
3.1. Surface Structure of the Walnut Shell 

A hard and thick woody shell that protects the oil-rich content of the nut sur-
rounds the walnut kernel. Shells like these are fibrous with a high lignin content, 
low water absorption and a high resistance to natural degradation [27]. Lignin is 
a complex polyphenolic amorphous polymer with a three-dimensional network. 
The secondary wall of the shell comprises of cellulose and densely cross-linked 
lignin that provides mechanical support and enhances the hardness of the well 
call [28]. The lignin content of walnut shells (52.3%) is much higher than other 
materials such as hard beech wood (22.2%) and soft spruce wood (29%) [3]. 
Furthermore, the lignin content is also correlated to the mechanical strength and 
thickness of the walnut shell [29]. Due to this particular quality, it is very impor-
tant to crack and loosen the dense structure in order for the solvent to penetrate 
the cell to extract the phenolic compounds. Thus, to produce a higher yield of 
phenolic compounds, a proper extraction method and size of solute is critical. 

3.2. Comparison of the Total Phenolic Content from Different  
Extraction Methods 

In this study, three different methods were used: shaking, ultrasonic bath and 
ultrasonic probe. The three extraction methods were conducted at room tem-
perature with 50% ethanol for 15 min with a 20 solvent to solid ratio. Figure 1 
shows that the average total phenolic content for shaking, ultrasonic bath and 
ultrasonic probe was 20.6 mg GAE/g DW, 25.8 mg GAE/g DW and 51.2 mg 
GAE/g DW, respectively. UAE with the bath and probe provided a higher total 
phenolic content than the shaking method. In other words, using UAE increased 
the efficiency of phenolic extraction by 20% with an ultrasonic bath and by an 
even greater 250% with an ultrasonic probe submerged in the liquid containing 
walnut shell particles. 

Using high power ultrasound induces various effects on the physical, me-
chanical, chemical and biochemical properties of food and biomass materials 
[23]. UAE creates vigorous physical forces that allow for greater penetration of 
the solvent into the cell matrix, thereby increasing the solid to liquid contact [21] 
and enhancing the extraction of phenolic compounds from the walnut shells. 
Still, there is a significant difference between the ultrasonic bath method and ul-
trasonic probe method. In an ultrasonic bath, cavitation occurs irregularly and 
uncontrollably throughout the tank. In comparison, an ultrasonic probe pro-
vides a highly localized intensity that results in a higher efficiency of the sonica-
tion process [30]. It has been demonstrated that, under conditions similar to our 
experimental parameters, high cavitation pressures of the order of GPa are 
created only by suitable combinations of the drive frequency, the amplitude of 
the pressure field and the initial bubble size—conditions that occur only in a 
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narrow zone below the probe [31]. Otherwise, predicted pressures around cavi-
tation bubbles are of the order MPa and even up to 0.1 GPa depending on the 
parameters of the pressure field. For this reason, cavitation pressures in the ul-
trasonic bath are expected to be at least one order of magnitude lower than 
pressures created by the ultrasonic probe. The ultrasonic probe produced the 
highest extraction yield, as seen in Figure 1, because the high cavitation pres-
sures provided better disruptions of the dense shell structure. Direct reaction 
with the solvent system was further enhanced with strong acoustic streaming 
which brought walnut shell particles to the regions where the pressure was the 
highest and the cavitation was most vigorous. 

3.3. Effect of Particle Size on the Total Phenolic Content 

Altering the particle size of the solute changes the available surface area for reac-
tions to occur, and thus should affect the extraction efficiency of phenolic com-
pounds. Walnut shell particles of four size ranges were tested: the original shell 
size directly from the package (3 - 15 mm), >45 mesh (>0.354 mm), 45 - 100 mesh 
(0.354 - 0.150 mm) and <100 mesh (<0.150 mm). As shown in Figure 2, the total 
extracted phenolic content of the selected size of particle was 4.8 mg GAE/g DW, 
7.6 mg GAE/g DW, 60.6 mg GAE/g DW, 50.6 mg GAE/g DW, respectively, in-
dicating a general increasing trend of total phenolic content as particle size de-
creases. These results were in accordance with several other works conducted by 
researchers using different plant materials of varying particle sizes [9] [32] [33]. 
Smaller particles have a larger surface area to volume ratio and therefore reduce 
the mass transfer distance from solvent to cell matrix to induce maximum phe-
nolic extraction as more of the cells are exposed to the ultrasonic waves [9] [34] 
[35] [36] [37]. 
 

 
Figure 1. Effect of different extraction methods on the total phenolic 
content. The particle size, solvent to solid ratio, temperature, and 
treatment time were set at <45 mesh, 20, 25˚C, and 15 min, respectively. 
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Figure 2. Effect of various particle sizes of walnut shell powder on total 
phenolic content. The ultrasonic probe method was performed at 25˚C 
for 15 min with a solvent to solid ratio of 20. 

 
However, our results demonstrate that the phenolic content decreased slightly 

when the particle size was <100 mesh. The most probable explanation is the ex-
istence of bubbles that nucleate on the walnut particles dispersed in the solvent. 
The critical bubble radius is [38] 

2
 c

G L

r
p p

σ
=

−
                       (2) 

where σ is the liquid-gas surface tension, pG is the gas pressure inside the bubble 
and pL is the pressure in the liquid phase. This implies that gas bubbles cannot 
nucleate on particles that are below a certain size. Also, cavities that exist on sol-
id particles are favorable nucleation sites for bubbles [39]. Walnut particles are 
fragmented more efficiently by cavitation bubbles that are attached to them than 
by short range shock waves emitted from free collapsing bubbles. For these two 
reasons, less fragmentation should be expected from particles that are smaller 
than a certain critical size. 

3.4. SEM Analysis of the Surface Characteristics of the Walnut  
Shell after Mechanical Force and UAE Treatment 

The structure of the fractured surface of the shell walls can be seen from SEM 
imaging as shown in Figure 3(A). The cross section of the walnut shell can be 
divided into two regions. The outside region is about 2.5 - 3 times thicker than 
the inside region. The outer cells are dense and more resistant to impact due to 
the harder structure and thus resist deformation and protect the nut from at-
tacking insects, diseases, etc. 

Mechanical forces during grinding reduced the particle sizes of the walnut 
shells and increased the available surface area. The SEM image in Figure 3(B) dis-
plays that the outer and inner regions of the shell still exist after grinding, and 
the fractured surface did not change much when the particle size was larger than 
45 mesh (>0.354 mm). However, when the particle size was between 45 - 100 mesh 
(0.354 - 0.150 mm), the outer and inner regions of the shell broke into small 
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pieces, as presented in Figure 3(C), that significantly increased the surface area. 
Moreover, in Figure 3(D), many more porous particles appeared as the struc-
ture was ground more and screened through 100 mesh (<0.150 mm). More 
phenolic compounds are stored in dense structures containing high lignin and 
cellulose, giving a positive correlation between phenolic content and the amount 
of lignin and cellulose [29].  

As illustrated in Figure 4(A), the untreated walnut shell powder had tight and 
close cells, and the cross-section surface had pits and embossments that corres-
pond to cell walls and cell lumens, respectively. In Figure 4(B), the walnut shell 
that was shaken shows a slight change in morphology. Unlike the shaking me-
thod, the walnut shell extracted by an ultrasonic bath formed pits by exfoliated 
cell as seen in Figure 4(C). Figure 4(D) of the ultrasonic probe treated shell in-
dicates that the cell walls collapsed, and the general structure puffed with many 
open holes. During the treatment, high cavitation pressures caused surface ero-
sion and fragmentation [19]. Therefore, the solvent could more easily penetrate 
into the cell to enhance the extraction efficiency and increase the antioxidant ac-
tivity of the walnut shell extract [25] [40] [41]. Furthermore, vibrations inevita-
bly nucleated bubbles inside newly created pores. The oscillations and collapses 
of these bubbles created an internal pressure that led to an expansion of the 
structure and further erosion and propagation of cracks and cavities. 

 

 
Figure 3. SEM images of the various particle sizes of the ground walnut shell. (A) Original; (B) >45 mesh; (C) 45 - 100 mesh; 
(D) <100 mesh. 

 

 
Figure 4. SEM images of the walnut shell after each treatment. (A) Untreated; (B) Shaking; (C) Ultrasonic Bath; (D) 
Ultrasonic Probe. 

Outside region

Inside region
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4. Conclusion 

The high lignin content of walnut shells allows for a special hard and dense 
structure in the cell wall. This study demonstrated that the best method to ex-
tract phenolic compounds from a walnut shell is UAE with a probe. This tech-
nique creates agitation with a probe immersed into the sample that directly dis-
rupts cell structure and speeds up solvent transferring into the cell, thereby re-
leasing more phenolic compounds from the cell matrix. In addition, the me-
chanical forces from grinding and the waves from ultrasonic vibration reduce 
the particle size of the shells and enlarge the available surface area for better ex-
traction yields of phenolic compounds. The SEM imaging on the cross section of 
the walnut shell shows that there is an inside and outside layer to the cell struc-
ture. The outside layer is around 2.5 - 3 times thicker than the inside one. The 
inner cells are loose and porous, making them easy to penetrate after cracking 
the outside layer. SEM observations also show that the ultrasonic probe treated 
cells had many ruptures and open holes with a loose and puffy structure. Based 
on the results above, future work should be conducted to optimize the parame-
ters of UAE with an ultrasonic probe such as altering the treatment time, ampli-
tude of the drive pressure, temperature, etc. Furthermore, the phenolic com-
pounds profile by HPLC and the antioxidant activity properties (e.g. DPPH, 
ABTs) of phenolic compounds should be determined. 
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