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ABSTRACT 

Studying the propagation of cascading failures through the transmission network is key to asses and mitigate the risk 
faced the energy system. As complex systems the power grid failure is often studied using some probability distribu-
tions. We apply 4 well-known probabilistic models, Poisson model, Power Law model, Generalized Poisson Branching 
process model and Borel-Tanner Branching process model, to a 14-year utility historical outage data from a regional 
power grid in China, computing probabilities of cascading line outages. For this data, the empirical distribution of the 
total number of line outages is well approximated by the initial line outages propagating according to a Borel-Tanner 
branching process. Also for this data, Power law model overestimates, while Generalized Possion branching process 
and Possion model underestimate, the probability of larger outages. Especially, the probability distribution generated by 
the Poisson model deviates heavily from the observed data, underestimating the probability of large events (total no. of 
outages over 5) by roughly a factor of 10-2 to 10-5. The observation is confirmed by a statistical test of model fitness. 
The results of this work indicate that further testing of Borel-Tanner branching process models of cascading failure is 
appropriate, and should be further discussed as it outperforms other more traditional models. 
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1. Introduction 

Cascading failure is the process by which initial outages 
of components of the electric power transmission system 
can occasionally propagate to more widespread outages 
and large blackouts. These blackouts involve complex 
chains of events, that are not completely independent, as 
an outage that have already occurred weakens the system, 
making the systems more vulnerable and further outages 
more likely [1]. 

Since 2001, researchers with multiple backgrounds of 
electrical engineering, mathematics, physics and nonlin-
ear dynamics have work more heavily addressing this 
topic from different angles. This research on cascading 
models is surveyed and presented in [2,3], and is mainly 
focused on 1) studying on the evolution of cascading 
failure from a long term point of view; 2) studying on the 
effect of specific disturbances on cascading propagation; 
3) identifying the vulnerable area of the system accord-
ing to the topological features; 4) evaluating hazards the 
initial failure could cause to the system by identifying the 

afterwards cascades being initiated. All these researches 
provide helpful research results.  

Dealing with these issues and performing risk assess-
ment requires often identifying the probability distribu-
tion of blackout size. It has been widely observed that the 
probability distributions produced by models in above-
mentioned research works have approximate power law 
regions that cannot be produced by independent outages 
and are broadly consistent with the characteristics ob-
served in the utility historical outage data from several 
countries. 

Historical outage data has always been used to power 
system reliability evaluation, considering it encompasses 
the effect of both inadequacy and insecurity of the stud-
ied system. A bulk statistical approach based on the his-
torical outage data is different from traditional methods 
of risk analysis that rely on detailed analysis of enumer-
ated interactions, and will be complementary to tradi-
tional methods, especially on the risk analysis of large 
blackouts because of the challenges on computational 
power faced by enumerated interaction methods [1] and 
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the difficulties addressing complexity and non-inde- 
pendency among different events. 

1.1. Probabilistic Models for Utility Outages 

While the literature body in this field is very broad, this 
section summarizes previous work on probabilistic mod-
els for utility outages that relates more closely to our 
work. 

Chen and McCalley, after analyzing the North Ameri-
can transmission line outaged data in [4], proposed an 
accelerated propagation model for the number of trans-
mission line outages [5]. They try a generalized Poisson 
distribution and a negative binomial distribution for the 
accelerated propagation model.  The fitness test of the 
accelerated propagation model to the reference utility 
outage data showed, for the PDF of the number of line 
outaged, the proposed exponentially accelerated cascad-
ing model on the probability of outages with more than 6 
lines fit better than other models (0.00061 for accelerated 
propagation model, while 0.00053 for the observed out-
age data, probabilities produced by Generalized Poisson 
model and Negative Binomial model are one order of 
magnitude smaller that that of the observed data). 

In [1], Ren and Dobson demonstrated a way to test a 
branching process based bulk statistical model of cas-
cading line outages on industry data. The model de-
scribed the development of cascading failure starting 
from initial outages that then propagates in stages. The 
average amount of propagation was estimated and hence 
the probability distribution of the size of the cascading 
failure (measured by the total number of line outages) 
was predicted. The fit of the model is examined with a 
9-year historical outage data set from a regional power 
grid. Furthermore, Dobson [6] improves the branching 
process model in [1] by considering variant propagation 
in different stages, modeling the increases of propagation 
as the cascade proceed following the observation in the 
utility data [8]. The branching process model is then used 
to predict the distribution of total number of outages for a 
given number of initial outages. They study how the total 
number of lines outaged depends on the propagation as 
the cascade proceeds. 

1.2. Proposed Research 

The power system is carefully designed and operated so 
that most transmission line outages do not propagate over 
the system and it only has to encompass one or few out-
ages occurring together. This paper deals exactly with 
those situations where failure may propagate, protections, 
controls and other factors may not operate as desired, and 
several components of the system may be affected. As 
previous references, failure propagation is modeled using 
probabilistic models, allowing for multiples failures 

modes. 
Power grids differ one from another mainly in topol-

ogy, size, capacity, interconnectedness, loading level, 
and several other physical/technical features. The plan-
ning and operation of the market or the power system 
also varies, but not as widely as physical features (dis-
patch rules, unit commitments, market clearing processes 
differs but have similar goals and results). 

Although these differences exist, outage data seems to 
suggest similar cascading failure behavior in widely dif-
ferent systems. As such, research is still undergoing 
aiming to identify the best probabilistic models for cas-
cading modeling in power systems. In this paper, we 
compare the fitness of 4 different statistical models to the 
14-year utility outage data from a regional power grid. 

This paper is organized as follows. In section II, out-
age data sources and handling procedures to group fail-
ures are presented. In section III three probabilistic mod-
els ever used for transmission line outage analysis are 
introduced first. Utility outage data is introduced in sec-
tion III, and also the simple grouping techniques of util-
ity outage data for branching process based analysis. 

2. Utility Outage Data 

Cascading failure models are very constrained by outage 
data availability and some models require some pre- 
possessing or handling the data. This section address 
these topics, describing different data sources, the data 
set used here and the handling procedures required to fit 
the models. 

2.1. Main Sources of Utility Outage Data 

For the researches on cascading large blackouts, the util-
ity outage data are valuable references on modeling and 
useful diagnostics in monitoring the process and extent 
of blackouts. Since data is scarce, here we summarize the 
data available from cited references. 

Ref. [4] summarized the results of a survey of design 
characteristics of and outage experience with overhead 
transmission at voltage 230kV and above in USA and 
Canada, for a purpose of providing technical support on 
the probabilistic system models for planning and opera-
tion. The outage data were submitted by utilities from all 
nine NERC/USA reliability regions and by the Canadian 
Electric Association representing all of Canada. The sta-
tistics provided classifications and analysis on 38,489 
outage data according to voltage level, region, causes, or 
duration time, etc. 

Every year, the North American Electrical Reliability 
Council (NERC) publishes a documented list summariz-
ing major disturbances [7], which is used as strong evi-
dence in abovementioned researches for bigger probabil-
ity of large blackouts. 
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Ref. [8] provides a historical outaged data recorded by 
a North American utility over a period of 12.4 years and 
is being upgraded constantly. The transmission line out-
age data is required by NERC for the Transmission 
Availability Data System (TADS). The data for each 
transmission line outage includes the outage time (to the 
nearest minute) as well as other data. All the line outages 
are automatic trips. More than 99% of the outages are of 
lines rated 69kV or above and 97% of the outages are of 
lines rated 115kV or above. There are several types of 
line outages in the data and a variety of reasons for the 
outages [6]. 

Our previous research and the work of this paper are 
based on 9-year historical outage data in [1] and 14-year 
outage data in this paper, which are extracted from the 
fault data information recorded by protective relays in a 
regional power grid. The data we can reach provides the 
voltage level and the time stamp of the failure, the se-
quence of the failures, and failure cause, however with 
on specific information on load shed. The data set is de-
scribed in details in next section. 

2.2. Utility Outage Data Used in this Paper 

The outage data used in this paper is from a regional 
electric power transmission system with, approximately, 
190 220kV buses, and 12 buses at 500kV. The data is 
recorded over about 14 years staring in 1997 and ending 
in 2011.  

The historical outage data is extracted from the report 
containing the outage details recorded by fault recorder 
devices and the fault analysis by relay engineers. The 
extracted information includes the contingency type 
(transmission line failure, or busbar failure, or generator 
failure…), contingency time (to the nearest minute), vol-
tage level, and the auto-recloser’s action. In this research, 
only transmission line outages in 220kV and 500kV are 
computed in the model. Outages at lower voltage levels 
are not considered because of the potential number of 
unrecorded events.  

When processing the outage data, the voltage level, 
line outage type (single phase or three-phase and detailed 
causes of the line outages are neglected, and are regarded 
as the same. The neglecting in the bulk statistical analy-
sis is appropriate, for no matter what the details on caus-
es, type or voltage levels are, and they all result in the 
weakness of the transmission system to various extent. 
The more sever the outage is (outages on higher voltage 
level, or more initial outages, or poor operation and con-
trol techniques), the more sever outcomes follows, such 
as even more outages, while bulk statistical analysis 
based on the historical outage data actually takes all of 
these into consideration, and lead to a more credible 
evaluation on system’s risk level. 

Large flashover events in the data with approximately 
260 outages over two days are neglected because of 
lacking time tags. There is not large cascading blackout 
(totally blackout) in this regional power grid over the 
analyzed horizon. Data recording is not perfect and there 
is some kind of incomplete outage data recording, those 
should be smaller failures, not big ones. Therefore the 
tail part in the probability distribution (PDF) versus out-
ages with various sizes should be credible. 

The clustering of outages in stages can be seen in 
Figure 1. The x-axis shows time since start of cascade 
for outages in each of the 458 cascades. The first min of 
each cascade is shown. Multiple outages at the same time 
are shown slightly displaced. 

2.3. Data Grouping by Stages 

The processing in this section for the outage data is 
mainly for the application of branching process model. 
Here, we follow the data grouping technique in [1]. The 
outage data are grouped according to their time stamps 
without considering the geographical information of the 
outage. Although successive outages in areas far way 
from each other may not have direct electrical connec-
tions, but the successive happening does suggest a further 
weakening of the system. Moreover, when the data is in 
bulk and the system is in large-scale, the difficulty from 
considering more detail information of each outage 
would compromise the application of the method. 

Successive outages separated in time by more than one 
hour are assumed belong to different cascades, for op-
erator actions are usually completed within one hour. 
Successive outages in a given cascade separated in time 
by more than one minute are assumed in different stages 
within that cascade, for transients or auto-recloser actions 
are completed within one minute. 

733 outages are abstracted from the failure records, 
and from them, 459 cascades are obtained by the intro-
duced grouping technique. Table 1 is obtained by sum-
ming over all the 459 cascades the number of outages in 
 

 

Figure 1. Clustering of outages in stages. 
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each stage. That is, of the 733 outages, 556 are in stage 0 
of a cascade (for some cascades, there are more than 1 
failures in stage 0), 83 are in stage 1 of a cascade, and so 
on. Failures in stage 0 are defined belong to initial failure 
of a cascade in the following analysis. 

Table 2 and Table 3 give the statistics of the no. of 
lines lost in each initial failure, and in each cascade, re-
spectively. N-r in Tables 2 and 3 means the loss of r 
transmission lines in the power system (a traditional re-
liability event indicator). The number of line outages in 
initial failures could be as large as 7, and the total num-
ber of outage in the cascade is at most 19, however the 
probability of these severe occasions are extremely 
small.  
 
Table 1. Number of outages in each stage summed over the 
cascades. 

Stage 
Failure 

No. 
Stage 

Failure 
No. 

Stage 
Failure 

No. 
Stage

Failure
No. 

Z0 556 Z4 14 Z8 3 Z12 2 

Z1 83 Z5 6 Z9 3 Z13 1 

Z2 31 Z6 5 Z10 3 Z14 1 

Z3 20 Z7 3 Z11 2 Z15 0 

 
Table 2. Statistics on the no. of transmission line lost in the 
initial failure. 

Con. Type of initial failure No. Probability 

N-1 402 0.8758 

N-2 35 0.07625 

N-3 13 0.02832 

N-4 5 0.01089 

N-5 0 0 

N-6 3 0.006536 

N-7 1 0.002179 

 
Table 3. Statistics on the total no. of transmission line lost in 
a cascade. 

Con. Type of the cascades Total no. Probability 

N-1 341 0.7429 

N-2 62 0.1351 

N-3 27 0.05882 

N-4 10 0.02179 

N-5 4 0.008715 

N-6 5 0.01089 

N-7 5 0.01089 

N-8 1 0.002179 

N-9 1 0.002179 

N-10 1 0.002179 

N-16 1 0.002179 

N-19 1 0.002179 

The probability distribution (PDF) of initial and total 
line outages are shown in Figure 2 on a log-log scale. 
Raw data is shown in Figure 2 with no binning. It has a 
peak at 6 and 7 outages. One reason for this is that some 
cascades are initiated by a bus outage, and the relay trips 
off all transmission lines connected to that bus simulta-
neously at the start of the cascade. On log-log scale, the 
PDF is roughly a straight line, showing a “heavy tail”, 
consistent with researches on cascading blackouts in 
[10]. 

3. Assessing Four Probabilistic Models 

We introduce in this section four different probability 
models which we use to estimate the distribution of the 
total number of line outages in this paper. Among these 
models, branching process model is introduced as a focal 
point and will be compared with other traditional prob-
ability models using fitness test. 

3.1. Traditional Poisson Model [9] 

Consider a random variable , with {0,1}T  1T   rep-
resenting the event of an individual line tripping and the 
probability is ( 1)P T p  . Then the probability of 
tripping of each line can be represented as 

1( | ) (1 ) , 0,1;0t tP T t p p p t p 1          (1) 

Suppose that the total number of lines in a power sys-
tem is N, and each line has the same probability p to be 
tripped and each trip event is independent of any other 
one. Then the probability distribution of total number of 
line outages Z subjects to the binomial distribution: 

[ ] (1 ) , 0,1,2, ,r r N r
NP Z r C p p r N          (2) 

Consider that N is large and p is small under general 
conditions, then the formula can be approximated by the 
Poisson distribution with a parameter of con Np  : 

[ ] (1 )

             / !, 0,1,2, ,con

r r N r
N

r
con

P Z r C p p

e r r 





  

   N
    (3) 

 

 

Figure 2. Probability distribution of initial (dots) and total 
(squares) line outages. 
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In this paper, we use maximum likelihood estimation 
[15] to estimate the parameter con . If the space X is 
discrete with probability distributi unction 

( ) ( ; )P X x p x

on f

  , 

then the joint probability distribution ction of event  fun

1 1 2 2{ , , , }n nX x X x X x    can be shown as 
n

1
1

( ) ( , , ; ) ( ; )n
i

L L x x p xi  


        (4) 

where   
ter

is the model parameter to be estimated. The 
parame  value 


 which makes (4) reach the maxi-

mum value is called as maximum likelihood estimator, 
we can find out 


 by mathematical methods such as 

derivation. 
We can get  based on Table 2 and 

m

  (5) 

3.2. Power Law Model [10-11] 

 a normalized dis-

6) 

When we draw the relationship of

on

power law

  (7) 

3.3. Branching Process Model [1] 

 0.5970con 
ood estimatio



aximum likelih n. The estimated distribu-
tion is as follows: 

   0.5970 1[ ] 0.5970 / ( 1)!, 1, 2,rP Z r e r r  

The total number of line outages Z has
tribution as shown in (6) when it follows a power law: 

[ | ] / , 0; 1, 2,q qP Z r q r r q r          (

 [ ]P Z r
t line wi

 and r  

 a log-log plot, we will find a straigh th slop  

/ qq r  , this indicates the distribution follows a  

. Using maximum likelihood estimation intro-

e

duced above, we can get 2.0q

  based on Table 2, 

then the expression of using po aw model to estimate 
the distribution of outage lines can be shown as follows: 


  

wer l

2.0 2.0 2.0

1

[ ] / 0.645 , 1, 2,
k

P Z r r r r r


    

The propagation   which means the mean number of 
child failures for each parent failure plays a critical role 
in branching process. We consider   as an invariant 
constant in this paper, the positive nu ber of failures in 
stage zero 0

m
Z  will produce outages in the next stage 

with a mean mber of 0 nu Z , the child failures then be-
come parents to produce ges with a mean number of 

2
0

outa
Z  in the next stage and so on [12]. Here we use the 

d introduced in [1] to estimate metho  : 

( ) ( ) ( )
1 2 ( )

1

( ) ( ) ( )
0 1 ( ) 1

1

(

( )

)N i
i
J

i i i
N i

i

Z Z Z

Z Z Z








  


  








        (8) 

where 

J
i i i

represents the total number of line outages, 

p( )N i  re resents the maximum stage with nonzero fail-
Based on Table 1 and (8), we can know ures. 

J  

1 2 14

0 1 13

0.24
Z Z Z   
Z Z Z

  
  

        (9) 

1. Generalized Poisson model 
 numbers follows a 

3.2.
If the distribution of initial failure
Poisson distribution with the parameter   and ignores 
the condition with zero initial failure, the istribution of 
initial numbers is as follows: 

 d

0[ ] , 1,2,
(1 ) !

re 

P Z r r
e r  


        (10) 

e mean number of initial failures can be shown Th

0 / (1 )Z e 


                  (11) 

n get We ca 0 1.211Z   base
ator 

d on Table 2, and then 
we get the estim .3965  using (11). The distri-
bution of the total num  outages under this con-
dition follows generalized Poisson distribution [13] as 
shown in (12). 

ˆ 0 
ber of line

1

0.24 0.3965
1

0.3965

[ ] ( )
(1 ) !

     0.3965(0.24 0.3965) ,
(1 ) !

   

3.2.2. B

                 1, 2

r
r

r
r

e
P Z r r

e r

e
r

e r

r

 

  
 




 




   





 

   (12) 

orel-Tanner model 
ollows arbitrary distribution, If the initial failure numbers f

then the total number of line outages follows a Borel- 
Tanner distribution [14]. 

  0

0

0

0

1
1 0 0 0

0

0.24
1

1 0 0 0
0

0

( )
( )

0.24 (0.24 )
( )!

1,2, ; 1, 2,

r
r zr

z

r
r zr

z

e

!
r P Z z z r

r z

e
P Z z z r

r z

r z r



 


 



 



      

   

  

 (13) 

P Z

 

where 0 0P Z z    
 Table 2. 

can be calculated based on the data 

4. Comparison Analysis of 4 Probabilistic 

he expressions in (5), (7), (12), and (13) for 

given in

Models 

 evaluate tWe
the loss of different number of lines, i.e. 

 1, 2,3, 4,5,...,10r  . 

Probabilities obtained from 4 models and recorded out-
age data are listed in Table 4, where G-P represents Ge-
neralized Poisson, and B-T represents Borel-Tanner. The 
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probabilities in Table 4 are given in Figrue 3. Figrue 3 
shows Log-Log plots of PDFs in Poission model in (5) 
(Inverse triangles), Power Law model in (7) (triangles), 
Generalized Poisson branching process in (12) (squares), 
Borel-Tanner branching process in (13) (diamonds) and 
observed data (dots). 

For outages fewer than 5, all models fit well (as shown 
in

view, the probability dis-
tri

able 4. Probabilities from 4 Probabilistic Models and Ob-

Branching process

 Figure 3). However, Borel-Tanner branching process 
model is better than the other 3 models for outages big-
ger than losing 5 lines. Power law overestimates the 
probability of larger outages. The curve generated by the 
Poisson model deviates heavily from the observed data, 
underestimating the probability of large events (r>5) by 
roughly a factor of 10-2 to 10-5. 

In order to get a more clear 
bution of total number of outages from observed data 

and estimated using Borel-Tanner branching process are 
given in Figure 4. We can see that the distribution esti-
mated using Borel-Tanner branching process can fit the 
distribution from data well, and in the log-log plot it also 
shows a heavy tail. 
 
T
served Data. 

r 
No. of Observed 

Poisson 
Power 

failure data law 
G-P B-T 

1 341 0.7429 0.5505 0.6450 0. 0.6398 6877

2 62 0.1351 0.3286 0.1613 0.2211 0.1776

3 27 0.05882 0.09809 0.07167 0.08276 0.06875

4 10 0.02179 0.01952 0.04031 0.03273 0.03128

5 4 0.008715 0.002913 0.02580 0.01347 0.01419

6 5 0.01089 0.0003479 0.01792 0.005707 0.007945

7 5 0.01089 0.00003461 0.01316 0.002474 0.005052

8 1 0.002179 2.952E-06 0.01008 0.001092 0.003183

9 1 0.002179 2.203E-07 0.007963 .0004890 0.001912

10 1 0.002179 1.461E-08 0.006450 .0002217 0.001098

 

 

 

Figure 4. PDFs of total No. of outages from observed data

Chi-square test is then used to provide a quantitative 
co

 
(dots) and by Borel-Tanner branching process (line). 
 

mparison among 4 models, and the test result is given 
in Table V. The Chi-square test [21] is widely used in 
statistics to test the fitness of a probability model to sam-
ple data. Suppose X  follows the discrete distribution 
with the possible values of 1, 2, ,k , and the probability 
can be shown as ( )P X i k,1ip i    . If we perform 
n  trials, and the event X i  results ( 1,2, , )iX i k   

es, then we can use tatistic tim th 2e s   to show how 
much the samples deviate from the ribution to be 
tested: 

dist

2
2

1

( )k
i i

i i

X np

np





             (14) 

when n  , 2  follows the chi-square distribution 
2  w f om number 1k  . We can obtain 

 (14) that the larger the statis 2
ith the reed

from tic  , the larger the 
deviation. Since the condition to let conclusion in-
troduced above be true is that the distribution must be a 
polynomial distribution and all of the inp  should be 
larger than 5, we decompose the sample space into 5 ex-
clusive sets 

the 

1 2 3

4 5

{1}, {2}, {3},

{4}, {5,6, }.

M M M

M M

  

  
 

sThe test result is shown in Table 5. If there are  es-
timated parameters in the probability model, the freedom 
number of the 2  distribution should be changed to 

1k s  . For ins ce, for the Borel-Tanner model, tan   
meter to be estimated, so the freedom number  

chi-square distribution is 5-1-1=3; but for the generalized 
Poisson model, the parameters that should be estimated 
are 

is a para of

  and  , so the freedom number is changed to be 
5-2- 2. By i specting Table 4, the value of 21= n   calcu-
lated from the Borel-Tanner model is obvious smaller 
than the values gotten from other models, that illustrates 
the Borel-Tanner model is far more fit than the other 

ly 

Figure 3. Log-Log plots of PDFs of 4 probabilistic models. 
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st Results For all models. 

B-T aw Poisson 

 
Table 5. χ2 Te

G-P Power L
r Xi 

pi npi pi npi p pi pi npi i n

1 341 0. 7 3 0. 8 2  0. 0 2  0. 5 2  687 15.7 639 93.7 645 96.1 550 52.7

2 62 0.1776 81.5 0.2211 101.5 0.1613 74.04 0.3286 150.8 

3 27 0.06875 31.56 0.08276 37.99 0.07167 32.90 0.09809 45.02 

4 10 0.03128 14.36 0.03273 15.02 0.04031 18.50 0.01952 8.960 

>=  

r-1 3 2 3 3 

9.  3  2  2

5 19 0.03467 15.91 0.02361 10.84 0.08172 37.51 0.00329 1.510 

m-  

χ2 31 4.07 2.87 92.4 

 
odels. When we set the significance level be 0.01, m

the 2  of the Borel-Tanner model satisfies  
2 2 (3) 11.34   , 0.01

that illustrates the Borel- Tanner model can exactly de-

5. Conclusions 

ilistic models, Poisson model, Power 

scribe the distribution of real data under a significance 
level of 0.01. 

We apply 4 probab
Law model, Generalized Poisson Branching process 
model and Borel-Tanner Branching process model, to a 
14-year historical outage data from a regional power grid 
in China, computing probabilities of cascading line out-
ages. We group the line outages into cascades and stages 
according to their outage times. For this data, the em-
pirical distribution of the total number of line outages is 
well approximated by the initial line outages propagating 
  according to a Borel-Tanner branching process with 

opagation parameter. For this data, Power law model 
overestimates the probability of larger outages, while the 
probability distribution generated by the Poisson model 
deviates heavily from the observed data, underestimating 
the probability of large events (outage no. greater than 5) 
by roughly a factor of 10-2 to 10-5. The observation is 
confirmed by a statistical test of model fitness. The re-
sults of this work justify further testing of Borel-Tanner 
branching process models, leading to a promising re-
search avenue for cascading failure modeling. 

pr
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