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Abstract 
 
The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, 
PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms 
signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. 
Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this 
paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To 
extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were 
constructed from wavelet packet log-energy entropy of different nodes. Least square support vector ma-
chines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show 
that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying 
system for PQ disturbances. 
 
Keywords: Power Quality (PQ), Wavelet Packet Transform (WPT), Wavelet Packet Log-Energy Entropy, 

Least Square Support Vector Machines (LS-SVM) 

1. Introduction 
 
The deregulation polices in electric power systems re-
sults in the absolute necessity to quantify power quality 
(PQ). This fact highlights the need for an effective rec-
ognition technique capable of detecting and classifying 
the PQ disturbances. Traditionally PQ recordings are 
analyzed in the time-domain by skilled engineers. How-
ever, PQ disturbances may not always be obvious in the 
original time-domain signal. One of the traditional signal 
processing techniques called Fourier transform provides 
information in frequency-domain but it does have limita-
tions. One crucial limitation is that a Fourier coefficient 
represents a component that lasts for all time. This makes 
Fourier analysis less suitable for non-stationary signals. 
Wavelet analysis, which provides both time and fre-
quency information, can overcome this limitation. Unlike 
the Fourier transforms, the wavelet transform has a fully 
scalable window, which allows a more accurate local 
description and separation of signal characteristics [1]. 
The wavelet transform has been applied to the wide 
range of PQ signals analysis: feature extraction [2], noise 
reduction [3], and data compression [4]. Recently, The 
identification of PQ disturbances is often based on artifi-

cial neural network (ANN) [5], fuzzy method (FL) [6], 
expert system (ES) [7], support vector machines (SVM) 
[8], and hidden Markov model (HMM) [9]. Many of the 
studies proposed in the literature present that these tech-
niques can use feature vectors derived from disturbance 
waveforms to classify PQ disturbances. 

The types of PQ disturbances include the sag, inter-
ruption, swell, harmonic, notch, oscillatory transient 
(Osc. transient) and impulsive transient (Imp. transient) 
(see Figure 1) [10]. In this paper, the combined tech-
nique of wavelet packet transform (WPT) and least 
square support vector machines (LS-SVM) for PQ dis-
turbances recognition is presented. Decision making is 
performed in two stages: feature extraction and LS-SVM 
as a classifier. Figure 2 shows the block diagram of the 
classification system. The details of each stage are de-
scribed in the next sections. High accuracies were 
achieved by using the LS-SVM trained on the wavelet 
packet log-energy entropy of different nodes.  

The rest of this paper is organized as follows. In Sec-
tion 2, the feature extraction by WPT is explained. In 
Section 3, brief review of the LS-SVM with the mini-
mum output coding (MOC) technique is presented. 

In Section 4, the results of classification of the LS- 
SVM trained on wavelet packet log-energy entropy to   
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Figure 1. Power quality disturbance waveforms: (a) Normal 
signal; (b) Sag; (c) Interruption; (d) Swell; (e) Harmonic; (f) 
Notch; (g) Oscillatory transient; (h) Impulsive transient. 

 

 
Figure 2. Block diagram of the classification system. 

 
the studied PQ disturbance signals are presented. Finally, 
conclusions are given in Section 5. 

2. Feature Extraction Using WPT 
 
The purpose of the feature extraction process is to select 
and retain relevant information from original signals. 
The WPT was first applied to decompose the original PQ 
signals into frequency bands. One of the advantages of 
the WPT is that it is able to decompose signals at various 
resolutions, which allows accurate feature extraction fro- 
m non-stationary signals like PQ disturbances. The fea-
tures of signals, such as wavelet packet energy entropy, 
were then extracted from these decomposed signals as 
feature vectors. 

The wavelet transform decomposes a signal into a set 
of basic functions called wavelets. These basic functions 
are obtained by dilations, contractions and shifts of a 
unique function called wavelet prototype. Continuous 
wavelets are functions generated functions generated 
from one single function by dilations and translations of 
a unique admissible mother wavelet )(tψ : 

)(1)(, a
bt

a
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−
= ψψ               (1) 

where 0,, ≠ℜ∈ aba  are the scale and translation 
parameters, respectively, and t  is the time. The func-
tion set ( )(, tbaψ ) is called wavelet family. It is common 
to employ both wavelet and scaling functions in the 
transform representation. In general, the scale and shift 
parameters of the discrete wavelet family are given by 

=a  ja0  and jakbb 00= , where j  and k  are inte-
gers. The function family with discretized parameters 
becomes: 
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where )(, tkjψ is called the discrete wavelet transform 
(DWT) basis. 

DWT analyzes the signal at different frequency bands, 
with different resolutions by decomposing the signal into 
a coarse approximation and detail information. DWT em- 
ploys two sets of functions called scaling functions )(tϕ  
and wavelet functions )(tψ , which associated with low- 
pass and high-pass filters, respectively. The original sig-
nal )(tx  can be decomposed to: 
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where j  is the level number of the wavelet decomposi-
tion, Jj ,,2,1 L=  with J  the time of the wavelet de- 
composition. jc  and jd  are the approximation coeffi-
cients and detail coefficients of )(tx , respectively. 

Because the information in higher frequency compo-
nents is important, the frequency resolution of DWT may 
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not be fine enough to extract pertinent frequency infor-
mation about the signal. The necessary frequency resolu-
tion may be achieved by using WPT, an extension of the 
DWT. In the WPT, the wavelet detail at each level is, in 
addition to decomposition of only the wavelet approxi-
mation in the regular wavelet analysis, further decom-
posed in to its own approximation and detail components. 
By this process, some lower frequency contents leaked in 
the wavelet details at the previous level can be further 
sifted out at the current level and also the frequency res- 
olution for signal analysis increases. As a result, the 
WPT may provide better accuracy in both higher and 
lower frequency components of the signal. 

Figure 3 shows the wavelet packet decomposition tree 
for three levels ( 3=J ). For each level of decomposition 
the signal is filtered into approximate information of the 
signals (lower frequency component) and detail informa-
tion (higher frequency component). If this procedure is 
repeated J  times, a filter bank is created with J  filters. 

To evaluate the importance of the wavelet packet com- 
ponents to a signal, the concept of entropy is often ap-
plied in signal processing and there are various defini-
tions of entropy in the literature. Among them, two rep-
resentative ones are used in the present article, i.e. the 
energy entropy and the Shannon entropy. The wavelet 
packet energy entropy at a particular node n in the wave-
let packet tree of a signal is a special case of p = 2 of the 
p-norm entropy, defined as 

)1(, ≥= ∑ pwcEnt
p

k
knn             (4) 

where knwc , denotes the wavelet packet coefficients cor-
responding to node n at time k. It was demonstrated that 
the wavelet packet energy has more potential for use in 
signal classification as compared to the wavelet packet 
coefficients alone. The wavelet packet energy represents 
energy stored in a particular frequency band and is 
mainly used in this study to extract the dominant fre-
quency components of the signal.  

The Shannon energy entropy and relative Shannon en-
ergy entropy are defined respectively as [11] 

 

 
Figure 3. Wavelet packet decomposition tree. 
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nnornn EntsEntsREnts _/=            (6) 

where nnorEnts _  is the Shannon energy entropy of the 
normal signal corresponding to node n. 

In this paper, one of the commonly used entropy, log- 
energy entropy is also defined as 

∑=
k

knn wcEntl )log( 2
.                (7) 

The relative log-energy entropy is proposed as 

nnornn EntlEntlREntl _/=            (8) 

where nnorEntl _  is the log-energy entropy of the normal 
signal corresponding to node n. 
 
3. LS-SVM 
 
The second stage is the disturbances classification. Sup-
port vector machine (SVM) can avoid the problems of 
over learning, dimension disaster and local minimum in 
the classical study method, and is applied in many classi-
fication problems successfully [8,11]. According to the 
practice, [12] advanced by J. A. K. Suyken can overcome 
the disadvantage of slow training velocity in the large 
scale problem, as LS-SVM algorithm translates the qua- 
dratic optimization problem into that of solving linear 
equation set. Although a wide range of classifiers are 
available, we use LS-SVM in this paper. 

We consider a training set of N data points { }kk yx , , 
Nk ,,2,1 L= , where n

kx ℜ∈  is the input data, ℜ∈ky  
is the thk −  output data, the SVM constructs a deci-
sion function that is represented by: 

bxwxy T +=)(                   (9) 

where the dimension of w is not specified. It means that 
it can be infinitely dimensional. The separating hyper-
plane that creates the maximum distance between the 
plane and the nearest data is called as the optimal sepa-
rating hyperplane as shown in Figure 4.  

In LS-SVM for the function estimation the following 
optimization problem can be given 

∑
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subject to the equality constraints 
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T
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where ke  are slack variables and C is a positive real 
constant. One defines the Lagrangian 
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Figure 4. Optimal separating hyper plane. 

 
with Lagrange multipliers kα . The conditions for opti-
mality are 
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for Nk ,,2,1 L= . It can be written immediately as the 
solution to the following set of linear equations: 
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with ],...,[X 1 Nxx= , ],...,[Y 1 Nyy= , ]1,...,1[1 =
r

, =e  
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given by 
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with k
k

k xw ∑= α , Ce kk /α= . The support values 

kα  are proportional now to the errors at the data points. 
So far we explained the linear case. SVM’s with 

polynomials, splines, radial basis function networks, or 
multilayer perceptrons as kernels are obtained after map-
ping the input data into a higher dimensional space by 

)( kxφ , where )(⋅φ : hnn ℜ→ℜ . The number hn  does 
not have to be specified because of the application of 

Mercer’s condition, which means that 
)()(),( j

T
kjk xxxxK φφ=          (16) 

can be imposed for these kernels. Finally, the nonlinear 
function takes the form: 

bxxKxy
N

k
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),()( α           (17) 

where the parameters kα , b  follow from (15) after 

replacing j
T

k xx  by ),( jk xxK . 
Multi-class classification was realized by the combi-

nation of LS-SVM classifiers with the minimum output 
coding (MOC) technique. In the MOC technique, up to 

m
2log  (where m is the number of classes) LS-SVM clas-

sifiers were trained, and each of them aimed to separate a 
different combination of classes. There were eight 
classes (normal signal, sag, interruption, swell, harmonic, 
notch, oscillatory transient and impulsive transient) in 
this study, so three classifiers were necessary to differen-
tiate them. The coding was defined by the codebook 
represented by a matrix, where the columns represent the 
different classes, and the rows indicate the results of the 
binary classifiers. The multi-class classifier output code 
for a pattern is a combination of targets of these three 
classifiers. In this study, the eight classes were encoded 
in the following codebook of minimum output coding: 

T
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where 8,7,6,5,4,3,2,1 CandCCCCCCC are normal 
signal, sag, interruption, swell, harmonic, notch, oscilla-
tory transient and impulsive transient, respectively. 
 
4. Simulation Analysis 
 
To test classification results for PQ disturbances, the 
testing samples of these PQ disturbances have been gen-
erated using algebraic equations [14]. The advantage of 
using algebraic equations for evaluation is the flexibility 
of adjusting signal noise contents as well as various 
waveform parameters such as the disturbance occurrence 
time, harmonic contents, sag depth, etc. 

These disturbance waveforms are generated at a sam-
pling rate of 256 samples/cycle for a total of 2560 points 
(10 cycles). In order to create different disturbance cases, 
some unique parameters such as starting time, magnitude, 
duration, frequency, and damping are allowed to change 
randomly. The random generation of signals is helpful 
for the testing of the classification more reliable since 
none of these attributes is fixed for real distribution sys-
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tem disturbances. 
Using wavelet packet decomposition, each signal shown 

above was decomposed to level 3. The wavelet ‘Daub4’ 
was selected because it is more adequate for classifica-
tion of PQ disturbances [13]. The wavelet packet energy 
entropy of different nodes of the decomposed signals 
were calculated, which could be used to identify the type 
of PQ disturbances. The performances of difference wave- 
let packet energy entropy for feature sets are shown in 
Figure 5. From above Figure 5, we can conclude that 
relative log-energy entropy is more effective than tradi- 
tional relative Shannon energy entropy, which can am-
plify the errors among the feature vectors. These features 
consist of 8-dimension feature space. 

In this paper, we construct a LS-SVM by using radial 
basis function (RBF) as kernel function in LS-SVM pro- 

posed above. 

)
2

exp(),( 2

2

σ
ji

ji

xx
xxK

−
−=         (18) 

where σ  is the width of the kernel. 
For training the SVMs with RBF kernel functions, one 

has to predetermine the σ  values. The optimal or near 
optimal σ  values can only be ascertained after trying 
out several, or even many values. Beside this, the choice 
of C  parameter in the SVM is very critical in order to 
have a properly trained SVM. The SVM has to be trained 
for different C  values until to have the best result. 
From the Figure 6, It is found that the near optimal val-
ues are 12 =σ  and 4=C . 

 
  

node  
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  ×105
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Figure 5. Performance comparison of difference wavelet energy entropy of the waveforms in Figure 1: (a) Wavelet packet 
Shannon energy entropy; (b) Relative wavelet packet Shannon energy entropy; (c) Wavelet packet log-energy entropy; (d) 
Relative wavelet packet log-energy entropy. 
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Each decomposed signal now has eight features ( J  
3= ). The feature vectors of PQ disturbances are fed to 

the LS-SVM for classification. The LS-SVM topology 
used for classification is shown in Figure 7. We trained 
three different LS-SVMs (LS-SVM1, LS-SVM2, LSSV- 
M3) for seven different PQ disturbances (seven hundred 
samples of various PQ disturbances).The patterns to be 
distinguished from others are represented by +1 and the 
remaining patterns represented by -1 for both training 
and testing procedures. 

The output of three different LS-SVMs constructs the 
code of the input PQ signals, which the type of a distur-
bance or the normal signal will be identified. In the pre-
sent work a standard feed-forward network with 8 input 
neurons, 12 hidden neurons, and 7 output neurons was 
compared to the LS-SVM implementation. Furthermore, 
our results indicate that solutions obtained by LS-SVM 
training seem to be more robust with a smaller standard 

error compared to standard ANN training using the same 
features as inputs. 

The other seven hundred PQ disturbances of various 
types have been generated for the testing. The classifica-
tion results in a correct identification rate of 97.7% are 
shown in Table 1 using the proposed LS-SVM classifier. 
For comparison purposes, the total classification accura-
cies on the same test sets and the CPU times of training 
of the two classifiers are presented in Table 2. It is found 
that the proposed LS-SVM classifier performed better 
than the standard ANN classifier. 

To evaluate the performance of the kernel function, 
three LS-SVM classifiers were developed based on the 
linear kernel, the polynomial kernel, and the RBF kernel. 
The classification results with linear, polynomial and 
RBF kernel are shown in Table 3. The accuracy of clas-
sification is high in RBF kernel in comparison with the 
polynomial and linear kernels. 

 

 
Figure 6. Comparison of accuracy acquired with different 
C  and 2σ  values for RBF kernels. 

Table 1. Classification results using the proposed LS-SVM 
classifier. 

Type of 
PQ 

disturbances 

Number of 
disturbances 

Number of 
disturbances 

classified 

Number of 
disturbances 
misclassified 

Classification 
Accuracy 

(%) 

Sag 100 97 3 97 

Interruption 100 97 3 97 

Swell 100 99 1 99 

Harmonic 100 98 2 98 

Notch 100 99 1 99 

Osc. transient 100 97 3 97 

Imp. transient 100 96 4 96 

Sum 700 684 16 97.7 

Table 2. Comparison of the classification indices between 
the LS-SVM and ANN classifiers. 

Classifier Training set 
samples 

Testing set 
samples 

Mean 
training 
time (s) 

Mean 
testing 
ime (s) 

Mean 
correct 

ratios (%) 

LS-SVM 700 700 9.968 1.922 97.7 

ANN 700 700 101.523 1.993 95.2 

Table 3. Classification accuracies for the different kernels 
used. 

Kernel 
used 

Number of 
disturbances 
in training 

Number of 
disturbances 

in testing 

Number of 
disturbances 
misclassified 

Classifica-
tion 

accuracy (%) 

Linear 700 700 27 96.1 

Polynomial 700 700 20 97.1 

RBF 700 700 16 97.7  
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Figure 7. Classification of PQ disturbances based on MOC (Codebook’ is one column of Codebook). 
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5. Conclusions 
 
In this paper, an attempt has been made to extract effici- 
ent features of the PQ disturbances using WPT and to 
classify the disturbances using LS-SVM with the MOC 
technique. It is also found that relative wavelet packet 
log-energy entropy is considered as feature vectors, wh- 
ich are suitable for classification of PQ disturbances. For 
comparison different classifiers, the LS-SVM and ANN 
classifiers were implemented to deal with the same class- 
ification. The classification accuracies and the CPU tim- 
es of training showed that the LS-SVM classifier produc- 
es considerably better performance than that of the ANN 
classifier. 
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