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Abstract 
 
We investigate an important relationship that exists between the Hopf bifurcation in the singularly perturbed 
nonlinear power systems and the singularity induced bifurcations (SIBs) in the corresponding different- 
tial-algebraic equations (DAEs). In a generic case, the SIB phenomenon in a system of DAEs signals Hopf 
bifurcation in the singularly perturbed systems of ODEs. The analysis is based on the linear matrix pencil 
theory and polynomials with parameter dependent coefficients. A few numerical examples are included. 
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1. Introduction 
 
In an effort to better understand dynamical properties of 
power systems, their stability features and the impact of 
various parameters, the DAEs approach seems to be very 
important as was shown in a number of recent papers 
(see for example [1-10]). 

Some of these papers deal with the existence of Hopf 
bifurcations in the singularly perturbed systems of non- 
linear ODEs. DAEs are closely related to singularly per- 
turbed ODEs, therefore it is natural to expect similar 
types of behavior. However, there are also obvious dif- 
-ferences between the qualitative properties of DAEs and 
singularly perturbed ODEs. One can mention, for exam- 
ple, the SIB phenomenon, which is present in DAEs and 
not in ODEs. Also, singularities in DAEs add another- 
layer of difficulty in the bifurcation analysis, in particular 
in the Hopf bifurcation. Because of a local nature of 
these phenomena, it is feasible to consider the singular 
Hopf bifurcation and the SIBs by analyzing certain 
properties of linear matrix pencils and their characteristic 
polynomials [9,11-14].  

The matrix pencil and characteristic polynomial ap- 
proach used in the analysis of the singularly perturbed 
systems and DAEs models has one obvious drawback: the 
available results give sufficient conditions only and, as of 
today, no significant results are available for multi-pa- 
rameter bifurcations of the underlying DAEs. The fun- 

damental SIB theorem for DAEs reported in [9] has been 
slightly improved in [12,13,15] to weaken some of the 
sufficient conditions and to include the case of second- 
order slow subsystems (typical in power systems). In [16] 
the sufficient conditions of the SIB phenomenon were 
given for quasi-linear DAEs and other interesting appli- 
cations of DAEs have been reported in [17,18]. 

In this paper we extend some of the results presented 
in [1]. In particular, we present further studies of the 
singularly perturbed power systems, their SIB, singular 
Hopf bifurcations and interactions between them. The 
topic of bifurcations in power systems (in particular the 
Hopf bifurcation) is one of the most important and inter- 
esting ones, and, at the same time quite difficult, as any 
realistic power grids have thousands of buses, generators 
and other devices. Even small failures of various devices 
of secondary importance may yield catastrophic conse- 
quences, power outages, or unstable systems’ behavior 
[7,8]. 

Section 2 provides a short introduction into the DAEs 
and singularly perturbed ODEs as models of power sys- 
tems. Section 3 constitutes the main part of this paper. 
First, we discuss the SIBs and Hopf bifurcations in the 
context of singularities of DAEs. Next, several results 
related to these bifurcations in power systems are given 
and illustrated by several numerical examples. Section 4 
provides a summary of the results and a few suggestions 
for possible extensions. The three part appendix is an 
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important addition as it provides several properties of 
linear matrix pencils and polynomials with parameter 
dependent coefficients that are frequently used in our 
analysis in Section 3. 
 
2. DAEs as Models of Power Systems 
 
The DAE model of a power system is as follows [1,2, 
19,20] 
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where fi and gi form the load flow equations and are de- 
fined as (n ≡ NG + NPV + NPQ) 
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with the following notation: 
Mi is the rotor inertia of the ith generator, 
Di is the damping coefficient of the ith generator, 
Vi is the voltage magnitude of the ith bus, 
αi is the angle of the ith bus, 
Bij, Gij are the transfer susceptances and conductances, 
Pmi  is the turbine mechanical power injection of the ith 

generator, and 
Pdi, Qdi are the real and reactive power loads at the ith 

bus. 
The above system can easily be written in the following 

DAE form 

  
2

2
, , , 0 , ,

d x dx
M D f x y  g x y

dtdt
          (3) 

with x ≡ [α1, , αNG]T , y ≡ [αNG+1, , αn, V1, , Vn]
T , λ 

is the vector of k parameters, and the matrices M, D are 
positive and semi-positive definite, respectively. 

One of the generator buses is usually considered as a 
swing bus. This allows us to introduce a set of new vari- 
ables (relative angles) and reduce the number of differ- 
ential equations in the first subsystem in (3) by one [3]. 

The DAE model (3) and its bifurcations are closely 
related to the behavior of the singularly perturbed ODE 
model of the form 

  
2
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d x dx dy
M D f x y g x y

dt dtdt

when ε ≠ 0. We shall examine the singular Hopf bifurca- 
tion of (4) for small 0 < ε << 1. 

The singularly perturbed ODEs (4), when linearized, 
yield linear matrix pencils. Either first or second order 
matrix pencils can be used depending on an individual 
preference (see Appendices 1.1 and 1.2 for more details). 
A second order matrix pencil would normally be preferred 
for power systems as it may directly lead to double SIB 
points [1,21]. 
 
3. Bifurcations of Power Systems at  

Singularities 
 
3.1. The Singularity Induced Bifurcation 
 
The SIB is a phenomenon attributed exclusively to DAEs. 
Since DAEs are used quite often as models of electrical 
power systems, it is important to study the changes of 
stability of those systems to better understand their dy- 
namical properties. This may help to prevent future fail- 
ures and catastrophic events such as, for example, mas- 
sive power outages. It is also known that DAEs may ex- 
hibit other types of bifurcations that are widely found in 
nonlinear ODEs. One of such bifurcations is the well- 
known Hopf bifurcation when a linearized system has a 
pair of complex conjugate eigenvalues on the imaginary 
axis with all other eigenvalues lying off the axis. The 
bifurcating parameter may cause the subcritical or super- 
critical Hopf bifurcations. The bifurcation is called sub- 
critical if the periodic solutions are unstable and super- 
critical if the periodic solutions are stable. The Hopf bifur- 
cation in power systems has been analyzed in [2,22]. 

The singularity of nonlinear semi-explicit parameter 
dependent DAEs = f(x, y, λ), 0 = g(x, y, λ) occurs when 
det(gy) = 0 for some (x∗, y∗, λ0)  Rn+m+1, x(t) 

x
   Rn, y(t) 

  Rm, λ   R, dtdxx  and dydgg y  . The λ is a 
slowly varying parameter. Equivalently, the linear matrix 
pencil 
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where A(λ) = fx, B(λ) = fy, C(λ) = gx, D(λ) = gy, has index 
greater than 1 at (x∗, y∗, λ0) (see Appendices 1.1 and 
1.2). 

For the singularly perturbed ODEs we have = f(x, y, 
λ), 

x
y  = g(x, y, λ) where 0 < ε << 1 is small and constant. 

A natural extension to second-order DAEs and singularly 
perturbed ODEs is to have ),,,,( yxxfx   y  = g(x, y, 
λ). 

        (4) 

It turns out that under the assumption of the SIB theo- 
rem (with an algebraically simple zero of gy(x∗, y∗, λ0) 
[9]), the SIB phenomenon for semi-explicit parameter 
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dependent DAEs may be equivalent to Hopf bifurcation 
of the singularly perturbed ODEs. The following example 
illustrates such a case. 

Example 1: Consider the following singularly per- 
turbed parameter dependent DAEs 

21
,  

2
x y y x y                 (6) 

Two solutions of (6) for λ = 0 are shown in Figures 1-2. 
If ε = 0, then the DAEs (6) undergoes the SIB as the pa- 
rameter λ → 0. The equilibrium locus is (λ2/2, λ), i.e. x = 
λ2/2, y = λ, and an eigenvalue −1/λ diverges through in- 
finity as λ → λ0 = 0. The stability of the system is changed 
at λ0. The point λ0 is called a single SIB point (see [11]). 
The system is asymptotically stable for λ > λ0 and unstable 
for λ < λ0. This relatively simple case with scalar f(x, y, λ) 
and g(x, y, λ) is covered by Lemma 1 in [15] which, under 
the conditions gy(λ0) = 0, g′y(λ0) ≠ 0 along the equilibrium 
locus, and gx(λ0) fy(λ0) = −ω2 < 0, predicts a pair of com- 
plex eigenvalues 
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as ε → 0. The ′ = d/dλ and 1i   . 
For (6) we have fx(λ0) = 0, gy(λ) = −λ, g′y (λ) = −1 and 

ω2= 1. Thus, the eigenvalues (7) are: α(ε, λ(ε)) ~ ±ω √ ε +  
 

 

Figure 1. Trajectories for ε = 0.01. 
 

 

Figure 2. Trajectories for ε = 0.09. 

O(1). The linearization of these DAEs along the equi- 
librium locus (λ2/2, λ) yields the matrix pencil (see Ap- 
pendix A) 

1 0 0 1
,  

0 0 1 
  
    





               (8) 

which has index 1 for λ ≠ 0 and index 2 for λ = 0 (Ap- 
pendix A). The CB = −1, v = 1, and CBv  Im(D) at λ = 
0. Therefore, at λ = 0, the index jumps by one, the well 
established fact for DAEs undergoing the SIB. Also, the 
characteristic equation of the pencil (8) is (see Appendix 
1.1, case k = 1) −λs + 1 = 0 with the root s = 1/λ diverging 
through ±∞ as λ → 0. 



Example 2: Now, suppose that d2x/dt2 +γ dx/dt =λ−y, 
εdy/dt = x −1 2 y2, with γ > 0. The eigenvalues are given  

by  2
2 2 1     , and the system is asymp-  

totically stable for λ > 0 and unstable for λ < 0. It can be 
checked that the linear system has index 1 if λ ≠ 0, and the 
index jumps to 3 at λ = 0. If λ ≠ 0, then along the equilib- 
rium locus (λ2/2, λ, λ) we have (see Appendix 1.2): 
det(E(0)s − L(λ)) = s2λ + sγλ + 1, while at the SIB point λ 
= 0 we have det(E(0)s − L(0)) = 1. This drop by 2 in the 
degree of det(E(0)s − L(λ)) is equivalent to the index 
increase from 1 (at λ ≠ 0) to 3 (at λ = 0). If λ < 0 one of the 
eigenvalues is unstable while the other remains stable. At 
λ = 0 the eigenvalues diverge through ±∞. The point λ = 0 
is called the double SIB point, the concept introduced by 
Beardmore in [11]. 

For λ ≠ 0 the Kronecker Normal Form of the pencil 
(E(0), L(λ)) is 

   
1 0 0 0 1 0

0 0 1 0 , 1 0

0 0 0 0 0 1

E   L   
  
      
  
  


 






   (9) 

and for λ = 0 the structure of the pencil changes to  

 
0 1 0 1 0 0

0 0 1 , 0 0 1 0

0 0 0 0 0 1

E   L

   
     
   
   

      (10) 

 
3.2. Properties of DAEs with SIB Phenomenon 
 
The main theorem indicating Hopf bifurcation in the 
singularly perturbed ODEs is due to Beardmore [15], as 
follows. 

THEOREM: Suppose that the singularly perturbed 
ODEs x f(x, y, λ), y  =g(x, y, λ) have a trivial equi- 
librium for λ = λ0 and 

1)   0yker g v   with   0Im vv g  , 

2)     0 0Imy yg v g   , 
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Then, there exists ε1 > 0 such that ε1 > ε > 0 there is a 
λ0(ε) such that the singularly perturbed linearized ODEs 
have a pair of purely imaginary eigenvalues at λ = λ0(ε) 
and λ0(ε) is continuous in ε at 0 with λ0(0) = λ0. 



In the above, the ker, Im and det denote the kernel, 
image and determinant of a matrix, respectively, the < > is 
a column vector and T denotes the transposition. It is easy 
to check that the above sufficient conditions are satisfied 
for (6) with v = u = 1, g′y (0) = −1, fxgy − fygx = 1, gx(0)fy(0) 
= −1, yielding ω = 1. 

LEMMA 1: Suppose that in (18) in Appendices 1.2 we 
have for ε = 0: ind(E(0), L(λ)) = 1 for λ ≠ λ0, detL(λ0) ≠ 0, 
kerD(λ0) ≡ vRm, D′(λ0)v ImD(λ0) and C(λ0)B(λ0)v  
ImD(λ0). Then, 

          1 0det 0 ,n m
n mE s L a s a s a  
     

 (11)  

        2
0 1 0det 0 ,n mE s L s d s d0 0         

(12) 

and the two eigenvalues of the matrix pencil (E(0), L(λ)) 
diverging through ±∞ are the zeros of the second-degree 
polynomial 
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with a(λ) = an−m(λ), a(λ0) = b(λ0) = 0, and c(λ0) ≠ 0. The 
index of (E(0), L(λ0)) is 3. 

Lemma 1 is a consequence of the above theorem. In 
particular, from the Kronecker Normal Form of (E(0), 
L(λ)) and the assumption that ind(E(0), L(λ)) = 1 for λ ≠ λ0, 
we obtain (11). The other assumptions are needed to have 
the two eigenvalues divergent through ±∞ [11], and as a 
consequence, for λ = λ0 we have (12). 

Notice that in example 2 det(E(0), L(λ)) = s2λ + sγλ + 1 
and det(E(0), L(0)) = −1, therefore a(λ) = λ, b(λ) = γλ, c(λ) 
= 1 and the two diverging eigenvalues are the roots of s2λ 
+ sγλ + 1 = 0. As a direct consequence of the above lemma 
we have the following result. 

LEMMA 2: If the assumptions of lemma 1 are satis- 
fied and if Γ(λ) ≡ 0 in (18) (see Appendix 1.2), then b(λ) ≡ 
0 and the two diverging eigenvalues are purely imaginary. 
If c(λ)/a(λ) changes its sign from positive to negative at λ 
= λ0, then the system undergoes transition from a center to 
a saddle, or vice-versa, from a saddle to a center if 
c(λ)/a(λ) changes sign from negative to positive.  

The proof of the above lemma follows from the fact that 
the two diverging eigenvalues are    1,2s c a   . 
No damping term exists in the system. A similar behavior 
in active RLC circuits has been reported in [23]. 
 
3.3. An Illustrative Example 
 
The following example illustrates the above described 
features of a power system undergoing the singularity 
induced bifurcation. 

Example 3: Consider the 4-bus, 3 generator power 
system shown in Figure 3. If we assume that the bifurca- 
tion parameter λ defines the real and reactive powers at 
bus 4 with P = P0 (1 + λ), Q = Q0 (1 + λ), (P0 = const, Q0 = 
const), then the DAE model (3) of this power system 
undergoes the SIB at λ0 = 0.537305. 

Assuming that the rotor inertia of all generators equals 
1, the line transfer conductances Gij are all zero, the 
damping generator coefficients to be γ, and considering 
bus 1 as a swing bus, the DAE system is as follows 
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(14) 
with the relative angles θi ≡ αi+1 − α1 for i = 1, 2, 3. 

Suppose that the parameters are: B12 = B13 = 1, B24 = B34 
= 2, B44 = −4, Bij = Bji, Pm2 − Pm1 = 1, Pm3 − Pm1 = 2, P0 = 1, 
Q0 = 0.3, γ = 1.5 and Vi = 1 for i = 1, 2, 3. Then, the DAEs 
(14) have an equilibrium placed at the singularity for 

 

 

Figure 3. A simple 4-bus, 3-generator power system. 
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   1 2 3 4, , , , 0.8496, 2.3761, 2.4940, 0.6334, 0.5373V      

For the singularly perturbed DAEs with P = P0 (1 + λ) 
and Q = Q0 (1 + λ) + εdθ4/dt we get the same equilibrium. 
Solutions θi(t), i = 1, 2, 3, for ε = 0.002 and various values 
of γ are shown in Figure 4. Notice that V4(t) can be 
eliminated from (14) and the system reduces to two sec-
ond-order differential equations and one first-order dif-
ferential equation containing εdθ4/dt. It turns out that the 
above equilibrium is unstable and at λ = 0.537305, ε = 

0.002, γ = 0 the pencil (18) has the following eigenvalues 
−5.6245 ± 9.7933i, ±0.1342i, 11.2487. 

The solutions in Figure 4 escape the above equilibrium 
and oscillate around another equilibrium (not on the sin- 
gularity) 

   1 2 3 4, , , , 0.6812, 1.0816, 1.2770, 1.1018, 0.5373V      

with the eigenvalues ±1.3238i, ±1.5720i, −4742.9260 for 
γ = 0 and ε = 0.002. 

For ε = 0 and γ ≠ 0 the characteristic equation of the  
 

   
(a)                                                         (b) 

 

   
(c)                                                         (d) 

 

   
(e)                                                         (f) 

Figure 4. (a, c, e) The θi(t), i = 1, 2, 3, for γ = 0; (b, d, f) the θi(t), i = 1, 2, 3, for γ = 0.05. 
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linear matrix pencil (18) is (see (19)-(21) in Appendix 
1.3): a4(λ)s

4 + a3(λ)s
3 + a2(λ)s

2 + a1(λ)s + a0(λ) = 0 and for 
λ = λ0 = 0.537305 the equation reduces to 2.869398s2 + 
4.304097s + 0.051705. 

Clearly, we have the case k = 2 (see Appendix 1.3) and 
in (21) we have c2(λ0) = c1(λ0) = 0, c0(λ0) = 2.869398, 
b1(λ0) = γ = 1.5000, and b0(λ0) = 0.018019. For λ → λ0 
the DAEs have two eigenvalues (divergent through in- 
finity) 

 
 

 
 

 
 

2
1 1 0

1,2 2
2 222 4

c c c
s

c cc

  
 

             (15) 

whose real parts are such that  
     lim 2c c

0 1 2        and the imaginary 
parts diverge to infinity as λ → λ0. The point λ0 = 
0.537305 is called a double SIB point and the linear ma- 
trix pencil has index 3 at λ = λ0 and 1 if λ ≠ λ0. 

One can also examine matrix R(λ) in Appendix 1.4 to 
check that detR(λ) = 0 if the characteristic polynomial of 
the matrix pencil (18) admits a pair of purely imaginary 
roots. Figure 5 shows detR(λ) for system (14). Clearly, 
this determinant is 0 for λ = 0.537305 because of the two 
complex eigenvalues ±0.1342i of the matrix pencil. 
 
4. Conclusions 
 
In the paper we have examined sufficient conditions un- 
der which the single and double SIB points in systems of 
DAEs are responsible for the Hopf bifurcation in singu- 
larly perturbed systems of ODEs. Both, the DAEs and 
singularly perturbed ODEs are widely used as dynamical 
models of power systems making their analysis very 
relevant in the studies of stability, reliability and sensi- 
tivity to various parameters. The analysis of power system 
models around their singularities is important from both 
the qualitative and numerical points of view. The quali- 
tative analysis presented in this paper should be supple- 
mented by a numerical one [17], as a typical power system 
 

 

Figure 5. The det R(λ) as a function of λ (see Appendices 
1.4). 

model includes hundreds or even thousands of equations 
[20]. 

It is also our opinion that the future work in the quali- 
tative analysis of the SIB and singular Hopf phenomena 
via matrix pencils and parameter dependent polynomials 
should focus on the formulation of the necessary and 
sufficient conditions and the analysis of multi-parameter 
bifurcations at singularities. To the authors’ knowledge 
no formulation of the necessary conditions of the SIB 
phenomenon exists at the present time. 
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1. Appendix 
 
1.1. Matrix Pencils for First Order Systems 
 
For a pair of constant square n × n matrices, say E and L, 
with detE = 0, if det(sE − L) ≠ 0, then there exist non- 
singular matrices U and V, such that 

-

0
,

0 0
m m

n m n m

I J
UEV    ULV

N 

  
   
  

     (16) 

where N n−m is a nilpotent matrix of size (n − m) × (n − m) 
and index ν ≤ n − m. That is, ν is a positive integer such 
that Nν = 0, Nν−1 ≠ 0. The Ik is the unit matrix of size k × k. 
The pencil (UEV, ULV) is said to be in Kronecker Normal  

(Canonical) Form and σ(E, L) = σ(Jm), i.e. the finite 
spectrum of the pencil (E, L) is the same as the spectrum 
of matrix Jm. It is also well-known that for DAEs with the 
matrix pencil 

0
,

0 0

I A B
UEV   ULV

C D

  
   
  





         (17) 

and detL ≠ 0, the index(UEV, ULV)=1 if and only if detD 
≠ 0. If ker(D) = <v > ≠ 0 and CBv  Im(D), then the 
index (UEV, ULV) = 2. 



 
1.2. Matrix Pencils for Second Order Systems 
 
The linearization of ),,,,( yxxfx    y  = g(x, y, λ) 
yields the matrix pencil (E(ε), L(λ)) with  
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(18) 

and A(λ) = fx, B(λ) = fy, C(λ) = gx, D(λ) = gy, Γ(λ) = x and 
E(ε), L(λ)R2n+m and det(E(ε)s − L(λ)) = det(E(ε)s − L(λ)) 
= an+m sn+m + an+m−1s

n+m−1 + …+ a1s + a0 with ai = ai(ε, λ). 

f 

 
1.3. Parameter Dependent Polynomials 
 
The change of the index of DAEs is related to certain 
properties of the characteristic polynomial of the pencil 
(UEV, ULV). Let the polynomial be 

         1
1 1, r r

r rp s a s a s a s a0   
     

,

 

(19) 

with ar(λ0) = ar−1(λ0) =  = ar−k+1(λ0) = 0, ar−k(λ0) ≠ 0. 
Polynomial (19) admits a real decomposition [13] 



    1 2, ,p s p s p s            (20) 
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 (21) 

where ck, , c0 and br−k−1, , b0 are real and smooth, 
and ck(λ) = ar(λ), ci(λ0) = 0 for 1 ≤ i ≤ k, c0(λ0) = ar−k(λ0) ≠  

 

0. 
If k = 1, then one root of p1(λ, s) diverges through ∞ as λ 

→ λ0. This is easily seen by observing that with k = 1 we 
have c1(λ) = ar(λ) = (−1)detD, and the root −c0(λ)/c1(λ) → 
∞ as λ → λ0. This divergence is equivalent to the index 
jump of the matrix pencil from 1 at λ ≠ λ0 to 2 at λ = λ0. If k 
= 2, then two roots of p1(λ, s) diverge through ∞ and the 
index of the corresponding matrix pencil jumps from 1 at 
λ ≠ λ0 to 3 at λ = λ0. The two diverging eigenvalues, say 
s1,2, are such that limλ→λ0s

2
1,2(λ)(λ − λ0) = μ with μ = 

−(uTC(λ0)B(λ0)v)/(uTD′(λ0)v), u ≡ kerD(λ0)
T , v ≡ kerD(λ0), 

and D ′  ≡  dD(λ)/dλ  (see [1] for more details). 
 
1.4. Crossing the Imaginary Axis: Loss of  

Stability 
 
Applying the Liénard-Chipart splitting [24], polynomial 
(19) with continuous real coefficients ai(λ) can be written 
as p(λ, s) = peven(λ, s

2) + spodd(λ, s
2), where 

       

       

2 2 4
0 2 4

2 2 4
1 3 5

, |

, |

even s j

odd s j

p a a s a s

p a a s a s





    

    





    

    




 

(22) 

Polynomial p(λ, s) has purely imaginary roots ±jω if 
and only if peven(λ,−ω

2) = 0 and podd(λ,−ω
2) = 0. These 

conditions imply that the resultant matrix is singular [25]. 
Determinant detR(λ) = ±detHr(λ), where Hr is the Hurwitz  
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matrix of (19). Note that detHr(λ) = a0detHr−1 and 

    1 2 1
1

, 1
det 1

,
r r r

r r
i k i k

r
i kH a s

 


 
   s      (23) 

This implies that detHr−1 is zero not only for the purely 
imaginary roots ±jω, but also for a pair of real symmetric 
roots s1,2 = ±σ and for two complex and symmetric pairs 
of roots s1,2 = σ ± jω and s3,4 = −σ ± jω. If, during the 
bifurcation process with λ → λ0, a power system oper-
ates initially in a stable mode (all eigenvalues are in the 
open left half plane), then, providing that none of the 

eigenvalues diverges through ∞, the eigenvalues have to 
cross the imaginary axis first (at λ0) before reaching 
unstable locations in either of the symmetric patterns 
with respect to the origin. Thus, in a typical situation, the 
increased ill-conditioning of the matrix Hr(λ) with the 
changing parameter λ will indicate an imminent possi-
bility of the Hopf bifurcation as some of the eigenvalues 
approach the imaginary axis and become ±jω at λ = λ0 for 
finite ω. 
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