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Abstract 
The gauged river data play an important role in modeling, planning and management of the river 
basins. Among the hydrological data, the daily discharge data seem to be more significant for de-
termining the amount of energy production and the control the risks of floods and drought. Hence, 
the data need correct measurement, analysis, and reliable estimates. The purpose of the paper is 
to investigate the question whether all the stations in a river basin exhibit chaotic behavior. For 
this purpose, the daily discharge data of four gauge stations are examined by using three nonlin-
ear data analysis methods: 1) phase space reconstruction; 2) correlation dimension; and 3) local 
approximation where all those methods provide identification of chaotic behaviors. The results 
show that all stations exhibit chaotic character. Taking into account the proven chaotic character-
istic of the stations, local approximation method is applied to observe the prediction accuracy. 
Considering the fact that global warming is a serious threat on natural resources, the prediction 
accuracy is becoming a key factor to ensure sustainability. Hence, this study is a good example on 
the implementation of chaotic analysis by means of the obtained results from the methods. 
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1. Introduction 
Changing patterns of river flow have potentially significant impacts on water quality, water abstraction, flooding 
and habitat availability for a range of aquatic and riparian species. It is suggested that water resource planning 
may need to account for these changes before many of them become statistically significant [1]. For a good un-
derstanding on the basins characteristics, the gauged data must have a good analysis. During the past few dec-
ades, hydrologists are in a comprehensive query for an appropriate type of analysis for hydrological data. Influ-

http://www.scirp.org/journal/epe
http://dx.doi.org/10.4236/epe.2015.73008
http://dx.doi.org/10.4236/epe.2015.73008
http://www.scirp.org
mailto:aalbostan@gmail.com
mailto:onoz@itu.edu.tr
http://creativecommons.org/licenses/by/4.0/


A. Albostan, B. Önöz 
 

 
82 

enced by the fast-advancing researches on chaotic analysis in the physics, many researchers have been inspired 
by the new developments in chaos theory. The theory of chaos showed its applicability in solving a wide class of 
problems in many areas of natural sciences. A chaotic system is defined as a deterministic system, in which 
small changes in the initial conditions may lead to completely different behavior in the future [2]. Despite being 
driven by deterministic dynamics, signal from the chaotic system is often indistinguishable from a random 
process. The discovery of the reality that very simple deterministic systems can produce irregular time series, 
have dragged researchers into the era of chaos theory. However, chaotic signal analysis is still a novel approach 
in many areas related to civil engineering [3]. Although the literature of chaotic analysis in hydrology is still 
limited and can be considered as infancy, there are some good and efficient studies which can prove the evi-
dence of chaotic behavior in daily discharge data e.g. [4]-[13]. Even the primary objective of those studies were 
on investigating the existence of chaos in hydrological processes, other aspects such as prediction e.g. [6] [8] [9] 
[14] [15], noise level determination and noise reduction e.g. [8] [16] were also given due consideration. Differ-
ing views have also been reported on the applicability of chaos theory and related methods to hydrological 
problems. As a brief review of different approaches; the view expressed by Pasternack [17] is based on ques-
tioning whether hydrological systems are deterministic or stochastic. His research was focused on using the cor-
relation dimension method (CDM) and comparing it with the performance of stochastic surrogates such as an 
autoregressive moving average (ARMA) model. His contention was that the CDM had significant problems in 
its application. However, Liaw et al. [18] commented that the embedding parameters, mainly the delay time, for 
phase-space reconstruction had not been properly selected. In view of this, they further argued that the attractor 
reconstructed via the correlation integral analysis as well as surrogate data analysis could not actually represent 
the dynamic behavior of the underlying system dynamics. Another view by Koutsoyiannis [19] was based on 
shedding light from a theoretical ground for the application of low dimensional chaos theory to hydrological 
time series and uses both synthetic and typical gauged data to support his views. Islam & Sivakumar [20], Lisi & 
Villi [21], Liu et al. [9], Ghorbani et al. [22], suggested the possibility of accurate stream flow predictions using 
nonlinear deterministic approaches. Elshorbagy et al. [23] performed noise reduction and missing data estima-
tion, Qingfang and Yuhua [24] developed a new local linear prediction model for chaotic stream flow series. 
Moreover, there are also debates between these views and the published literature on the hydrological applica-
tions as reported above [16].  

This paper consists of implementation of three nonlinear dynamic methods on daily river discharge data. The 
first one is the phase space analysis, which describes the evolution of the behavior of a nonlinear system and re-
construction using the delay-time method of embedding theorem that was suggested by Takens [25]. The delay 
time for the reconstruction was chosen after examining the first minimum of the output of average mutual in-
formation (AMI) method. Embedding dimension of the phase space was estimated using the false nearest 
neighbor algorithm (FNN). In terms of the dimensionality analysis, the correlation dimension method (CDM) 
was applied where the method provides identification of chaotic behavior in terms of dimensionality. Time Se-
ries Analysis package program (TISEAN version 3.0.1) [26] was used to calculate the CDM. In the last part of 
the case study, the local prediction model (LPM) was applied to predict daily discharge time series. The results 
of study are quite satisfactory to identify Yesil Irmak River as exhibiting chaotic characteristics.  

2. Methodology 
2.1. Phase Space Reconstruction 
The nature of dynamics of a real-world system may be stochastic, deterministic or in between. The character of 
a system can be identified, at least as a preliminary indicator, by using the phase space concept. A popular 
method for identification of phase space of a time series was presented by Takens [25]. The theory of determi-
nistic chaos enabled the development of new methods for analyzing the observed time series. In a new approach, 
time series is assumed to be generated by a nonlinear dynamic system with d degrees of freedom. Therefore to 
have a better view, it is necessary to construct an appropriate series of state vectors ( )dX t  with delay coordi-
nates in the d-dimensional phase space as Equation (1): 

( ) ( ) ( ) ( )( ), , , 1dX t X t X t T X t d T = + + −                          (1) 

where, T is the delay time and, d is the term referring to the embedding dimension. The driven systems whose 
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dynamics can be reduced to a set of inherently deterministic behaviors, their trajectories converge towards the 
subset of the phase space, called the attractor. 

2.1.1. Average Mutual Information  
The time delay ( )T  can be defined by means of average mutual information (AMI) method [27]. AMI defines 
how the measurements ( )X t  at time t, is connected in an information theoretic fashion to measurements 

( )X t T+  at time t T+  [28]. The average mutual information is defined in Equation (2): 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )( ) ( ) 2,

,
, logX i X i T

P X i X i T
I T P X i X i T

P X i P X i T+

 +
= +  

+  
∑                 (2) 

where, i is total number of samples. ( )( )P X i  and ( )( )P X i T+  are individual probabilities for the meas-
urements of ( )X i  and ( )X i T+ . ( ) ( )( ),P X i X i T+  are the joint probability density for measurements 

( )( )P X i  and ( )( )P X i T+ . The appropriate time delay ( ) is defined as the first minimum of the average 
mutual information ( )I T , where the values of ( )X i  and ( )X i T+  are enough independent of each other to 
be useful as coordinates in a time delay vector. But they are not completely independent as to have no connec-
tion with each other at all [28].  

2.1.2. False Nearest Neighbor Algorithm  
The false nearest neighbor (FNN) algorithm [29] provides information on the optimal embedding dimension of 
the phase space (in other words, number of dominant variables) for representing the system dynamics. It exam-
ines, in dimension m, the nearest neighbor NN

jY  of every vector Yj, as it behaves in dimension 1m + . If the 
vector NN

jY  is a true neighbor of Yj, it comes to the neighborhood of Yj through dynamical origins. On the other 
hand, if the vector NN

jY  moves far away from vector Yj by increasing the dimension, m, it is declared as a false 
nearest neigh boras it arrives in the neighborhood of Yj of the dimension m by projection from a distant part of 
the attractor. When the percentage of these false nearest neighbors drops to zero, the geometric structure of the 
attractor has been unfolded and the orbits of the system are now distinct and do not cross (or overlap). A key 
step in the false nearest neighbor algorithm is to determine how to decide upon increasing the embedding di-
mension that a nearest neighbor is false. Two criteria are generally used (Sangoyomi et al., 1996). These are: 

1) If ( )1 2mR j RA+ > , the jth vector has a FNN (where ( )1mR j+  is the distance to the nearest neighbor of the 
jth vector (i.e., NN

jY ) in an embedding of dimension ( )1m + , and RA is the standard deviation of the time series 
Xt, 1, 2, ,i N=  ). 

2) If ( ) ( ) ( )1m m mR j R j R jε+ − >   , the jth vector has a FNN (where ε  is a threshold factor (generally be-
tween 10 and 50), and the distance ( )1mR j+  is computed to the same neighbor that was identified with embed-
ding m, but with the ( )th1m +  coordinate (i.e., _j mTX ) appended to the jth vector and to its nearest neighbor 
with embedding [15]. In this study, the false nearest neighbor method was implemented using the TISEAN 
package [26] and uses the second method above. 

2.2. System Dimensionality 
The estimate of the dimension of the system exhibits the presence of chaos through the structure of the dimen-
sion. In this study, the Correlation Dimension Method (CDM) was examined, where the correlation dimension 
of the system provides signification either the chaotic behavior by the dimension or the embedding dimension. If 
the system has a fractal dimension, the character of the system is assumed to be chaotic. 

2.3. Correlation Dimension Method  
CDM is one of the most efficient methods to determine the presence of chaos. The method uses a fractal dimen-
sion, which is non-integer for chaotic systems. For an m-dimensional phase space the correlation function ( )C r  
is given by Theiler [30] as in Equation (3): 

( ) ( ) ( ), 1

2lim
1

N
i ji jN

C r H r Y Y
N N =→∞

= − −
− ∑                          (3) 

where H is the Heaviside step function by the Equations (4)-(6): 
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( ) 1 for 0H u u= ≥                                   (4) 

( ) 0 for 0H u u= <                                   (5) 

and 

( )i ju r Y Y= − −                                    (6) 

N is the number of points on the reconstructed attractor, r is the radius of the sphere centered on Yi or Yj. If the 
time series is characterized by an attractor, then for positive values of r the correlation function ( )C r  is related 
to the radius r by the following relation, Equation (7): 

( ) 2DC ε ε= ∝                                      (7) 

where a is a constant; and D2 is the correlation exponent or the slope of the ( )( )ln C r  versus ( )ln r  plot given 
by Equation (8):  

( )
0

ln
lim

lnr
C r

D
r→=                                   (8) 

For a finite dataset, there is a radius r below which there are no pairs of points, when the radius approaches 
the diameter of the cloud of points, the number of pairs will increase no further as the radius increases (satura-
tion). The scaling region would be found somewhere between depopulation and saturation. When ( )( )ln C r  
versus ( )ln r  is plotted for a given embedding dimensions m, the range of ( )ln r  where the slope of the curve 
is approximately constant is called the scaling region. In the scaling region, fractal geometry is indicated. In this 
region ( )C r  increase as a power of r with the scaling exponent, which indicates the correlation dimension D. 
If the scaling region vanishes as m increases, then finite value of correlation dimension cannot be obtained, and 
the system under investigation is considered as stochastic. Local slopes of ( )lnC r  versus ( )ln r  plot can 
show scaling region clearly when it exists. Because the local slopes of ( )lnC r  versus ( )ln r  plot often fluc-
tuate dramatically, to identify the scaling region more clearly, we can use Takens-Theiler estimator or smooth 
Gaussian kernel estimator to estimate correlation dimension [26]. For stochastic process, D2 varies linearly with 
increasing m, without reaching a saturation value, whereas for deterministic process the value of D2 saturates af-
ter a certain m. 

2.4. Prediction 
Local Prediction Method 
A correct phase-space reconstruction in a dimension m facilities an interpretation of the underlying dynamics in 
the form of a m-dimensional map fT. According to Equation (9): 

( )j T T jY f Y+ =                                      (9) 

where Yj and j TY +  are vectors of dimension m, describing the state of the system at times j and j T+  where 
they are current and future state respectively. Local approximation entails the subdivision of the fT. domain into 
many subsets (neighborhoods), in order to determine a proper value for fT. In other words, the dynamics of the 
system is described step by step locally in the phase space. Before applying reconstruction procedure it is nec-
essary to have some information such as, embedding dimension and delay time. One of the independent coordi-
nates mentioned above is taken as the time series itself. The remaining coordinates are formed by its ( )1m +  
lagged time series shifted by ( )1m +  multiples of the correlation time T, at which correlation between coordi-
nates become zero. It is assumed that the time series data are generated from a chaotic dynamical system in the 
ν -dimensional space (ν  is the dimension of attractor). In this m-dimensional space, estimating the change of Xi 
with time performs prediction. Considering the relation between the points Xt and t TX +  at time T later on the 
attractor is approximated by function F as in Equation (10); 

( )t T tX F X+ ≅                                     (10) 

In this prediction method, the change of Xt with time on the attractor is assumed to be the same as those of 
nearby points, ( ), :1, 2, ,TX h n . Herein, t TX +  is determined by the dth order polynomial ( )tF X  in Equa-
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tions (11)-(16): 

1 1 1 2 1 2 1 2 12 1 1

2 1
01

1 1 1
0 1 20 T d T di d d

k k
k

m m m
t p k t k T k k t k t k dk k k t k t k Tk k k k kX f f X f X X f X Xτ −

=
=

− − −
+ − − − − −= = =
≅ + + +∑ ∑ ∑





        (11) 

x Af≅                                         (12) 

where: 

( )1 2
,,,

T T n Tt t tx x x x
+ + +

=                                   (13) 

( ) ( )( ) ( )( )0 10 11 2001 1 10 1 1 1, , , , ,, , , ,m d m m mf f f f f f f− − −=


                       (14) 

and 

( )! ! !A n m d m d= × +                                  (15) 

( )

( )

( )

1 1 1 1 1

2 2 2 2 2

1

2
1 1

2
2 1

2
1 1m m m

d
T T T T T m T

d
T T T T T m T

d
T T Tm T T m T

X X X X X X

X X X X X X
A

X X X X X X

− −

− −

− −

 
 
 

=  
 
 
 

   

   



   

                        (16) 

In order to obtain a stable solution, the number of rows in the Jacobian matrix A must satisfy the relation in 
Equation (17): 

( )!
! !

m d
n

m d
+

≥                                     (17) 

As stated by Porporato and Ridolfi [8], even though in the case F are first degree polynomials, the prediction 
is nonlinear, because during the prediction procedure every point ( )X t  belongs to a different neighborhood 
and is therefore defined by different expressions for f [1]. 

2.5. Evaluation Criteria 
2.5.1. Root Mean Square Error 
The Root Mean Square Error (RMSE) is a frequently used measure of the difference between values predicted 
by a model and the values actually observed from the environment that is being modeled. These individual dif-
ferences are also called residuals, and the RMSE serves to aggregate them into a single measure of predictive 
power. The RMSE of a model prediction with respect to the estimated variable Xmodel is defined as the square 
root of the mean squared error. 

( )2
obs, model,1RMSE

N
i ii X X
n

=
−

= ∑                             (18) 

As shown in Equation (18), Xobs is observed values and Xmodel is modelled values at time/place i. The root- 
mean-square error (RMSE) statistics calculate the variance of the residual. The RMSE is always positive; the 
best value is zero; the higher the value, the poor the model performance. 

1) Normalized Root Mean Square Error  
Non-dimensional forms of the RMSE are useful because often one wants to compare RMSE with different 

units. Normalize the RMSE to the range of the observed data Equation (19): 

obs,max obs,min

RMSENRMSE
X X

=
−

                              (19) 

2.5.2. Correlation Coefficient  
The quantity ( )2R , called the linear correlation coefficient, measures the strength and the direction of a linear 
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relationship between two variables (Equation (20)). The value of R2 takes the value between the 21 1R− < < +  
and correlation greater than 0.8 is generally described as strong, whereas a correlation less than 0.5 is generally 
described as weak. 

( )( )
( ) ( )

obs model obs model2 1
2 2

obs model obs model1

ˆ ˆ

ˆ ˆ

n
t
n
t

x x x x
R

x x x y
=

=

− −
=

− −

∑
∑

                         (20) 

3. Study Area and Data 
The daily discharge data of 4 gauge stations of Turkish General Directorate of State Hydraulic Works (DSİ), on 
Yesil Irmak River basins were examined. The data contains daily period without any missing data in the dataset. 
The squared stations on Figure 1 are located in different parts of the basins. Yesil Irmak River is one of the sig-
nificant water resources of Turkey, especially in terms of hydropower potential daily discharge data over a pe-
riod of 26 years were used. The data length and the statistical information of each station can be seen in Table 1. 

4. Analysis and Results 
The entire of the dataset is divided into two parts: the first 25 years (1977-2001) of the data are used in the 
phase-space reconstruction and identification of system behavior and the subsequent 1 year dataset (2001-2002) 
is used for prediction. 

4.1. Phase Space Reconstruction 
The first step to reconstruct the original phase space is estimating the phase parameters which are; the delay time 
and embedding dimension. The method of average mutual information (AMI) (Equation (2)) was used to quan-
tify the delay time. TISEAN version 3.0.1 package program [28] [31] was used to calculate the FNN to quantify 
the embedding dimension. The results for each station are summarized in Table 2. A simple visual reconstruc-
tion of phase space is possible by plotting Xt versus ( )1t m TX − −  as the first step towards showing the presence of 
an attractor for deterministic chaos in a given time series. The three dimensional graph (for tX , t TX − , 2t TX − ) 
of the attractors for a sampled station on the basins can be seen in Figure 2. 
 

 
Figure 1. Turkey’s basins of Turkish general directorate of 
state hydraulic works, the Yesil Irmak river basin. 

 
Table 1. Statistical values of gauge stations. 

Gauge station Observation 
years 

Data length 
(Day) 

Mean flowrate 
(m3/s) 

Maximum  
flowrate (m3/s) 

Minimum 
flowrate (m3/s) 

Standart 
deviation (σ) 

1401 1976-2002 9500 69.95 981 2.89 78.94 

1412 1976-2002 9500 6.98 125 0.77 9.181 

1414 1976-2002 9500 4.30 75 0.81 5.90 

1418 1976-2002 9500 18.70 140 1.02 23.60 
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4.2. Phase Space Reconstruction Parameters 
The CDM is used to calculate the embedding dimension for the dataset, using the delay times in Table 2. Dif-
ferent m values from 1 to 15 are tested to obtain the proper embedding dimension. In Figure 3, it can be seen 
that the correlation value increases with the embedding dimension up to a certain value and then saturates be-
yond that value. The saturation of the correlation exponent beyond a certain embedding dimension value is an  
 

 
Figure 2. Reconstructed phase space plot by obtained time lag from AMI. 

 

 
Figure 3. Relation between correlation dimension and embedding dimension. 

 
Table 2. Phase space reconstruction parameters. 

Gauge station Delay time Embedding dimension 

1401 59 days 12 

1412 95 days 12 

1414 74 days 15 

1418 75 days 15 
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indication of the existence of deterministic dynamics. The saturated correlation dimensions are shown in Table 
3 for each station. Both the finite value of correlation dimension curve and the fractal dimension of the recon-
structed trajectory, suggest the possible presence of chaotic behavior in the daily discharge time series. 

4.3. Dimension Estimate  
The CDM is used to calculate the embedding dimension for the dataset, using the delay times in Table 2. Dif-
ferent m values from 1 to 15 are tested to obtain the proper embedding dimension. In Figure 3, it can be seen 
that the correlation value increases with the embedding dimension up to a certain value and then saturates be-
yond that value. The saturation of the correlation exponent beyond a certain embedding dimension value is an 
indication of the existence of deterministic dynamics. The saturated correlation dimensions are shown in Table 
3 for each station. Both the finite value of correlation dimension curve and the fractal dimension of the recon-
structed trajectory, suggest the possible presence of chaotic behavior in the daily discharge time series. 

4.4. Prediction 
Local Prediction 
The entire dataset of 26 years was divided into two parts; the first 25 years of data were used in the phase space 
reconstruction and predictions are made for the subsequent 1 year (2001-2002) of data. Table 4 shows values 
NRMSE for different embedding dimensions in prediction. The selected evaluation criteria (correlation coeffi-
cient (R2) reveal that the best prediction achievement when the optimum embedding dimension (mopt) for the 
lowest NRMSE is selected. The bold values in Table 4 are the mopt for each station. Figure 4 presents a com-
parison of the actual daily discharge values and the predicted ones due to the chosen optimum-embedding di-
mension. The scatter plots of observed and predicted values for each station were used to calculate the selected 
evaluation criteria R2 to determine the prediction achievement. Such results certainly indicate the appropriate-
ness of the phase-space-based nonlinear prediction technique, employed herein on daily discharge data of the 
gauge stations of Yesil Irmak River Basin. The selected evaluation criteria (correlation coefficient (R2)) reveal  
 

Table 3. Correlation dimension of the attractors. 

Gauge station Correlation dimension (D2) 

1401 3.78 

1412 3.12 

1414 3.88 

1418 3.81 

 
Table 4. NRMSE for each gauge stations. 

Embedding 
dimension 

NRMSE 
1401 

NRMSE 
1412 

NRMSE 
1414 

NRMSE 
1418 

2 0.014 0.057 0.013 0.034 

3 0.010 0.059 0.014 0.038 

4 0.011 0.069 0.012 0.032 

5 0.011 0.054 0.013 0.036 

6 0.011 0.060 0.014 0.040 

7 0.012 0.060 0.014 0.041 

8 0.012 0.061 0.014 0.040 

9 0.013 0.060 0.015 0.045 

10 0.012 0.061 0.015 0.050 
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Figure 4. Prediction performance (R2) of the gauge stations. 

 
that the best prediction achievement when the optimum embedding dimension (mopt) for the lowest NRMSE is 
selected. The bold values in Table 4 show the mopt for each station. Figure 4 presents a comparison of the actual 
daily discharge values and the predicted onesdue to the chosen optimum embedding dimension. Figure 4 shows 
the scatter plots of observed and predicted values for each station. Such results certainly indicate the appropri-
ateness of the phase-space-based nonlinear prediction technique, employed herein on daily discharge data of the 
gauge stations of Yesil Irmak River Basin. 

5. Discussion 
This paper investigates possible chaotic behaviors in the daily discharge data from the gauge stations on Yesil 
Irmak Basin, Turkey. The analysis was performed on 4-gauged stations with a record interval of 26 years (1976- 
2002). The focus of the paper was on identifying chaotic behavior in time series with an immediate concern that 
if there were chaotic dynamics in the series, how they would be carried in practical implementations.  

The results in this paper can be summarized as follows: 
1) Phase space of the data series was reconstructed. For this purpose, two components (time lag, embedding 

dimension) were determined. In the case of determining time lag, both average mutual information (AMI) and 
autocorrelation function are used in literature. Considering the fact that, AMI is the nonlinear form of autocorre-
lation function, AMI method was used to determine nonlinear correlation time series to determine the time lag 
for the phase space reconstruction.  

2) In phase of determining the embedding dimension, which also determines the degrees of freedom, false 
nearest neighbors (FNN) [29] was used. The outcome of FNN depends on the delay, the metric and the threshold 
for determining a neighbor is false or true. The FNN method is the most common method used to determine the 
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embedding dimension; FNN was used to obtain the embedding dimension. Nevertheless, the point of FNN algo-
rithm is very sensitive algorithm to noise [30] [32] should be taken into account. 

3) The local prediction model was also applied to evaluate its predictability performance. In this prediction 
model, the dynamics of the system are described step by step locally in the phase space. The predicted values are 
in good agreement with the observations by having high values of correlation coefficient.  

6. Conclusions 
Studies reporting the possible presence of nonlinear determinism in river flow and other hydrologic series have 
often been criticized, essentially due to the implementation of chaotic analysis method as a nonlinear determin-
ism identification tool. Hence the literature of implementation of nonlinear methods in hydrological processes is 
still being considered as infancy. An important attempt was made in this study, which addressed this issue by 
identifying the nonlinear deterministic nature of river flows. Understanding how land and water management 
practices singly and in combination change stream and river flows is a key to maintaining and restoring natural 
flow regimes [33]. Overall, this special issue exemplifies the need for multidisciplinary approaches, which are 
essential for producing reliable assessments, and predictions on the relevance of global change on water re-
sources and quality, which can later be translated into policy issues and implemented by water resource manag-
ers at basin scale [34].  

In view of the question of whether a given river flow (or any other hydrologic and geomorphic) series can be 
modeled better by stochastic methods or by nonlinear deterministic methods has come under increasing scrutiny 
in recent times [3]. The past two decades of chaos theory in geophysics and hydrology have brought us to a 
situation that is not only crucial but also critical, and even unique. On one hand, the achievements of the past 
studies, in particular the promising predictions push us forward to continue research on the application of ideas 
of chaos theory to hydrological data in our efforts towards improving our understanding and pointing out the is-
sues of the methods as discussed in Section 5. The results obtained by the methods, daily discharge data seems 
to exhibit nonlinear determinism. Accurate predictions on their evolutions have been achieved using nonlinear 
deterministic methods. The results either in this study or past researches, present only further indication of the 
usefulness and appropriateness of the nonlinear deterministic and chaotic concepts in hydrology. Whether such 
concepts and methods could indeed provide accurate representation of the nonlinear interactions and relation-
ships between the components of a river system indeed remains to be seen [35]. 

For this purpose, we strongly believe that it is time for researchers to evaluate the whole basin data (where 
data are available), to understand the river basin system behavior for an accurate management and control. 
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