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ABSTRACT 

In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is 
introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validity of the analysis and the 
feasibility of the proposed control method a set of simulation tests have been conducted using Matlab/Simulink. The 
simulation results show that compared to the conventional PI controller, the SMC can reduce drastically the three-level 
rectifier’s voltage fluctuation and improve the dynamic response of dc-bus significantly. 
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1. Introduction 

Recent development of high-power and high switching 
frequency power electronic devices and their large-scale 
application have led to the study of converter systems 
performing near unity power factor and digital imple-
mentation. This new wave of research has paved the way 
to eliminate the power grid pollution and provide green 
power requirements. Thus, research interest in three- 
phase pulse with modulation (PWM) rectifiers has grown 
rapidly due to their numerous advantages such as bidi-
rectional power flow, low harmonic distortion of source 
current, near unity power factor, and adjustable dc-bus 
voltage [1-14]. Moreover, the three-level neutral point 
clamped (NPC) converter presents more advantages over 
the conventional two-level converter in high power ap-
plications, such as lower voltage stress of semiconduc-
tors, smoother waveform, less distortion and less switch-
ing frequency stresses [15,16]. The PWM rectifier based 
on three-level NPC technique is an attractive method 
suitable for high power applications since it provides the 
merits of both PWM rectifier and three-level converter. 
The most prevalent control scheme for PWM rectifier is 
the voltage oriented control (VOC) [17], which is im-
plemented by PI controllers for inner current control and 
outer voltage control loops. The outer voltage loop is 
traditionally implemented by fixed-gain proportional- 
integral (PI) or proportional-integral-derivative (PID) 
controller. However, the design of such a controller de-
pends on the precise system mathematical model used 
which is difficult to develop. 

Recently, much attention has been given to a sliding 

mode controller (SMC) in order to overcome the above 
drawbacks. (SMC) is a discontinuous system, and the 
control character can force the system to move in tiny 
extent and in high frequency according to the specified 
state track under certain conditions. Because of the mer-
its of high speed response, insensitivity to the variable 
parameters, and ease of implementation, the SMC has 
been widely used in the non-linear system.  

In this paper, a simple control strategy for three-level 
PWM rectifier with voltage oriented control to improve 
the system’s robustness and dynamic response of the dc- 
bus voltage is proposed. The sliding mode control is used 
in the outer voltage loop. In order to improve the dy-
namic performances of the source current loop, the anti- 
windup IP controller of inner current controller is used 
instead of the conventional PI controller [18-21]. Simula-
tion results show that compared to the conventional PI 
controller, the SMC can reduce the three-level rectifier’s 
voltage fluctuation and improve the dynamic response of 
the dc-bus significantly. 

2. Topology and Mathematical Model of 
Three Level PWM Rectifier 

The input of the rectifier is connected to the power net-
work, and the output is in the dc side. The main objective 
of the control strategy of the rectifier is to make the input 
current follow a sine wave and the output voltage to be a 
controllable dc voltage. 

The topology of the three-level PWM rectifier is 
shown in Figure 1, [22-24]. sL  and sR  are the equiva-
lent inductance and resistance of the three phase reactor 
inserted between the grid source and the rectifier,  1dcC
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and 2dc  are the dc-bus capacitances, 1dcV  and 2dcV  
are voltages of the two capacitors,  is the sum of 

1dc  and 2dcV . i , i  and vi  are the three- 
level grid voltage, grid current and ac-side voltage of the 
rectifier, respectively. Assuming that ip

C

dcV
, ,a b cV e i i 

s , ids , ins  
( i ) are the switching variables of the three level 
PWM rectifier when the three phases of power source 
voltages ( b ce e ) are sinusoidal and symmetrical. Then, 
they can be defined according to different switch states 
of the four switches in each phase as: 
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Assuming that the three phase source voltages are 
balanced, sinusoidal and symmetrical, the phase angle of 
voltage a  is  ,  denotes the RMS value of the 
source phase voltage, thus 
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The transformation equation from ab  coordinates 
to static 

c
 

d q
 coordinates and then to synchronous 

rotating  coordinates are 
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According to “equation (1)”, 

0a b ce e e                   (4) 

In the three- phase inverter- wire system 

0a b ci i i                    (5) 

 
 





sL  
sR  ae  

~ ai  
1dcC

LRbi  

ci  

aS1  

sL  be  
~

sL  ce  
~

sR  

sR  
2dcC

1dcV

1dcV

2Ci

1Ci

N  

P  

aS2  

aS3  

aS4  

oi  

pi  

ni  





 

Figure 1. Topology of three-level PWM rectifier. 

Therefore, “equation 2” is simplified to “equation 6” 
in order to reduce the number of current sensors and im-
prove the quality of voltage. 
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After some tedious mathematical processes on the 
above equations, the mathematical model of the system 
in static abc coordinates is as follows: 

Zx Ax Be                     (7) 
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The physical meaning of the mathematical model in 
 coordinates is pellucid, but variable parameters of 

ac reactors are unstable which is not suitable for the de-
sign of control system, so the mathematical model in the 
rotating 

abc
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If we suppose that  and  are the voltages of dv qv
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d -axis in the  coordinates, it can be shown that: d q

v e
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where, s is the arithmetic operator of differential coeffi-
cient. 
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From the aforementioned model, the equivalent circuit 
of the three-level PWM rectifier in the  coordi-
nates can be obtained as shown in Figure 2. 

d q

3. Control Strategy for the Three-level PWM 
Rectifier Based on SVPWM 

Similarly to the two-level PWM rectifier [26-34], the 
control target of the three-level PWM rectifier is to make 
the dc output voltage dc  follow its reference value , 
while keeping the input currents ( ) approximately 
sinusoidal and in phase with the corresponding grid 
voltages ( ). 
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the two special requirements of three-level PWM recti-
fier: balance of neutral-point voltage and avoidance of 
excessive voltage jump in phase and line-to-line voltages 
must be satisfied.  

Voltage oriented control (VOC) which is the classical 
and most popular control strategy for the three-level 
PWM rectifiers [32] provides excellent steady-state per-
formance, acceptable dynamic performance and constant 
switching frequency for the rectifier compared with other 
strategies. The block diagram scheme of VOC strategy 
based on sliding mode control for the three level PWM 
rectifier is illustrated in Figure 3. 
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3.1. Sliding Mode Control Design of the Output 
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The main goal of the voltage control of the rectifier is 
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Figure 2. Equivalent circuit of the three-level PWM recti-
fier in d - q coordinates. 
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Figure 3. Three-level rectifier control system. 
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There are two external variables ( dc  and qi for the 
three-level PWM rectifier, where dc  is determined by 

v
v

ds , and q  is controlled by qi s . Considering dcv  and 

q  as contestable output variables, standard state space 
can be obtained as 
i
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Substituting the error between reference and fact vari-
able into “equation (10)”, then 
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So, it can be concluded that selecting the two follow-
ing sliding surfaces, the stability and robustness of the 
system can be achieved: 
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By combining the above equations, then 2s  can be 
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In  coordinates, d q 3d RMS , , in the 
ideal sliding mode state, 

e u 0qe 
qs  can be calculated and sim-

plified as 
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Similarly, the output voltage dc  will follow the ref-
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power balance, 

v
*
dcv

ds  is obtained as: 

3d s d RMS s d
d

dc dc

e R i u R i
s

v v


 


        (17) 

By substituting “equation (16)” and “equation (17)” 
into “equation (15)”, “equation (18)” can be deduced as 

 

 

2

2

       0
3

s d qdc
dcref dc L

d dc

d dc
d

RMS s d

L i idv
s v v i

dt C v

C v
i

u R i





  
       
   

  


(18) 

Therefore, ds  and qs  will not be relevant to the 
choice of sliding mode surface, and the sliding mode 
surface can be obtained as 
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From “equation (18)” and “equation (20)”, the control 
rule for the outer voltage loop can be described as 
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The block scheme of the VOC strategy based on SMC 
for the three-level PWM rectifier is shown in Figure 3. 
The error between reference dc-bus voltage  and the 
sampled dc-bus voltage dc  is processed by SMC, 
which produces the reference active current .  and 

, (for unity power factor control, ) are compared 
with the measured grid current, d  and q , respectively. 
Then, the errors are processed in two anti-windup IP 
controllers to produce the output signals of  and , 
after coordinates transformation, 
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b  and c  by the three- level space vector pulse width 
modulation (SVPWM). 
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3.2. Three-level Space Voltage Vector  
Modulation Algorithm 

There are 27 output voltage vectors in the three-level VSI 
as shown in Figure 4. In Figure 5, suppose the desired 
reference voltage vector lies in the triangle B which is in 
the first 60° sector (sector I). 

Then, the function time of each output voltage vector 
should be calculated first as well as the corresponding 
time for the power devices to turn on or turn off. 

The desired output voltage vector consists of 1 3  
and 4  by the adjacent three vector compounding prin-
ciple. Based on the volt-second balancing principle [36]: 
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where, 3refk V  is the modulation depth, sT  is the 
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system sampling control cycle, ref  and V   is the am-
plitude and angle of the reference voltage vector . ref

In the same way, the function time of the adjacent 
three-vectors could be fixed when it lies in the triangle A, 
C and D. The vector function time of the other five vec-
tors could be deduced in a symmetrical manner. 

V

According to the function time of each vector and the 
centro-symmetric vector sending sequence, the three 
phase output vectors sequential chart could be fixed 
when the reference vector ref  lies in the triangle A, B, 
C and D in sector I, which also gets the space voltage 
vector modulation mode. 

V

There are some similar SVPWM modes when the ref-
erence vector lies in other vectors. According to the 
SVPWM mode and the function time of each vector cor-
responding to each sector, the power devices driven sig-
nal of the three phase arms could be obtained to control 
the three-level inverter in SVPWM mode. 
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Figure 4. Space voltage vectors in three-level rectifier. 
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Figure 5. Synthesized reference vector in the first 60° sec-
tor. 

4. Simulation Results 

To validate the proposed control scheme proposed in this 
paper, a series of simulation tests have been conducted 
under Matlab/Simulink environment. The main parame-
ters of the simulation system are given in Table 1. 

Figure 6(a) shows the DC voltage and current wave-
forms where the DC output voltage reaches the given 
stable value (250 V) of the voltage in a short time. Fig-
ure 6(b) shows the grid phase voltage ( ae ) and current 
( ai ) waveforms. It can be seen that the grid current is in 
phase with the grid voltage, and the power factor is 
higher than 0.997. 
 

Table 1. Rectifier parameter. 

The input phase voltage 125 V 

The Power source frequency 50 Hz 

The input  inductance 37 mH 

The input resistance 0,3 Ω 

DC-bus capacitor 1100μF 

DC-bus voltage 250 V 

 

 
(a) Output voltage and current 

 
(b) Grid source side voltage and current 

Figure 6. Simulation results of system. 
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Figure 7 shows the simulation results when the load 
changes from 500 Ω to 750 Ω at t = 0.4 s. Figure 7(a) 
shows the output DC voltage and current waveforms 
when the load and input voltage fluctuates, the system 
can adjust to the desired value of the voltage in a short 
period of time. Figure 7(b) shows the waveforms of the 
grid source side current, the current always maintains 
unity power factor in the dynamic process. 

Moreover, in view of the actual operating conditions, 
there are more or less fluctuations of the three-phase in-
put voltage especially three-phase input voltage unbal-
ance in the operation of the circumstances. Figure 8(a) 
shows unbalanced three-phase input voltage in the sys-
tem, single-phase unbalance is up to 20%, DC output 
voltage fluctuations is less than 0.2 V as shown in Figure 
8(b). 

To validate the superiority of SMC over conventional 
PI controller, comparative simulations are conducted and 
the results are shown in Figure 9. Figure 9(a) shows the 
waveform of the dc-bus voltage under conventional PI 
controller while Figure 9(b) is that of SMC. It can be 
seen clearly that the overshoots of the dc-bus voltage for 
the rectifier with PI controller is much higher than that 
with SMC, and the dynamic performance of the system is 
improved significantly. 

 

 

 
(a) Output voltage and current 

 
(b) Grid source side current 

Figure 7. Simulation waveforms at load changes. 

 
(a) Three-phase input voltage fluctuations 

 
(b) DC output voltage waveform 

Figure 8. Voltage unbalance at the DC output waveforms. 
 

 

 
(a) dc-bus voltage with conventional PI 

 

 
(b) dc-bus voltage with SMC 

Figure 9. DC output voltage waveforms. 
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5. Conclusions 

The problem of the voltage control system of the three- 
level rectifier is thoroughly analyzed and presented in 
this paper. Through the study on the voltage equation of 
the rectifier, the nonlinear characteristic of the voltage 
control is carefully discussed and detailed based on a 
new strategy which uses sliding mode control (SMC). 
The proposed control strategy is adopted for the dc bus 
voltage control to obtain better dynamic performance 
based on the presented mathematical model. Simulation 
results which are included in this paper, indicate that the 
unity power factor is achieved and the proposed scheme 
exhibits better dynamic and steady state performance 
than conventional controller. 
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