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ABSTRACT 

Bacterial profiles between storage conditions (frozen vs fresh) were compared using PCR-DGGE and banding pattern 
analysis. Salmon and tuna were collected and the bacteria cells were separated from fish cells using a somatic cell re-
leasing agent. The results demonstrated that some were indigenous waterborne bacteria. However, the majority were 
identified as spoilage bacteria, pathogens and potential fecal contamination bacteria. Banding pattern analysis showed 
that the storage conditions were a significant factor in clustering bacteria. Frozen fish showed a smaller number of bac-
terial species than fresh samples. Freezing seemed to play a role as a selective pressure by inactivating some microor-
ganisms while favoring resistant ones to low temperature. The bacterial profiles seemed to be more influenced by after- 
harvest practices than the original environmental contamination. These findings provide consumers insight into fish 
quality, potential health risks of raw fish consumption, and the impact of storage conditions on bacterial group of raw 
fish. 
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1. Introduction 

Seafood consumption is becoming increasingly popular 
due to the presence of high quality proteins, poly-unsa- 
turated fatty acids, and vitamins [1,2]. Most nutrients are 
well maintained in cases where only mild cooking or 
none at all (e.g. traditional Japanese styles of sushi and 
sashimi) is involved. However, undercooked or raw fish 
pose health risks due to potential pathogen contamination 
from water or secondary contamination during harvesting, 
processing and handling [3]. Hwang et al. [4] reported 
that fish sold in traditional markets had higher fecal coli- 
forms than fish from supermarkets. However, the clean- 
est fish were those from fishing piers without any post- 
harvesting processing. Several studies reported that the 
fish became contaminated by skin-penetration during de- 
livery or handling in groceries [5]. In Hong Kong, from 
1997 to 1999, over 10% of sushi and sashimi samples 
were contaminated with pathogens (i.e., Vibrio para- 
haemolyticus, Staphylococcus aureaus, Salmonella, and 
Listeria monocytogenes) [6]. In the United States, an 
outbreak of salmonellosis involving 89 individuals was 
reported due to the consumption of sushi [7]. 

Tuna and salmon are the most commonly consumed 
seafood and often consumed as raw [8], so it is signifi- 
cant to obtain the baseline information of bacterial com- 
munity profile that could impact fish quality and public 
health about these two fish types. Polymerase chain reac- 
tion—denaturing gradient gel electrophoresis (PCR-DGGE) 
is known to be a reliable, reproducible, rapid and inex-
pensive method that is based on conserved sequences of 
gene amplification. Compared to traditional culture me- 
thods, PCR-DGGE is able to detect more phylogeneti- 
cally distinct microbial populations in evaluating micro- 
bial flora and reduces the variations between the sam- 
ples from the same sources or replicates of a single sam- 
ple [9]. It has been widely applied in estimating micro- 
bial diversity and monitoring the shift of microbial struc- 
ture in various environmental or food samples [10]. It is a 
useful approach for identification of environmental mi- 
crobial flora in fish and recently was used to study mi- 
crobial flora in modified-atmosphere-packaged Atlantic 
cod and intestinal bacterial flora in rainbow trout [11,12]. 
In the current study, we used this technique to inves- 
tigate the differences in bacterial communities between 
the most commonly used storage practices (fresh vs fro- 
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zen) for the raw-consumed fish. 
The aim of our study was to determine bacterial com- 

munity profiles between two storage conditions (frozen 
vs fresh) in salmon and tuna at the stage of consumer’s 
purchasing using PCR-DGGE and banding pattern ana- 
lysis. One challenge was to efficiently remove the fish 
cell mass which could hinder bacterial DNA ex- traction 
and PCR amplification of 16S rRNA gene. To overcome 
this, we used a somatic cell releasing agent to eliminate 
the interference from the fish matrix during the separa-
tion of the bacterial community DNA. The condi- tions 
of PCR and DGGE were optimized to make this ap-
proach more efficient in detecting the bacteria in fish 
samples. This information will be helpful for consumers 
to evaluate the potential risks of eating raw fish. 

2. Materials and Methods 

2.1. Fish Sample Preparation 

Fish samples, including 13 fresh salmon samples, 12 
fresh tuna samples, 4 frozen salmon samples and 4 fro- 
zen tuna samples, were collected from 5 different super- 
markets in and around Columbus, Ohio. Each of the fish 
samples was wild-caught. Fresh samples were defined as 
the fish that were stored at 0˚C - 4˚C (on the ice or in the 
refrigerator) regardless of packaging type while the fish 
were fully packaged. Those sold at –20˚C (in the freezer) 
were considered as frozen samples. Fish samples were 
transported to the lab on ice and analyzed within 1 hour 
after collection. Ten-gram of each fish sample was mixed 
with 90 ml of peptone water (0.85% NaCl w/v and 0.1% 
peptone w/v), then homogenized in Stomacher 80 
(SEWARD, Worthing, West Sussex, UK) for 2 minutes. 
In order to examine microbial biota from the perspective 
of potential human health risks, an enrichment step at 
body temperature was used to simulate an intestinal tract 
system. For this, a non-selective medium was used to 
minimize the shift of the bacterial community [13]. Two 
milliliters of the homogenized fish samples were added 
to 50 ml of modified TSB (FISHER SCIENTIFIC, Wal- 
tham, MA) with 0.1% yeast extract (pH = 7.3). The sam-
ples were then cultured in a shaking incubator at 37˚C 
overnight. Aseptic technique was maintained during all 
sample collection and processing activities. 

2.2. Bacterial Community DNA Extraction  

Three milliliters of the enriched cultures were collected 
and centrifuged at 120× g for 1 minute to remove food 
residues. Bacterial pellets were formed by centrifugation 
at 10,000× g for 2 minutes. In order to separate bacterial 
DNA from the remaining fish cells efficiently, the pellet 
was mixed with 100 μl somatic cell releasing agent (SRA, 
New Horizons Diagnostics Corp., Columbia, MD) [14] and 

held for 5 minutes at room temperature. After centrifuga- 
tion at 10,000× g for 2 minutes, the pellet was washed 
once with phosphate buffered saline (PBS) (FISHER 
SCIENTIFIC, Waltham, MA) to remove any remaining 
fish debris. Bacterial cells were collected by centrifuga- 
tion at 10,000× g for 2 minutes and DNA was extracted 
using a QIAamp DNA Mini Kit (QIAGEN, Valencia, 
CA) according to the manufacturer’s instructtion. 

2.3. PCR Amplification of 16S rRNA Genes 

The V3-region of the 16S rRNA gene of bacteria was 
amplified using two universal bacterial 16S rRNA gene 
primers BA338f (5’-ACT CCT ACG GGA GGC AGC 
AG-3’) and 518r (5’-ATT ACC GCG GCT GCT GG-3’). 
When used in DGGE, a 40bp GC clamp was added to the 
5’ end of primer BA338f [9]. The total PCR reaction 
volume was 50 μl, which included 2.5 μl of bacterial 
DNA, 5 μl of 10 × PCR buffer (QIAGEN, Valencia, CA), 
10 μl of Q solution (PCR enhancer, QIAGEN, Valencia, 
CA), 0.5 μl of each forward and reverse primer from 100 
μM primers stocks, 1.5 μl of 50 mM MgCl2, 1 μl of 10 
mM dNTPs, 0.2 μl of Taq polymerase (approximate 1U, 
INVITROGEN, Carlsbad, CA) and 28.8 μl of sterilized 
distilled water. PCR amplification was conducted using a 
MutiGene Thermal Cycler (LABNET, Edison, NY) un- 
der the following conditions: 94˚C for 3 minutes; 30 cy- 
cles of 92˚C for 1 minute, 55˚C for 30 s, 72˚C for 1 min- 
ute; and final extension at 72˚C for 10 minutes. The PCR 
product was confirmed by agarose gel (1.0%) electro- 
phoresis and the gel was stained using ethidium bromide 
(1 μl·100·ml–1). 

2.4. Denaturing Gradient Gel Electrophoresis 
(DGGE) 

The amplified 16S rRNA gene products were separated 
using a DCode System (BIO-RAD, Hercules, CA) and a 
density gradient gel consisting of 8% polyacrylamide 
(37.5:1) with a 30% - 70% denaturant gradient at 60˚C 
for 18 hours. Gel images were captured using a Molecu- 
lar Imager Gel Doc XR System (BIO-RAD, Hercules, 
CA). The DGGE banding profiles were analyzed using 
the BioNumerics software (BIOSYSTEMATICA, Ta- 
vistock, Devon, UK) as described by Hovda et al. [11] 
The gel images were first normalized to correct any gel 
smiling or uneven band migration by comparison with 
two external reference lanes. The DGGE banding pro- 
files were analyzed using Pearson’s coefficient and the 
Neighbor-Joining algorithm [15]. 

2.5. Sequencing Analysis of the Selected DGGE 
Bands 

The unique bands were excised from the gels with a ster- 
ile scalpel under UV transillumination, and the gel slices 

Copyright © 2012 SciRes.                                                                                  FNS 



Comparison of Bacterial Profiles of Fish between Storage Conditions at Retails Using DGGE and  
Banding Pattern Analysis: Consumer’s Perspective 

192 

were placed into 30 μl of nuclease-free water and held at 
4˚C for 24 hours. Three microliters of the supernatant 
were used as the template for PCR with the same condi- 
tions described above, without GC-clamp in the forward 
primer. After confirmation with agarose gel (1.0%) elec- 
trophoresis, the PCR products were purified with a QIA 
quick PCR purification kit (QIAGEN, Valencia, CA) and 
further sequenced with the non-GC clamp forward primer, 
BA338f, using ABI Prism 3730 DNA analyzer (AP- 
PLIED BIOSYSTEMS, Foster City, CA). The process was 
done in the Plant-Microbes Genomics Facility at The Ohio 
State University (http://pmgf.biosci.ohio-state. edu). The 
sequences were compiled with a Sequence Scanner v1.0 
(APPLIED BIOSYSTEMS, Foster City, CA) to check 
for accuracy and their taxonomic identifycation was de-
termined by comparing with reference sequences in the 
GenBank database using the BLAST search program 
[16]. 

3. Results 

3.1. Bacterial 16S rRNA Gene Extraction and 
PCR Amplification 

Bacterial genomic DNAs were extracted from fish sam- 
ples and then separated using 1% agarose gel electro- 
phoresis stained with ethidium bromide. Genomic DNA 
with a large molecular weight was observed in the upper 
region of the gel. However, the quality of the DNA was 
not good enough for further analysis (Figure 1(A) Lanes 
2 and 3). In order to obtain higher quality bacterial ge- 
nomic DNA, SRA was used to remove fish cells. The 
PCR results showed that the use of SRA was advanta- 
geous in obtaining high quantity bacterial DNAs from 
the fish samples (Figure 1(A)). Without SRA treatment, 
the level of primary PCR products was low (Figure 1(B)). 
After the SRA treatment, clearer bacterial DNA bands 
were observed and a sufficient 16S rRNA gene product 
could be obtained (Figure 1(B)). 

3.2. Bacterial Banding Pattern Analysis 

The DGGE gel pattern of the bacterial community from 
the salmon and tuna are summarized in Figure 2. Bacte- 
rial community bands obtained by DGGE using the de-
naturant range from 30% to 70% are presented in Fig- 
ures 2(a) and (b). From these, the bands with high G + 
C% were separated completely. The fresh samples gen- 
erated more bands than the frozen fish samples. The av- 
erage number of bands obtained from the PCR product of 
the fresh fish samples was over 20, while that of the fro- 
zen fish was only 12. Since the bands at the low dena- 
turant concentration area were not separated out, the 
same PCR products were analyzed again using DGGE 
with the denaturant range from 30% to 50% in order to 

  

Figure 1. (A) The use of SRA for efficient bacterial DNA 
extraction from fish samples. The lanes 5 and 6 show en-
hanced recovery of bacterial DNA. Lane 1: DNA ladder; 
Lane 2: salmon; Lane 3: tuna; Lane 4: positive control; 
Lane 5: salmon (SRA); Lane 6: tuna (SRA); (B) The use of 
SRA for improved quality of PCR amplification of bacterial 
community 16S rRNA gene from a fish sample (~180 bp). 
Lane 1: Marker; Lane 2: positive control; Lane 3: salmon; 
Lane 4: tuna; Lane 5: salmon (SRA); Lane 6: tuna (SRA). 
 
recover the low G + C% amplicons. During this proce- 
dure, we lost some of the lanes (Lane 4 of salmon and 
Lane 9, 10, 12 of tuna in Figure 2(b)), so only 16 lanes 
of salmon and 13 lanes of tuna were shown in Figures 
2(c) and (d), respectively. Then, 12 additional bands were 
recovered (band 22 - 33 in Figures 2(c) and (d)). Nar- 
rowing the denaturant gradient (from 30% - 70% to 30% 
- 50%) enabled us to maximize the collection of different 
and representative bands from these fish samples. 

The DGGE bands were analyzed by BIONUMERICS 
software. The results are summarized between the fish 
types in Figure 3 in the form of band-comparison den- 
drogram. The banding pattern analysis shows that the 
bands from the frozen samples were tightly clustered in 
both fish types. In contrast, the bands from the fresh 
samples of both fish types did not seem to be clustered as 
a group although they were aggregative. 

The bands were also compared by storage conditions 
and the dendrograms are illustrated in Figure 4. The 
banding profiles from the fresh fish samples were not 
distinctly clustered by each fish type and no significant 
clustering phenomenon was observed (Figure 4(a)). In 
contrast, the bands from the frozen samples were clearly 
separated depending on the fish type: salmon vs tuna 
(Figure 4(b)). 

3.3. Bacterial Identification 

To determine bacterial taxonomic identification, 94 bands 
were directly sequenced [11]. Sequences were analyzed 
by comparing with most closely related bacterial 16S 
rRNA sequences from the NCBI database. The analyzed 
sequences from the excised bands which showed high 
similarity (>95%) to the reference sequences were sum- 
marized in Table 1. Serratia ureilytica (Figure 2(a) band 
5), Lactococcus plantarum (Figure 2(a) band 8), Hae- 
mophilus piscium (Figure 2(b) band 21), Carnobacterium 
maltaromaticum (Figure 2(  band 23), Pseudomonas c) 
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Figure 2. 16S rRNA gene DGGE profile (bands marked with ● were selected for sequencing). (a) The first set of 16S rRNA 
gene DGGE profile using 30% - 70% denaturant range (Lanes 1, 4 and 5 are fresh salmon samples; Lanes 2, 3, 6, 7 are fro- 
zen salmon samples; Lane 8, 9, 12, 13 are fresh tuna samples; Lanes 10, 11, 14, 15 are frozen tuna samples); (b) The second 
set of 16S rRNA gene DGGE profile using 30% - 70% denaturant range (Lanes 1 to 8 and Lanes 17, 18 are fresh salmon 
samples; Lane 9 to 16 are fresh tuna samples); (c) The first set of 16S rRNA gene DGGE profile using 30% - 50% denaturant 
range (all salmon); (d) The second set of 16S rRNA gene DGGE profile using 30% - 50% denaturant range (tuna). 
 
vranovensis (Figure 2(c) band 24) and Aerococcus viri- 
dans (Figure 2(c) band 25) were the predominant bacte- 
ria found in the fresh salmon samples. In the fresh tuna 
samples, various bacterial species were found, such as 
Brochothrix thermosphacta (Figure 2(a) band 4), Lacto- 
coccus plantarum (Figure 2(a) band 8) and Edwardsiella 
ictaluri (Figure 2(b) band 13). Acinetobacter baumannii 
(Figure 2(a) band 9; Figure 2(c) band 27; Figure 2(d) 
band 32), Oceanospirillum beijerinckii (Figure 2(b) band 
14), Plesiomonas shigelloides (Figure 2(a) band 1) and 
various Shewanella species (Figure 2(a) band 7; Figure 
2(b) band 11, band 15, band 17) were detected in the 
fresh salmon and the fresh tuna. 

In general, frozen fish samples showed less bacterial 
diversity in DGGE analysis. The predominant bacteria in 
frozen salmon were Kluyvera intermedia (Figure 2(a) 
band 2), Serratia quinivorans (Figure 2(a) band 3), 
Pseudomonas vranovensis (Figure 2(c) band 24), and 
Aeromonas viridans (Figure 2(c) band 25). Serratia 

ureilytica (Figure 2(a) band 5), Carnobacterium viridans 
(Figure 2(a) band 6), and Vagococcus salmoninarum 
(Figure 2(d) band 29) were the most prevalent bacteria 
in frozen tuna. 

4. Discussion 

4.1. Bacterial DNA Extraction 

All the fish samples were collected from supermarkets 
and the bacterial load was expected to be low since the 
retailers should guarantee the safety of the products they 
sold. As expected, little bacterial DNA was obtained 
when extracted from the fish samples without any pre- 
enrichment. We used a simple enrichment step in order 
to increase bacterial quantity and obtain successful PCR 
products. It may favor the growth of certain group of 
bacteria [43]. However, one of our aims was targeting 
bacterial community profile and bacteria of concern (e.g. 
pathogens) from a consumer’s perspective, not focusing 
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Figure 3. Banding pattern analysis of bacterial community by band-search algorithm and bands comparison among the same 
fish type. (a) Salmon; (b) Tuna. 
 
on the ratio of bacterial species in the whole bacterial 
population. 

Another challenge was to obtain bacterial DNA for 
successful PCR from a complex matrix, such as food and 
environmental samples, because there are inhibitory com- 
ponents which cannot be eliminated easily [44]. Thus, ex- 
traction and separation of bacterial community DNA 
from the fish matrix is a critical step for successful am- 
plification of bacterial DNA. Somatic cell releasing agent 
(SRA), which consists of non-ionic detergents and sur- 
face active agents, can lyse somatic cells without cleav- 
ing bacterial cells [14]. SRA has been used to remove 
non-bacterial cells in environmental applications when 
determining bacterial loads [45]. Results indicate that 
SRA is an effective reagent in eliminating fish cells, 
which was likely the primary source of contamination in 
total bacterial DNA extraction (Figure 1(A) Lanes 5 and 
6; Figure 1(B) Lanes 5 and 6). 

4.2. Bacterial Community Structure and Species 
Diversity in Fish 

Overall, the fresh samples demonstrated more bacterial 
diversity than the frozen samples. The amplified PCR pro- 
ducts from the fresh samples had more bands separated 
by DGGE. This indicates that some bacteria lost viability 
during freezing. Nevertheless, freezing, as a selective fac- 
tor, was observed to favor the growth of other bacterial 
species (Aerococcus viridans, Kluyvera intermedia) or 
have little influence on the survival of some species 
(Carnobacterium viridans, Enterococcus faecalis, En-
terococcus mundtii, Serratia ureilytica, Vagococcus sal-
moninarum). The fresh fish samples were not clus- tered 
according to fish type (Figure 4(a)), indicating that the 
fish samples could become contaminated with vari- ous 
bacteria through multiple pathways, which may be highly 
relevant to the cultivation or post-harvesting han- dling. 
This would result in random and nonspecific bac-  
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Figure 4. Banding pattern analysis of bacterial community by band-search algorithm and bands comparison among the same 
storage condition. (a) Fresh; (b) Frozen. 
 
terial diversity. However, after freezing, some bacteria 
were inactivated by low temperature, leaving similar sur- 
viving bacteria to appear in the same fish type (Figure 3). 
Within the frozen samples, the bacterial identities were 
clustered by fish type (Figure 4(b)), except that only one 
frozen salmon sample was clustered with the frozen tuna 
samples. This may indicate that the composition of mi- 
crobial communities were more influenced by after-har- 
vest practices than the original environmental contamina- 
tion and freezing reduced the species differences of bac- 
terial community in the fish samples. 

4.3. Bacterial Sources and Possible Health Risks 

Several species found in this study are spoilage bacteria. 
Carnobacterium maltaromaticum, a lactic acid bacterium, 

is commonly distributed in marine or river water envi-  
ronments and can tolerate low temperature. C. maltaro- 
maticum is also a fish pathogen and has been isolated 
from spoiled chilled seafood [46]. Brochothrix thermos- 
phacta is a common psychrotrophic spoilage microor- 
ganism, which has been found in meat, poultry, and fish 
products, and is recognized as the main bacteria causing 
“off-flavors” [20,47]. Many strains have been confirmed 
as human pathogens and/or aquatic life pathogens. Aero- 
coccus viridans is a nosocomial pathogen, which may 
cause respiratory or urinary tract infections and fatal dis-
eases, and is commonly penicillin-resistant [37,48]. Aci-
netobacter baumannii is an important opportunistic pa-
thogen; multi-drug resistant strains frequently cause no-
socomial outbreaks [49]. Plesiomonas shigelloides, a     
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Table 1. Identification of bands obtained by PCR-DGGE based on the V3 region of 16S rRNA and the closest sequence match 
of known bacteria in other references.  

Banda Identityb Similarity (%)c Potential source Reference 

1 Plesiomonas shigelloides (X74688) 97.62 Fresh water, animals [17] 

2 Kluyvera intermedia (AF310217) 98.46 Surface water, soil [18] 

3 Serratia quinivorans (AJ279045) 97.56 Soil [19] 

4 Brochothrix thermosphacta (AY543023) 97.56 Raw meat [20] 

5 Serratia ureilytica (AJ854062) 100.00 River water [21] 

6 Carnobacterium viridans (AF425608) 97.56 Meat [22] 

7 Shewanella japonica (AF145921) 98.49 Sea water [23] 

8 Lactococcus plantarum (EF694029) 94.53 Meat [24] 

9 Acinetobacter baumannii (X81660) 98.54 Human [25] 

10 Haemophilus piscium (AJ009860) 100.00 Trout [26] 

11 Shewanella profunda (AY445591) 98.25 Deep marine sediment [27] 

12 Shewanella japonica (AF145921) 99.24 Sea water [23] 

13 Edwardsiella ictaluri (CP001600) 97.06 Catfish [28] 

14 Oceanospirillum beijerinckii (AB006760) 96.58 Sea water [29] 

15 Shewanella hafniensis (AB205566) 96.49 Cob [30] 

16 Acinetobacter baumannii (X81660) 99.20 Human [25] 

17 Shewanella putrefaciens (X81623) 96.26 Deep marine sediment [31] 

18 Acinetobacter haemolyticus (X81662) 99.04 Sludge, feces [32] 

19 Enterococcus mundtii (AJ420806) 96.58 Environment, human [33] 

20 Brochothrix thermosphacta (AY543023) 97.56 Raw meat [20] 

21 Haemophilus piscium (AJ009860) 100.00 Trout [26] 

22 Macrococcus hajekii (AY119685) 100.00 Animals [34] 

23 Carnobacterium maltaromaticum (AF184247) 97.32 Poultry [35] 

24 Pseudomonas vranovensis (AY970951) 100.00 Soil [36] 

25 Aerococcus viridans (M58797) 98.53 Soil, human, animals [37] 

26 Pseudomonas veronii (AF064460) 99.15 Water, soil, fish, raw milk [38] 

27 Acinetobacter baumannii (X81660) 95.80 Human [25] 

28 Enterococcus faecalis (AE016830) 99.25 Human, animals [39] 

29 Vagococcus salmoninarum (Y18097) 100.00 Trout [40] 

30 
Oceanobacillus oncorhynchi 

subsp. incaldanensis 
(AJ640134) 100.00 Trout [41] 

31 Vagococcus salmoninarum (Y18097) 98.10 Trout [40] 

32 Acinetobacter baumannii (X81660) 97.86 Human [25] 

33 Enterococcus phoeniculicola (AY028437) 100.00 Bird [42] 

aBand number as indicated on Figure 2; bClosest match to band sequence obtained by comparison with BLAST search. Numbers in parentheses indicate the 
GenBank accession number; cSimilarity was the ratio of identical sequence between the closest sequence from database entry and the band sequence, which was 

btained after BLAST. o 
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gastrointestinal pathogen, may induce “travelers’ diar- 
rhea” [17]. Edwardsiella ictaluri, a fish pathogen, causes 
enteric septicemia of catfish (ESC) [50]. Haemophilus 
piscium may lead to trout ulcer disease [26]. Shewanella 
spp are commonly isolated from marine fish and the ma- 
rine environment [23,29]. Shewanella putrefaciens is an 
opportunistic pathogen, which causes soft tissue infection 
and bacteremia in human [51]. Serratia ureilytica, first 
isolated from water, can utilize urea and metabolize chi- 
tin-containing marine life by producing proteases and 
chitinase, leading to shellfish spoilage [21,52]. 

Harmful bacteria were also detected in frozen samples, 
though with less frequency than in fresh fish. Carnobac- 
terium viridans, a facultative anaerobic psychrophilic 
bacteria, has been identified in packaged sausage in other 
studies and this bacterium causes spoilage and green dis- 
coloration [22]. Vagococcus salmoninarum, a fish path- 
ogen, may cause hyperaemia and haemorrhage in gills 
and viscera [40,53]. Enterococcus faecalis is a primary 
human fecal contamination indicator for microbial source 
tracking (MST). Enterococcus faecalis is also reported to 
induce most enterococcal infections, includeing endocar- 
ditis, bacteremia, urinary tract infections, and intra-ab- 
dominal infections [39]. 

Pseudomonas spp. are ubiquitous in the environment. 
Pseudomonas vranovensis has been isolated from soil 
and Pseudomonas veronii from water [36,38]. Several 
Pseudomonas species are spoilage bacteria or pathogens, 
but no cases indicated that the two species detected in 
this study have ever induced food spoilage or foodborne 
disease. Kluyvera intermedia is very common in surface 
water and soil, as well as from human sources [18]. 

Some waterborne bacteria are frequently found in 
fresh fish, such as C. maltaromaticum, P. shigelloides, E. 
ictaluri, O. beijerinckii, Shewanella spp., and S. ureily- 
tica. Furthermore, microorganisms such as K. intermedia, 
Enterrococcus spp., Lactococcus spp. and Pseudomonas 
spp. are widely distributed in the environment. Thus, fish 
might have acquired these bacteria from various path- 
ways: water, harvesting, transportation, storage, etc. Band- 
ing pattern analysis showed the bacterial community 
from frozen fish samples were clustered clearly in ac- 
cordance with the fish types (Figure 4(b)), but the bacte- 
rial community from both types of the fresh fish were 
mixed together (Figure 4(a)). This implies that freezing 
acts as a selective pressure by inactivating some micro-
organisms while favoring others that are more resistant to 
temperature stress in each type of fish, which make the 
bacterial community of the frozen fish samples more 
dependent on the fish types. Some waterborne bacteria 
were still detectable in frozen fish, such as C. maltaro- 
maticum, S. quinivorns, O. oncorhynchi subsp. Incaldanen- 
sis, S. japonica and V. salmoninarum. Others, such as A. 

viridans, Enterococcus spp., K. intermedia and M. ha-
jekii may be from water or fish processing. As shown in 
the analysis of bacterial community, storage conditions 
appear to be highly significant in the shift of species 
composition of the bacterial community found in fish 
samples. Some pathogens, such as Vibrio, Salmonella, or 
Listeria, that usually cause seafoodborne outbreaks were 
not detected in this study. It may be because the samples 
were collected from supermarkets where good handling 
is practiced in most steps. Another reason might be the 
limitation of DGGE in detecting bacterial community 
from the food samples since not all the bands were suc-
cessfully sequenced. Out of the 94 bands that were se-
quenced, some of them could not be accurately con-
firmed since the gene similarity was below 95% when 
compared with the Genebank database. The identification 
results from these bands were not included in this study. 

5. Conclusion 

Somatic release agent (SRA) was used to remove the fish 
matrix for efficient extraction of bacterial DNA and 16S 
rRNA gene amplification. This was much more effective 
than the traditional multiple centrifugation method. PCR- 
DGGE was an easy and feasible technique to analyze the 
bacterial population of fish samples. Banding patterns 
and sequencing results indicated that the bacterial diver- 
sity differs between fish types and is affected by storage 
conditions. Spoilage bacteria and pathogens from fish 
samples were mainly from the environments (e.g. water 
or soil); however, human factors, such as post-harvesting 
processing, were considerable. Recommendations for food 
handlers and retailers are using appropriate sanitizers for 
minimizing microbial contamination from harvesting to 
retail chain. 
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