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Abstract 
The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Vol-
tage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is 
surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess 
the controllability of the poorly damped electromechanical modes by VSC-HVDC different control 
channels. The problem of supplementary damping controller based VSC-HVDC system is formu-
lated as an optimization problem according to the time domain-based objective function which is 
solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the 
HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers 
on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time 
simulation under various disturbance conditions over a wide range of loading. 
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1. Introduction 
Large interconnected AC systems have many well-known advantages. However, larger interconnected AC sys-
tems also increase the system complexity from the operation point of view, and might adversely decrease the 
system reliability [1]-[3]. Steady state stability, lack of reactive power supply, voltage stability, electromechani-
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cal oscillations and transient stability are common problems that can happen in expanded power systems and 
transmit a large amount of power over long distance transmission lines [3] [4]. Increasing power system com-
plexity gives rise to low frequency oscillations in the range of 0.2 - 3.0 Hz. If not well damped, these oscillations 
may keep growing in magnitude until loss of synchronism results [5]. In order to damp these power system os-
cillations and increase system oscillations stability, the installation of power system stabilizer (PSS) is both 
economical and effective [5] [6]. However, PSSs may adversely affect voltage profile, result in leading power 
factor, and may not be able to suppress oscillations resulting from severe disturbances, especially those 
three-phase faults which may occur at the generator terminals [6]. Flexible AC transmission systems devices, 
such as Static VAR Compensators (SVC), Thyristor Control Series Compensators (TCSC), Static Synchronous 
Compensators (ST-ATCOM), and Unified Power Flow Controller (UPFC), are one of the recent propositions to 
alleviate such situations by controlling the power flow along the transmission lines and improving power oscil-
lations damping [6] [7]. Recently High Voltage Direct Current (HVDC) systems have greatly increased. They 
interconnect large power systems offering numerous technical and economic advantages. This interest results 
from practical characteristics and performance that include for example, nonsynchronous interconnection, con-
trol of power flow and modulation to increase stability limits [8]. It is well known that HVDC may improve the 
transient and dynamic performance of the interconnected AC/DC system due to its fast electronic control of 
power flow also transient stability of the AC systems in a composite AC-DC system can be improved by taking 
advantage of the fast controllability of HVDC converters [6]-[10]. The conventional HVDC has several limita-
tions and undesirable characteristics including being physically large and requiring the AC network with suffi-
cient short-circuit ratio [11]-[13]. The Voltage Source Converter based on HVDC (VSC HVDC), which uses 
modern semiconductors with self-commuted ability, overcomes the disadvantages of conventional HVDC and is 
therefore more suitable for a weak AC network or a passive network without any power sources [13]. The con-
trol of the voltage magnitude and the phase angle of the VSCs make the use of separate control for active and 
reactive power possible. The active power loop can be set to control either the active power or the dc-side vol-
tage [14] [15]. A traditional lead-lag damping controller structure is preferred by the power system utilities be-
cause of the ease of on-line tuning and also lack of assurance of the stability by some adaptive or variable struc-
ture methods [7] [16] [17]. Having several local optimum parameters for a lead-lag controller, using of tradi-
tional optimization approach is not suitable for such a problem. Thus, the heuristic methods as solution for find-
ing global optimization are developed [18]-[20]. Particle swarm optimization (PSO) is a novel population based 
on metaheuristic, which utilizes the swarm intelligence generated by the cooperation and competition between 
the particle in a swarm and has emerged as a useful tool for engineering optimization [21]. This new approach 
features many advantages; it is simple, flexible, and fast and can be coded in few lines. Also, its storage re-
quirement is minimal. However, the main disadvantage is that the PSO algorithm is not guaranteed to be glo-
bally convergent. In order to overcome this drawback and improve optimization synthesis, in this paper, a quan-
tum-behaved PSO technique is proposed for optimal tuning of HVDC based damping controller for enhancing 
of power systems low frequency oscillations damping. In this paper a novel approach is presented to model pa-
rallel AC/DC power system namely Phillips-Heffron model based d-q algorithm in order to study dynamical 
stability of system. In addition, a block diagram representation is formed to analyze the system stability charac-
teristics. Also, singular value decomposition (SVD) is used to choose damping control signal which has most 
effect on damping the electromechanical (EM) mode oscillations. A very powerful tool commonly used for this 
purpose is Popov-Belevitch-Hautus (PBH), which can be used to evaluate the EM mode controllability of the 
PSS and the different VSC HVDC controllers. A single machine infinite bus (SMIB) system equipped with a 
PSS and a VSC HVDC controller is used in this study. The problem of damping controllers design is formulated 
as an optimization problem to be solved using QPSO. The aim of the optimization is to search for the optimum 
controller parameter settings that maximize the minimum damping ratio of the system. 

2. Problem Statement 
Figure 1 shows a SMIB system equipped with a VSC HVDC. As it can be seen the infinite bus is supplied by 
HVAC parallel connected with a VSC HVDC power transmission system. The VSC HVDC consists of two 
coupling transformer, two three-phase IGBT based voltage source converters (VSCs). These two converters are 
connected either back-to-back or joined by a DC cable, depending on the application. 

The AC side of each converter is connected to the line through a coupling transformer. The first voltage  
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Figure 1. A SMIB system Equationuipped with a VSC HVDC. 

 
source converter behaves as a rectifier. It regulates the DC link voltage and maintains the magnitude of the vol-
tage at the connected terminal. The second voltage source converter acts as a controlled voltage source, which 
controls power flow in VSC HVDC feeder. The four input control signals to the VSC HVDC are , , ,r r iM PH M  

iPH  where ,r iM M  are the amplitude modulation ratio and ,r iPH PH  are phase angle of the control signals 
of each VSC respectively. 

2.1. Power System Nonlinear Model 
By applying Park’s transformation and neglecting the resistance and transients of the coupling transformers, the 
VSC HVDC can be modeled: 
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where , ,l b rV V I  and iI  are the middle bus voltage, infinite bus voltage, flowed current to rectifier and inverter 
respectively. C  And dcV  are the DC link capacitance and voltage, respectively. , ,r i dcrC C V  and dciV  are the 
DC capacitances and voltages of rectifier and inverter respectively. 

The non-linear model of the SMIB system of Figure 1 is: 
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( )( )A ref t PSS fd
fd

A

K V V u E
E

T

− + −
=                                (9) 

where: e td td tq tqP V I V I= + , 2 2
t td tqV V V= + , td q tqV x I= , tq q d tdV E x I′ ′= − , td ld rdI I I= − , tq lq rqI I I= −  where 

mP  and eP  are the input and output power , respectively; M  and D  the inertia constant and damping 
coefficient , respectively; bω  the synchronous speed; δ  and ω  the rotor angle and speed, respectively; 

,q fdE E′  and tV  the generator internal, field and terminal voltages, respectively; doT ′  the open circuit field 
time constant; ,d dx x′  and qx  the d-axis, d-axis transient reactance, and q-axis reactance, respectively; AK  
and AT  the exciter gain and time constant, respectively; refV  the reference voltage. 

Also, from Figure 1 we have: 
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t t t l l bV jx I jx I V= + +                                   (11) 
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where tI , rV , lI  and bV  are the armature current, rectifier voltage, infinite bus current and voltage respec-
tively. From Equations (10)-(12) we can have: 
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And for inverter side: 
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2.2. Power System Linearized Model 
By linearizing Equations (1)-(7) (13)-(16): 
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where: 
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5 6 rt q vdcr dcr vM r v r rV K K E K V K M K φδ ϕ′∆ = ∆ + ∆ + ∆ + ∆ + ∆                   (21) 

1 2e q pdcr dc pMr r p r rP K K E K V K M K ϕδ ϕ′∆ = ∆ + ∆ + ∆ + ∆ + ∆                   (22) 

3 4q q q r r qMr r qdcr dcrE K E K K K M K Vϕδ ϕ′∆ = ∆ + ∆ + ∆ + ∆ + ∆                  (23) 
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1
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δ ϕ′∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆              (24) 

Substitute Equations (21)-(23) in (17)-(20) we can obtain the state variable of the power system installed with 
the VSC HVDC to be (state space model): 

X AX BU= +  
and 

1 2, , , , , , , ,
T

q fd dcr I dc dciX E E V V I Vδ ω ′ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆                       (25) 

[ ]T, , , ,r r i i PSSU M M uϕ ϕ= ∆ ∆ ∆ ∆  

where , , ,i r i rM M ϕ ϕ∆ ∆ ∆ ∆  and PSSu  are the linearization of the input control signals of the VSC HVDC and 
PSS output respectively. The linearized dynamic model of Equation (25) can be shown by Figure 2. In this fig-
ure , , ,pu qu vu rK K K K  and iK  are defined: 
 

 
Figure 2. VSC HVDC block diagram based Equation (25). 
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It can be seen that the configuration of the Phillips-Heffron model is exactly the same as that installed with 
SVC, TCSC, TCPS, UPFC and STATCOM. Also from Equation (25) it can be seen that there five choice of in-
put control signals of the VSC HVDC to superimpose on the damping function of the VSC HVDC 

, , ,i r i rM M ϕ ϕ∆ ∆ ∆ ∆  and PSSu . Therefore, in designing the damping controller of the VSC HVDC, besides set-
ting its parameters, the selection of the input control signal of the VSC HVDC to superimpose on the damping 
function of the VSC HVDC is also important. 

3. PSO versus QPSO 
In a PSO system [21]-[23], multiple candidate solutions coexist and cooperate simultaneously. Each solution 
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candidate, called a “particle”, flies in the problem space (similar to the search process for food of a bird swarm) 
looking for the optimal position. A particle with time adjusts its position to its own experience, while adjusting 
to the experience of neighboring particles. If a particle discovers a promising new solution, all the other particles 
will move closer to it, exploring the region more thoroughly in the process. 

PSO starts [22] with a population of random solutions “particles” in a D-dimension space. The ith particle is 
represented by ( )1 2, , ,i i i iDX x x x=  . Each particle keeps track of its coordinates in hyperspace, which are asso-
ciated with the fittest solution it has achieved so far. The value of the fitness for particle i  (pbest) is also stored 
as ( )1 2, , ,i i i iDP p p p=  . The global version of the PSO keeps track of the overall best value (gbest), and its 
location, obtained thus far by any particle in the population [21] [22]. PSO consists of, at each step, changing the 
velocity of each particle toward its pbest and gbest according to following Equations: 

( ) ( ) ( ) ( )1 2id id id id gd idv w v C rand p x C rand p x= × + × × − + × × −               (26) 

id id idx x v= +                                    (27) 

where, idp  = pbest and gdp  = gbest 
PSO algorithm is as follow: 
Step 1: Initialize an array of particles with random positions and their associated velocities to satisfy the in-

equality constraints. 
Step 2: Check for the satisfaction of the equality constraints and modify the solution if required. 
Step 3: Evaluate the fitness function of each particle. 
Step 4: Compare the current value of the fitness function with the particles’ previous best value (pbest). If the 

current fitness value is less, then assign the current fitness value to pbest and assign the current coordinates (po-
sitions) to pbest. 

Step 5: Determine the current global minimum fitness value among the current positions. 
Step 6: Compare the current global minimum with the previous global minimum (gbest). If the current global 

minimum is better than gbest, then assign the current global minimum to gbest and assign the current coordi-
nates (positions) to gbest. 

Step 7: Change the velocities according to Equation (26). 
Step 8: Move each particle to the new position according to Equation (27) and return to Step 2. 
Step 9: Repeat Step 2 - 8 until a stopping criterion is satisfied or the maximum number of iterations is reached. 
The main disadvantage is that the PSO algorithm is not guaranteed to be global convergent [24]. The dynamic 

behavior of the particle is widely divergent forming that of that the particle in the PSO systems in that the exact 
values of ix  and iv  cannot be determined simultaneously. In quantum world, the term trajectory is meaning-
less, because ix  and iv  of a particle cannot be determined simultaneously according to uncertainty principle. 
Therefore, if individual particles in a PSO system have quantum behavior, the PSO algorithm is bound to work 
in a different fashion. In the quantum model of a PSO called here QPSO, the state of a particle is depicted by 
wave function W(x, t) instead of position and velocity [23] [24]. Employing the Monte Carlo method, the par-
ticles move according to the following iterative equation: 

1Ln , 0.5

1Ln , 0.5

i i i

i i i

x p Mbest x k
u

x p Mbest x k
u

β

β

 = + ⋅ − ≤ 
 
 = − ⋅ − > 
 

                       (28) 

where u  and k  are values generated according to a uniform probability distribution in range [24], the para-
meter β  is called contraction expansion coefficient, which can be tuned to control the convergence speed of 
the particle. In the QPSO, the parameter β  must be set as 1.782β <  to guarantee convergence of the particle 
[23]. Where Mbest called mean best position is defined as the mean of the pbest positions of all particles, i.e.: 

1

1 N

i
d

Mbest P
N =

= ∑ .                               (29) 

The procedure for implementing the QPSO is given by the following steps [23] [24]: 
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Step 1: Initialization of swarm positions: Initialize a population (array) of particles with random positions in 
the n-dimensional problem space using a uniform probability distribution function. 

Step 2: Evaluation of particle’s fitness: Evaluate the fitness value of each particle. 
Step 3: Comparison to pbest (personal best): Compare each particle’s fitness with the particle’s pbest. If the 

current value is better than pbest, then set the pbest value equal to the current value and the pbest location equal 
to the current location in n-dimensional space. 

Step 4: Comparison to gbest (global best): Compare the fitness with the population’s overall previous best. If 
the current value is better than gbest, then reset gbest to the current particle’s array index and value. 

Step 5: Updating of global point: Calculate the Mbest using Equation (29). 
Step 6: Updating of particles’ position: Change the position of the particles according to Equation (28), where 

c1 and c2 are two random numbers generated using a uniform probability distribution in the range [0, 1]. 
Step 7: Repeating the evolutionary cycle: Loop to Step 2 until a stop criterion is met, usually a sufficiently good 

3.1. PSS and VSC-HVDC Damping Controller 

31

2 4

11
1 1 1

w
pss

w

sT sTsTu k
sT sT sT

ω
  ++

= ∆  + + +  
                             (30) 

The VSC-HVDC damping controllers are of the structure shown in Figure 3 which u  can be , ,i rM M∆ ∆  
,i rϕ ϕ∆ ∆ . However, an electrical torque in-phase with the speed deviation is to be produced in order to enhance 

damping of the system oscillations. It includes gain block, signal-washout block and lead-lag compensator. The 
parameters of the damping controller are obtained using QPSO algorithm. 

VSC-HVDC Controller Design Using QPSO 
To obtain optimal parameters, this paper employs QPSO [24] to enhance optimization synthesis and find the 
global optimum value of fitness function. The objective function (which must be minimized) is defined as fol-
lows [25]: 

1 0

d
tN

i
j

f t tω
=

= ∆∑∫                                      (31) 

where t  is the time range of simulation and N  is the total number of operating points for which the optimi-
zation is carried out. The design problem can be formulated as the following constrained optimization problem, 
where the constraints are the controller parameters bounds [22]: 

min max min max min max min max
min max 1 1 1 2 2 2 3 3 3 4 4 4

Minimize :

Subject : , , , ,

f
K K K T T T T T T T T T T T T≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

      (32) 

Typical ranges of the optimized parameters are [0.01 - 100] for K  and [0.01 - 1] for 1T , 2T , 3T  and 4T . 
The proposed approach employs QPSO algorithm to solve this optimization problem and search for an optimal 
or near optimal set of controller parameters. 

3.2. Controllability Measurement Based on SVD 
Controllability shows how the state variables describing the behavior of a system can be influenced by its inputs. 

 

 
Figure 3. VSC HVDC with lead-lag controller. 
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More accurately, the dynamical system x Ax Bu= +  or the pair (A, B) is said to be state controllable if, for any 
initial state ( ) 00x x=  any time 1 0t >  and any final state 1x  there exist an input u(t) such that ( )1 1x t x= . 
Otherwise the system is said to be state uncontrollable. 

In damping of power oscillations, it is necessary to determine controllability for specific eigenvalues (elec-
tromechanical mode). A very powerful tool commonly used for this purpose is Popov-Belevitch-Hautus (PBH) 
test which is described as below. It includes in evaluating the rank of matrices: 

( ) [ ],k k iC I A bλ λ= −                                   (33) 

which kλ  is the kth eigenvalue of the matrix A, I is the identity matrix, ib  is the column of B corresponding 
to ith input iu . The mode kλ  of linear system in state space form is controllable if matrix ( )kC λ  has full row 
rank. The rank of matrices ( )kC λ  can be evaluated by their singular values. The singular values are defined as 
below: 

If G  is a m n×  complex matrix, then there exist unitary matrices U  and V  with dimensions of m m×  
and n n× , respectively, such that: 

HG U V= Σ                                       (34) 

where 1 0
0 0
Σ 

Σ =  
 

, ( )1 1diag , , rσ σΣ =   

With 1 0rσ σ≥ ≥ ≥  where { }min ,r m n=  and 1, , rσ σ  are the singular values of G . 
The minimum singular value rσ  represents the distance of the matrix G  from all the matrices with a rank 

of 1r −  [26]. This property can be used to quantify modal controllability and observability [26]. The matrix H 
(and J) can be written as [ ]1 2 3 4H h h h h=  where ih  is a column vector corresponding to the ith  input. The 
minimum singular value, minσ  of the matrix [ ], iI A hλ −  indicates the capability of the ith  input to control 
the mode associated with the eigenvalue λ . Actually, the higher minσ , the higher the controllability of this 
mode by the input considered. As such, the controllability of the EM mode can be examined with all inputs in 
order to identify the most effective one to control the mode. Thus, the choice of input through the PBH test is 
done by selecting those with the largest of the minimum singular values of matrix ( )kC λ . 

4. Simulation Results 
Power system information is given in Appendix A. Constant coefficients in modeling are calculated according 
information which given in appendix B. In this paper, we consider ω∆  (rotor speed deviation) as outputs and 
five inputs which are , , , ,r r i i pssM M uϕ ϕ  i.e. modulation index, phase angle of rectifier and inverter respec-
tively and finally PSS input. Selecting an affective coupling between inputs-output for damping oscillation of 
the power system is one of the most important goals of this paper. Following section consider this topic. 

4.1. Controllability Measure by Using PBH Test 
SVD based on PBH is employed to measure the controllability of the electromechanical mode (EM) mode from 
each of the five inputs: , , , ,r r i i pssM M uϕ ϕ . The minimum singular value minσ  is estimated over a wide range 
of operating conditions. For SVD analysis, eP  ranges from 0.01 to 1.5 Pu and [ ]0.4,0,0.4eQ = − . At each 
loading condition, the system model is linearized, the EM mode is identified, and the SVD-based controllability 
and observability measure is implemented. For comparison purposes, the minimum singular value for all inputs 
at 0.4,0eQ = −  and 0.4  Pu is shown in Figure 4, respectively. From these figures, the following can be noticed: 
• EM mode controllability via rϕ  is always higher than that of any other input. 
• The capabilities of , ,r r pssM uϕ  to control the EM mode is higher than that of ,i iM ϕ . 
• All control signals have low EM mode controllability in low load condition except rϕ . 

According to what said above, to design supplementary controller based VSC-HVDC, applying damping sig-
nal to rϕ  can have most affection on oscillation mode. 

4.2. Using QPSO to Obtain Parameters of Supplementary Controllers 
The QPSO algorithm is used to obtain the optimal parameter settings of each of the supplementary controllers so  
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Figure 4. Minimum singular value for different value for Qe. 

 
that the objective function is optimized. The final parameters are given in Table 1. 

These supplementary controllers are used by VSC-HVDC system in different loading condition (Table 2). 
According results which are obtained from SVD analysis, it is obvious that best input for applying damping sig-
nal is rϕ . In this paper, for comparison purposes, a supplementary controller is designed by PSO method for 
this input. This controller is used in 1λ  condition and nonlinear system. 
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Table 1. Parameters of supplementary controller designed by QPSO. 

 PSS  rM  rϕ  iM  iϕ  

k  −0.3572 3.3498 −60.088 95 77.509 

1T  0.72 3.4 0.045 0.47 0.84 

2T  0.15 0.027 0.053 0.04 1.8 

3T  5.6 8.2 0.1 4.1 12 

4T  0.26 1.1 0.073 0.33 4.1 

 
Table 2. Synchronous machine condition. 

tV  eQ  eP  Operating Condition 

1 0.015 1 1λ  (Nominal) Linearized system 

1 0.4 1.2 2λ  (Heavy) Linearized system 

1 0.015 1 3λ  (Nominal) Nonlinear system 

1 0.4 1.2 4λ  (Heavy) Nonlinear system 

 

 
Figure 5. Active power ( )1λ . 

 

 

Figure 6. Active power ( )1λ . 
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Parameters of PSO based damping controller are as: 1 2 3 498.021, 0.12, 0.223, 3.2, 0.27k T T T T= − = = = =
Testing model consists of small changing in mechanical power ( )0.1mP∆ =  which is applied at 1 st = . Test-
ing nonlinear model includes small changing in mechanical power ( )0.1mP∆ =  at 25 st =  and three phase 
fault at infinite bus at time 75 st =  that is removed after 7 cycles. Figures 5-13 show the linear power system 
response in condition 1λ  and 2λ . Because of results which obtained by SVD analysis and also system re-
sponse for 1λ  condition, in 2λ  we just used from rectifier and PSS inputs for applying damping signal and 

,i iM ϕ  are omitted. According to these figures, damping controller based on QPSO damps active power, rotor 
speed oscillations and load angle better than PSO-based compensator for loading condition. Also, using of rϕ  
can guarantee best damping results. Figures 14-19 show the nonlinear power responses. According to these fig-
ures, QPSO based damping controller applying to rϕ  damps active power, terminal voltage and rotor speed 
oscillations better than PSO. 

5. Conclusion 
In this paper, SVD has been employed to evaluate the electromechanical mode controllability to PSS and the 
four VSC HVDC control signals. It has been shown that the electromechanical mode is most powerfully con-
trolled via a wide range of loading conditions. Also, the quantum-behaved particle swarm optimization algo-
rithm has been successfully applied to the robust design of VSC HVDC based damping controllers. The effec-
tiveness of the proposed VSC HVDC controllers for improving transient stability performance of a power sys-
tem are demonstrated by a weakly connected power system subjected to different severe disturbances. The  

 

 

Figure 7. Active power ( )2λ . 

 

 

Figure 8. Load angle deviation ( )1λ . 



N. Taheri et al. 
 

 
431 

 
Figure 9. Load angle deviation ( )1λ .

 
 

 
Figure 10. Load angle deviation ( )2λ .

 
 

 

Figure 11. Rotor speed deviation ( )1λ .
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Figure 12. Rotor speed deviation ( )1λ .
 

 

 
Figure 13. Rotor speed deviation ( )2λ .

 
 

 

Figure 14. Active power ( )3λ . 



N. Taheri et al. 
 

 
433 

 
Figure 15. Terminal voltage of generator ( )3λ .

 
 

 

Figure 16. Rotor speed deviation ( )3λ .
 

 

 

Figure 17. Active power ( )4λ .
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Figure 18. Terminal voltage of generator ( )4λ .

 
 

 

Figure 19. Rotor speed deviation ( )4λ .
 

 
non-linear time-domain simulation results show the effectiveness of the proposed controller and their ability to 
provide good damping of low frequency oscillations. 
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Appendix 
The test system parameters are (all in pu): 

Machine and Exciter:  1, 0.6, 0.3, 0, 8, 5.044, 60, 1, 120, 0.015d q d do ref A Ax x x D M T freq v K T′ ′= = = = = = = = = =  
Transmission line and transformer reactance: 0.1, 1, 0.15t l r ix x x x= = = =  VSC HVDC: 1 22, 1.95, 2, 0.09, 0.09dcr dci r iV V C C L L C= = = = = = =  
Coefficients are: 

1 l

r

x
Z

x
= + , t

t l
r

x
A x x

x
= + + , [ ] dA A Zx′= + , [ ] qB A Zx= +  

( )
[ ]1

cosbV
C

B
δ

= , 
( )

[ ]2

sin
2

l r dc r

r

x M V
C

x B
ϕ

= − , 
( )

[ ]3

cos
2

l dc r

r

x V
C

x B
ϕ

= , 
( )

[ ]4

cos
2

l r r

r

x M
C

x B
ϕ

= , 

5
ZC
A

= , 
( )

[ ]6

sinbV
C

A
δ

= , 
( )

[ ]7

cos
2

l r dc r

r

x M V
C

x A
ϕ

= − , ( )a q d tC x x I′= − , 

( )
[ ]8

sin
2

l dc r

r

x V
C

x A
ϕ

= − , 
( )

[ ]9

cos
2

l r dc r

r

x M V
C

X A
ϕ

= − , ( )b q q dC E x x′ ′= + − , 1 1 6b aK C C C C= + , 

( )( )2 51t q dK I x x C′= + − , 4 9pdcr b aK C C C C= + , 3 8pMr b aK C C C C= + , 2 7pPHr b aK C C C C= + , 

d dx x J′− = , 3 51K JC= + , 4 6K JC= , 7q rK JCϕ = , 8qMrK JC= , 9qdcrK JC= , 

1

t

L
V

= , ( )5 1 6td q tq dK L V x C V x C′= − , ( )6 51tq dK LV x C′= − , ( )4 9Vdcr td q tq dK L V x C V x C′= − , 

( )3 8VMr td q tq dK L V x C V x C′= − , ( )2 7V r td q tq dK L V x C V x Cϕ ′= − , d t

r

x x
E

x
′ +

= , q t

r

x x
F

x
+

= , 

10 5
1

r

C EC
x

= − , 11 6C EC= , ( )12 7 sin
2

r
dcr r

r

MC EC V
x

ϕ= − , ( )13 8
1 cos

2 r r
r

C M EC
x

ϕ= + , 

( )14 9
1 cos

2 r
r

C EC
x

ϕ= + , 15 1C FC= , ( )16 2
1 sin

2 dcr r
r

C V FC
x

ϕ= + , ( )17 4
1 cos

2 r r
r

C M FC
x

ϕ= − + ,  

( )18 3
1 cos

2 dcr r
r

C FC V
x

ϕ= − , 19
1

bd
i

C V
x

= , ( )20
1 sin

2 i i
i

C M
x

ϕ= , ( )21
1 sin

2 dcr i
i

C V
x

ϕ= ,  

( )22
1 cos

2 i dci i
i

C M V
x

ϕ= , 23
1

bq
i

C V
x

= , ( )24
1 cos

2 i i
i

C M
x

ϕ= − , ( )25
1 cos

2 dci i
i

C V
x

ϕ= − ,  

( )26
1 sin

2 dci i
i

C V
x

ϕ= , ( ) ( )1 0.5cos 0.5sini id i iqf I Iϕ ϕ = +  , ( ) ( )2 0.5sin 0.5cosi id i iqf I Iϕ ϕ = − − +  ,  

( )3 0.5 cosi if M ϕ= − , ( )4 0.5 sini if M ϕ= − , ( ) ( )5 0.5cos 0.5sinr rd i rqf I Iϕ ϕ = − +  ,  

( ) ( )6 0.5sin 0.5cosi rd i rqf I Iϕ ϕ = − − +  , ( )7 0.5 cosr rf M ϕ= − , ( )4 0.5 sinr rf M ϕ= − , 27 3 19 4 23C f C f C= + ,  

28 3 20 4 24C f C f C= + , 29 1 3 21 4 25C f f C f C= + + , 30 2 3 22 4 26C f f C f C= + + , 31 7 11 8 15C f C f C= + ,  

33 7 14 8 17C f C f C= + , 34 5 7 13 8 18C f f C f C= + + , 35 6 7 12 8 16C f f C f C= + + , 32 7 10C f C=  



http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Damping Controller Based Quantum Particle Swarm Optimization for VSC HVDC to Improve Power System Stability
	Abstract
	Keywords
	1. Introduction
	2. Problem Statement
	2.1. Power System Nonlinear Model
	2.2. Power System Linearized Model

	3. PSO versus QPSO
	3.1. PSS and VSC-HVDC Damping Controller
	VSC-HVDC Controller Design Using QPSO

	3.2. Controllability Measurement Based on SVD

	4. Simulation Results
	4.1. Controllability Measure by Using PBH Test
	4.2. Using QPSO to Obtain Parameters of Supplementary Controllers

	5. Conclusion
	References
	Appendix

