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ABSTRACT 

The advisability of the use of matrix methods of equations rearrangement for the investigated system which allows 
writing a secular equation is considered in this article. This approach greatly simplifies the analysis of performance of 
transient response in complicated multi-coupled electrical system at small perturbations. 
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1. Introduction 

The stability is necessary but an insufficient condition of 
automatic control systems operability [1]. The control 
system stability means only that there is a decaying of 
the transient response in the system under the influence 
of external control or perturbation action. Upon that, a 
process decaying time, maximum deviation of controlla-
ble value and number of oscillations in the system are not 
defined, however, these values are very important proc-
ess control performance factors. 

Process control performance factors can be defined by 
means of various methods. First of all, they comprise 
transient response design by the set closed-loop transfer 
functions, definition of performance factors by a disposi-
tion of zeroes and poles, integral performance criteria, 
frequency-domain performance estimation and fre-
quency-domain methods of transient response design 
[1-3]. 

2. Analysis 

In case of electrical power system, the differential equa-
tion system describing processes in such system are lin-
ear (linearized) and look like in the matrix form [2]: 

x A x  ,                  (1) 

where 

11 12 1

21 22 2

1 2

.......

.......

.....................

........

n

n

n n nn

a a a

a a a

a a a

                (2) 

and х = [x1, x2, …, xn] – a column matrix comprising de-
viations of required parameters of electrical power sys-
tem condition. 

The problems listed above become insuperable in cas-
es of the systems described by equations with high de-
grees, i.e. complicated or multi-coupled systems. A pri-
mal problem is deriving of a secular equation for the in-
vestigated system. In this connection it is expedient to 
use matrix methods of rearrangement of the equations for 
the investigated system, then to receive a coefficient ma-
trix for the differential equations A and further to set a 
secular equation under known algorithms of its setting. It 
is rather effective to apply Boher formulas [4] which 
generate factors of a secular equation of the investigated 
system. Let’s consider an algorithm of generation of se-
cular equation coefficients by a known matrix of coeffi-
cients of a matrix A.  

Product of characteristic numbers of a square matrix A 
is equal to a determinant of this matrix. Let’s notice that 
in case of equality to zero of any characteristic number 
the matrix A is singular [5, 7].  

The sum of diagonal elements of a square matrix is 
equal to the sum of its characteristic numbers. Consider-
ing importance of this property, the special title, namely, 
a matrix trace is appropriated to the sum of diagonal 
elements of such matrix. This property is used to form 
coefficients of a secular equation for the investigated 
system. 

Having designated the trace Aк (of the matrix A multi-
plied k times by itself) by Tк it is possible to write the 
useful recurrence formula expressing coefficients of a 
secular equation in terms of various Tк, so: 
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a1 = - Т1, 

а2 = - (1/2) (a1 T1 + T2), 

a3 = - (1/3) (a2Tl + alT2 + T3),     (3) 

ап = - (1/n) (an-1 T1 + ап-2Т2 +... + а1 Tn-1 + Тn). 

This formula makes possible to define a secular equa-
tion diversely. It is obvious that it is rather effective for 
algorithmization of determination of a secular equation’s 
coefficients.  

Let’s apply algorithm (3) to model of an electric sys-
tem (electrical power system) which has n = 6 in the case 
of availability of a strong excitation on synchronous ge-
nerator with automatic excitation control; the matrix of 
differential equation coefficients for the system looks 
like: 
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where aij - matrix elements which depend on condition 
and system parameters [6]. 

The solution (1) looks like: 
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where МН (i) and D'(i)) – polynomials defining zeroes 
(numerator) and poles (denominator) of a transfer func-
tion of the investigated system [1].  

For the investigated system under initial conditions: U 
= 1, Рd = 3, xc = 0.3, xd = 2.3, j = 7 s, d0 = 2 s, e = 1 s, 
I = U = 0.1 s, k0U = 10, k1U = 30, k0 = 10, k1 = 10 and 
δ=700 elements of a coefficient matrix (4) are equal to: 
a12 =1, a21 =-19.0431, a22 =-134.5714, a23 =-18.3263, a32 
= 2.6624, a33 =-1.9167, a34 = 1.9167, a44 =-1, a45 = 1, a52 

= 75.1048, a55 =-10, a61 = 2.5035, a63 =-0.9014, a66=-10. 
Application of algorithm (3) to (4) gives the following 

secular equation: 

D (i) = a06 + a15 + a24 

+ a33 + a42 + a51 + a6 = 0   (6) 

with coefficients: a0=1, a1=157.5,  a2 =3312, a3 =23373, 
a4 =62155, a5 =126430, a6=50859. Thereby roots of the 
secular equation: 1 =-10,00, 2 =-134,06, 3=-10,78, 
,5=-1.07j 2.41, 6=-0.51. As may be inferred from 
structure of the roots, dominating roots have the real and 
complex values. It means that in the case if a system 
condition became heavier there are probable both non- 

periodic loss of stability and self-oscillation.  
Transient responses and their performances can be 

checked up with a traditional method applying a unit step 
excitation and delta function to an input as a result of 
which action it is possible to receive transient and weight 
characteristics of the investigated system [1, 4]. For this 
purpose it is necessary to uncover a right member (6) 
taking into account automatic excitation control parame-
ters and roots of a secular equation and its derivative 
[8-10].  

Figure 1 represents the transient characteristic in the 
case of excitation control by a deviation and the first- 
order derivative with respect to an angle. 

Figure 2 shows the pulse-response characteristic of 
the investigated electrical power system in the case of 
application of a delta function. For the given automatic  
 

 

Figure 1. The transient characteristic of the elementary 
electrical power system in the case of availability of a strong 
excitation to synchronous generator with automatic excita-
tion control: k= 50, k = 10, kU = 10, kU = 30. 
 

 

Figure 2. Pulse-response characteristic of the investigated 
model of an elementary electrical power system in the case of 
availability of a strong excitation to synchronous generator 
with automatic excitation control: k= 150, k = 10, kU = 
10, kU = 30. 
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ntrol parameters the system is self-oscillat- 

3. Conclusions 

ws, realization of the given techni
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