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Abstract 
 
For the purpose to improve a design quality of high-speed spindle units, we have developed mathematical 
models and software to simulate a rotation accuracy of spindles running on ball bearings. In order to better 
understand the mechanics of ball bearings, the dynamic interaction of ball bearings and spindle unit, and the 
influence of the bearing imperfections on the spindle rotation accuracy, we have carried out computer aided 
analysis and experimental studies. When doing this, we have found that the spindle rotation accuracy can 
vary drastically with rotational speed. The influence of bearing preload has a secondary importance. Compari-
son of the results of these studies has demonstrated adequacy of the models developed to the real spindle units. 
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1. Introduction 
 
One of the most important features of a spindle unit (SU) 
is its accuracy of spindle rotation. We can define the 
spindle rotation accuracy as stability or immobility of the 
spindle axis while rotating. Indeed, accuracy is the value 
inverse to imperfection, and in practice, we usually 
check SU imperfection by examining its vibration and 
measuring spindle axis displacements (vibration ampli-
tudes). There are several reasons for the spindle vibration 
[1], among which we can point out imperfections of 
spindle bearings [2,3], spindle disbalance [4], dynamic 
disturbances caused by the drive or the motor [1], etc. 
The vibration caused by disbalance is a simple one, since 
it takes place at one frequency-the frequency of rotation, 
and can be improved by spindle balancing [5]. In this 
article, we study the spindle rotation accuracy caused by 
the non-ideal ball bearings, i.e., we study the imperfec-
tions of spindle rotation caused by the bearing imperfec-
tions. Furthermore, we define the imperfection of spindle 
rotation (the inverse to the spindle rotation accuracy) as a 
root-mean-square sum of the harmonics (amplitudes) in 
the spectral decomposition of spindle vibration, exclud-
ing the harmonic at the speed of rotation. We term this 
sum the spindle run-out. We also introduce such a meas-
ure of rotation accuracy, since it follows the method of 
its measurement in practice: the most detailed informa-  

tion about spindle rotation we get by measuring its vibra-
tion and representing the vibration in the form of a spec-
trum of vibrodisplacements. Averaged summation of the 
spectrum amplitudes gives us a general measure of vi-
brodisplacements, which, being doubled, we term the 
run-out. Such a spectrum depends on disturbances (pro-
duced by non-ideal bearings in our case), elastic, and 
damping properties of the SU structure. One of our pur-
poses is to estimate the influence of these factors on SU 
spectrum of vibration and, to reduce as much as possible 
the spindle run-out by perfect designing (choice) of the 
SU structure. Following the purposes stated above, we 
have developed the complex mathematical model of 
high-speed SUs [1], one of the elements of which is the 
dynamic model (Figure 1). 
 
2. Construction of Model of Spindle Rotation 

Accuracy 
 
The model of spindle rotation accuracy incorporates two 
models: the dynamic model of spindle units and the 
model of bearing disturbances. 
 
2.1. Dynamic Model of Spindle Units 
 
The dynamic model gives us an opportunity to estimate   
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Figure 1. Diagram of the complex model of spindle units. 
 
the following characteristics of the SU dynamics: 

1) Dynamic stiffness (compliance) in the form of am-
plitude-frequency characteristic; 

2) Rotation accuracy estimated by the amplitude-fre- 
quency spectrum of spindle vibration and the spindle 
run-out. 

The structural and analytical models used for analysis 
of the experimental high-speed SU are presented in Fig-
ures 2(a) and (b). When developing the analytical model, 
we make the following basic assumptions: 

1) The SU is considered to be a linear dynamic system 
having continuous and lumped parameters; 

2) We assume the spindle to be an elastic beam of 
variable cross-section; 

3) We assume that the bearings have linear elastic and 
damping characteristics. 
 

 

Figure 2. Structural (a) and analytical (b) model of the 
spindle unit. 

When representing the SU by the analytical diagram 
(Figure 2(b)), we apply the finite element method [6]. 
Each spindle element, we represent by a 2-node beam 
element; at that, each element has three displacements 
(radial, axial, and angular). We describe spindle dynamic 
displacements by the system of linear ordinary differen-
tial equations in the matrix form as follows: 

 t  M B K F X X X             (1) 

where X (t) is the 3m dimension vector of nodal dis-
placements; F (t) is the 3m vector of nodal dynamic 
loads; M, B, and K are the 3m  3m matrices of mass, 
damping, and stiffness; m is the number of nodes in the 
analytical model; t is time. 

Assuming that the damping forces in bearings are 
proportional to the elastic forces [6], i.e. B = K 
(where  is the damping coefficient,  is the frequency 
of oscillation), and that the dynamic loads have a har-
monic character, i.e. 

  i t
ot e F F                 (2) 

And following [6], we express the complex vector of 
dynamic amplitudes Xo through the matrix of natural 
forms V and the frequencies of oscillations s as follows: 
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where Fo is the complex vector of amplitude nodal loads; 
W is the matrix of frequency functions; s is the number 
of natural frequency; i is the imaginary unit. Thus, the 
modal matrix V has the properties of orthogonality [6], 
i.e. 

T unit matrixV V  M E           (4) 

 T
sV V   K diag             (5) 

Solution (3) we derived by expansion of vibration 
forced amplitudes into the series in terms of the eigen-
functions. At that, the amplitude-frequency characteris-
tics represented by formula (3) correspond to the mono-
harmonic vibrodisturbance F(t) by formula (2). In the 
case of polyharmonic vibrodisturbance produced by sev-
eral bearings, we can derive the dynamic load as follows: 

    i t+

1

t
N

k k
k k

p k

e 



  F F          (6) 

where p is the number of bearings in SU; N is the num-
ber of spectral harmonics to be considered; Fk (k) is the 
vector of nodal loads of the k-th harmonic; k and k are 
the frequency and phase of the k-th harmonic. 

The hardware we apply for measurements of spindle 
vibration spectrum gives us an opportunity to make a 
root-mean-square summation for all the amplitude har-
monics, which get into the frequency band r (r = 1, 2, 
3, ..., q) to be checked, where q is the number of fre-
quency bands. The root-mean-square amplitude of vi-
brodisplacements of the vector Xo on the coordinate j in 
the frequency band r (the double of which we term the 
run-out) can be determined as follows: 

   
2

2
A

k r

j r jn n k
p  


    


  W F


  


    (7) 

where Wjn are the elements of the matrix of frequency 
function (3); Fn (k) is the k-th harmonic of the n-th 

component of the vector of vibrodisturbances; 
k r 
  

denotes summation of all the harmonics k, which enter 
into the frequency band r. Formula (7) is used to es-
timate the spindle rotation accuracy in the frequency 
band r to be checked. 
 
2.2. Model of Ball Bearing Disturbances 
 
High-speed ball bearings have several sources of distur-
bances [7], i.e. the disturbing forces, which produce SU 
vibration. These include the following: 

1) Imperfections of macro geometry of the bearing 

races, such as out-of-roundness, waviness, radial and 
axial run-outs, possible dents and scratches, etc;  

2) Imperfections of macro geometry of the balls, 
which are similar to those of the races, plus possible dif-
ference of ball sizes; 

3) Imperfections of micro geometry of the races and 
balls i.e. surface roughness (some of these imperfections 
protrude through the oil film generated between races 
and balls while normal operation and produce collisions); 

4) Variation of bearing stiffness while rotation (the ra-
dial stiffness depends on position of the balls with re-
spect to the radial force vector); 

5) Heterogeneity of elastic properties of the races and 
balls; 

6) Lubricant contamination; 
7) Motion of cage; 
8) Disbalance of spindle and bearing misalignments, 

etc. 
However, when analyzing precision bearings operat-

ing in favourable conditions, we can neglect some of 
these sources and save only the two first ones. Balmont 
and Zverev consider the theory of bearing having these 
inperfections in [2]. Some of the results obtained are 
presented in Table 1, where the spectrum of radial vi-
brodisturbances generated by imperfect ball bearing is 
presented. 

Where, z is the number of balls in bearing,   is the 
contact angle,   is the axial clearance-tightness of 

bearing  m , RK  is the radial stiffness of bearing 
1N m   ; , ,o i b    are the relative rotational 

speeds of a bearing’s cage to outer and inner rings, and 
balls around their own axis  Hz ;   is the number of 

harmonics of Fourier-series expansion of ball radius, 

 is the amplitude of the harmonic   of ball radius; 

, , ,      are the numbers and amplitudes of har-

monics of imperfections of outer and inner races;   is 
the allowance of out of diameter of balls  m ; 0,1,k   

, 2,... m 1, 2,...  are the coefficients. 

Table 1 interrelates two types of the spectra: the spec-
trum of imperfections of ball bearing races and balls (the 
input parameters) represented by amplitudes of these 
imperfections a (), a (), and a (), and the spectrum 
of radial vibrodisturbances (disturbing forces) determined 
by the frequencies and amplitudes of harmonics (the 
output parameters), which are represented in the two 
right columns of Table 1. The spectrum of angular vi-
brodisturbances coincides with the spectrum of the radial 
ones and differs in amplitudes by the multiplier 0.5Dmtg 
(), where Dm is the diameter of the circle, which goes 
through the centres of bearing balls. Spectrum of axial 
vibrodisturbances of ball bearing having imperfections of 
macro geometry is also considered in [2]. 
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Table 1. Spectrum of radial vibrodisturbances of ball bearing. 

Bearing elements Harmonic number Frequency [Hz] Amplitude [N] 

Outer raceway 1m z       o1  
 RK a

 

Inner raceway 1k z     i o   
 RK a

 

Outer and inner raceway 
1

1

m z

m z

     

     
 

o i

o i

o

o

     

     
 

 
R

ctg
K a

4  


 

 
a

 

Balls (out-of-roundness) , , ,      b o   
  R

2
K a

cosz


  
 

Balls (out-of-diameter) 0   o   RK
3 cosz




  
 

Outer race and balls (out-of-diameter) 0; m       o1  
 

 
R

ctg
K a

3 z


  

    

Inner race and balls (out-of-diameter) 0; k     i o   
 

 
R

ctg
K a

3 z


  


    

 
The amplitudes of imperfections a (), a (), and a () 

have a particular physical sense. The subscripts and ar-
guments , , and  notify numbers of harmonics of ex-
pansions of imperfections into Fourier series and attrib-
ute them to outer race (), inner race (), and balls (). 
At that, the two first ones are the combinations of imper-
fections of races measured in three directions: transversal, 
radial, and axial, which can be designated by upper in-
dexes (1), (2), and (3), respectively (Figure 3). 

 

 = 0  = 1  = 2  = 1  = 2

 = 1  = 2  = 3

 

Thus, for example, a ()(1) is the amplitude of the 
harmonic  of bearing outer race cross-section imperfec-
tion; a ()(2) is the amplitude of the harmonic  of bear-
ing outer race radial imperfection; a ()(3) is the ampli-
tude of the harmonic  of bearing outer race axial im-
perfection. These imperfections can be measured using 
the round-meter gauges of the Taylor & Hobson Co. At 
that, the measurements of the axial and radial imperfec-
tion spectra should be made by the Talyrond instrument 
and the measurements of the cross-section imperfections- 
by the Talyserf instrument (both of them should be 
equipped by the Talydate facility for expansion of the 
traces made into Fourier series). Summation of the com-
ponents should be made as follows: 

Figure 3. Macro geometric imperfections of bearing race- 
ways. 
 

 
 

       
λ λ λ

2 31

2
2 2cos 1

cos
tgaa a







  

           

a = 3, and a = 3 to triangularity, etc; a = 1 and a = 1 has no 
meaning; a = 1 corresponds to eccentricity of the inner 
race with respect to rotational axis, i.e. to spindle disbal-
ance (which is an imperfection of the SU accuracy, not 
of the bearing); a = 0 corresponds to averaged difference 
between diameters of balls. 

a    (8) 

 
 

       2 31

2
2cos 1

cos
tgaa a




   


  

           

2
a    (9) 

The principle difficulty when simulating the ball 
bearing vibration spectrum makes inputting of the spec- 
tra of bearing imperfections. It looks to be impossible to 
measure and to input all the harmonics of races and balls 
individually. In order to avoid it, we can use some ex- 
trapolation based on the results of measurements of races 
and balls, and represent the spectra of imperfections by 
the following hyperbolic functions [2]: Representation of imperfections of races and balls by 

Fourier series has a clear mechanical sense: harmonics  
31 2, ,a a a

     

 
 
  

a = 2, a = 2, and a = 2 correspond to ovality of outer race, 
inner race, and balls (when averaged), respectively; a = 3,  

            (10) 
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At that, the coefficients  and  can be determined as 
the regressive factors to be derived by statistical treat-
ment of the results of measurements of real races and 
balls. The results of such measurements and treatment 
for some precision bearings are presented in Table 2. 

The coefficient  depends on the accuracy of bearing 
parts machining, and the coefficient  on the type of 
technology of races and balls machining. The more ac-
curate bearing, the lower . The regressive curves ap-
proximating the spectrums of the bearings presented in 
Table 2 are shown in Figure 4. 

The effect of bearing assembly in the bearing set (mis-
alignments of rings) on the vibration of rotating rotor 
was studied in [8]. 
 
2.3. General Algorithm of Simulation 
 
The program flowchart used for simulation of the SU 
dynamics is presented in Figure 5. 

Using the standard FEM procedure, we calculate in 
block 1 the matrices of stiffness K, mass M, and damp-
ing B of the SU dynamic system. Estimation of eigen-
values, we make applying the Jacobi method in block 2 
and thus determine the natural frequencies and modes of 
SU oscillation. The SU dynamic compliance, we esti-
mate in the form of amplitude-frequency characteristics 
calculating the matrix of frequency functions W in block 
3. The spectra of vibrodisturbances produced by the 
bearings, we simulate in block 4. The problem of SU 
forced oscillation, we solve in block 5. In the result, we 
obtain the spectra of spindle vibration and the radial and 
axial run-outs (which are the doubled root-mean-squares 
of spindle radial and axial vibrodisplacements when ig-
noring the component at the rotational speed caused by 
disbalance and misalignment of bearing rings). The re-
sults of simulation, we record in block 6 and use in fur-
ther analysis. 
 

Table 2. Regressive coefficients   and  . 

Outer race Inner race 
Bearings 

[ m]    [ m]    

Roller bearing 3011  
(FAG) 

0.366 1.02 0.145 0.971

Roller bearing 2-3182111 
(GPZ, Russian) 

2.470 2.25 0.488 2.02 

Ball bearing 2-36106K6 
(GPZ, Russian) 

0.380 1.50 0.350 1.90 

Ball bearing 6-206 
(GPZ, Russian) 

1.223 1.75 0.95 2.06 

Ball bearing 2-206 
(GPZ, Russian) 

1.568 2.46 0.889 2.01 

 
(a) 

 

 
(b) 

Figure 4. Regressive curves approximating the spectrums of 
the bearings (a) bearing’s rings (b) bearing’s rings, rollers, 
balls.  

 
3. Analysis of Spindle Rotation Accuracy 
 
The dynamic model developed, is represented as soft-
ware for analysis of spindle rotation accuracy in design-
ing. In order to make experimental study of spindle rota-
tion accuracy, we used a special test rig (Figure 6(a)). 
The experimental high-speed SU (Figure 6(b)) running 
on precision ball bearings (ABEC 9 class, USA Standard) 
was mounted in an aerostatic bearing to isolate the SU 
from the bed and the drive. 

The spindle vibration was measured by the non-contact 
sensor WSG 69-5 fixed at the SU housing and using the 
amplifier WSM-6983 (Roitlinger Co.). After spindle 
acceleration to the highest rpm, we unswitched the belt 
of the drive, broke the drive motor, and made the meas-
urements. We analyzed the signal from the amplifier by 
using the spectrum analyser model 2031 (B&K Co.). 
Using the special methods for data processing [9,10], we 
increased the accuracy of measurements of the spindle 
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vibrodisplacements up to 0.1 m. The results of the 
measurements had two types of errors: 1) the errors 
caused by the imperfections of shape of spindle mandrel; 
2) the errors caused by the discontinuity of magnetic 
conductivity of mandrel’s material. We corrected these 
errors using the results of the mandrel profiling by the 
Talyrond instrument and the technique presented in [9]. 
The results of the measurements and of simulation of SU 
vibration are presented in Figure 7. We can see three 
resonance frequencies. The first one at n1 = 5200 rpm, 
we attribute to the coincidence of the vibrodisturbance 
harmonic zo (where z is the number of balls in the 
bearing and o is the bearing cage rotational speed) and 
the spindle first natural frequency f1 = 650 Hz. Two other 
resonance frequencies, n2 = 12 000 rpm and n3 = 18 000 
rpm, we attribute to the coincidence of the vibrodistur-
bance harmonics caused by the outer ring triangularity 
(3rd harmonic of the outer ring’s race imperfection) and 
by the outer ring ovality (2nd harmonic of the outer 
ring’s race imperfection) and the spindle first natural 
frequency. 
 

 

Figure 5. Program flowchart of the dynamic problem solu-
tion. 

 
(a) 

 

 
(b) 

Figure 6. Layout of the rig (a) and spindle unit with vari-
able bearing preload (b). 
 

 

Figure 7. Run-out of spindle related to rotational speed. 
 

The spindle run-out at low rotation speed (n < 2000 
rpm) is about 0.1-0.2 m, which is practically equal to 
the run-out of the precision bearings. However, at the 
resonance rpm, the spindle run-out increases up to 
1.0-1.8 m. At that, when comparing the results of com-
puter simulation with that obtained experimentally, we 
notice that the computer error of the resonance rpm does 
not exceed 10-12%. The error of estimation of the 
run-outs does not exceed 15-20% at the non-resonant 
mode and 20-30% at the resonant mode that we explain 
by real damping in the spindle bearings.  
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In order to examine the influence of bearing preload 
on the spindle rotation accuracy, we made the computer 
and experimental studies of the SU having a variable 
preload of the ball bearings (Figure 6(b)). The depend-
ence of the spindle radial accumulated run-out in the 
frequency band of 24 000 rpm (as the doubled root- 
mean-square amplitude of vibrodiplacements, which get 
into the frequency band of 24 000 rpm) on the bearing 
preload is presented in Figure 8. 

We can see that an increase in preload from a light one 
of 120 N up to a heavy one of 330 N results in a decrease 
of the run-out by 26%, however there is an increase of 
the excessive temperature of the front bearing outer ring 
by 32% at the same time (Figure 9). 
 

 

Figure 8. Accumulated run-out related to bearing preload. 
 

 

Figure 9. Temperature of the front bearing related to bear-
ing preload. 

Under very low preload (lower than 60 N), the simula-
tion shows a radical growth in the accumulated run-out, 
but in practice, it keeps steady; thus, it follows that under 
very low preloads of bearings, the theory we use does not 
work perfectly well. However, under medium (working) 
bearing preloads of 180-220 N, the spindle run-out in-
crease (at the resonant mode) does not exceed 15% and 
this agrees with the theory well enough. The positions of 
the resonance peaks at the spectrum of spindle vibration 
remain practically constant and independent from spindle 
rotation speed, since the SU first natural frequency 
changes within 5-6% only, when the bearing preloads 
change within their medium range. In the non-resonant 
mode, an increase in the bearing preload from the light to 
the heavy brings the change of the run-out within 8-10% 
only. 
 
4. Conclusions 
 
The results obtained are summarized as follows: 

1) Having purpose to improve quality of designing of 
high-speed SUs on ball bearings and, finally, to reduce 
the spindle run-out, we have developed the SU dynamic 
model, which is one of the elements of the SU complex 
model incorporating the elastic-deformation, heat models, 
and the model of bearing lifetime. The dynamic model 
incorporates the model of SU stiffness in dynamics, and 
the model of spindle rotation accuracy estimated by the 
amplitude-frequency spectrum of vibration and the spin-
dle run-out. The dynamic model is based on application 
of beam type finite element analytical models of SUs. 
The usage of the beam type models allows us to apply 
the universal SU analytical models for solution of the 
statics, dynamics, and heat transfer problems, which is of 
a great importance for practical realization of our com-
plex approach to simulation of SUs while designing. The 
theoretical and experimental studies made prove that the 
theory is close to reality, and the models and software 
developed can be applied for SU designing and devel-
opment. 

2) When studying the particular SU by means of 
simulation and experimental measurements, we have 
found that the spindle rotation accuracy can vary drasti-
cally with variation of rpm. We determined the spindle 
run-out increase from 0.1-0.2 m at low rpm to 1.0-1.8 
m at high rpm and resonant modes of operation. The 
influence of rotation speed and of bearing accuracy pa-
rameters on the spindle rotation accuracy has the greatest 
importance. 
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