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Abstract 

Reliability analysis is the key to evaluate software’s quality. Since the early 
1970s, the Power Law Process, among others, has been used to assess the rate 
of change of software reliability as time-varying function by using its intensity 
function. The Bayesian analysis applicability to the Power Law Process is jus-
tified using real software failure times. The choice of a loss function is an im-
portant entity of the Bayesian settings. The analytical estimate of likelih-
ood-based Bayesian reliability estimates of the Power Law Process under the 
squared error and Higgins-Tsokos loss functions were obtained for different 
prior knowledge of its key parameter. As a result of a simulation analysis and 
using real data, the Bayesian reliability estimate under the Higgins-Tsokos 
loss function not only is robust as the Bayesian reliability estimate under the 
squared error loss function but also performed better, where both are supe-
rior to the maximum likelihood reliability estimate. A sensitivity analysis re-
sulted in the Bayesian estimate of the reliability function being sensitive to the 
prior, whether parametric or non-parametric, and to the loss function. An 
interactive user interface application was additionally developed using Wol-
fram language to compute and visualize the Bayesian and maximum likelih-
ood estimates of the intensity and reliability functions of the Power Law 
Process for a given data.  
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1. Introduction 

Reliability analysis of a software under development is a key to assess whether a 
desired level of a quality product is achieved. Specially, when a software package 
is considered, and is tested after each failure detection, and then corrected until a 
new failure is observed. Over the past few decades, the reliability analysis of a 
software package has been studied, where graphical and numerical metrics have 
been introduced. One of the earliest, Duane (1964) [1], who introduced a graph 
to assess the reliability of a software over time using its failure times. It has the 
cumulative failure rate and the time on the y-axis and x-axis, respectively. In this 
graph, one can conclude a software reliability improvement if a negative curve is 
observed whereas a positive curve means the software reliability is deteriorating. 
On the other hand, a horizontal line indicates that the software reliability is stable. 
The failure numbers ( )N t  in time interval ( ]0, t  is considered a Poisson 
counting process after satisfying the following conditions: 

1) ( )0 0N t = = .  
2) Independent increment (counts of disjoint time intervals are independent).  
3) It has an intensity function  

( )
( )( )

0

, 1
lim .
t

P N t t t
V t

t∆ →

+ ∆ =
=

∆
 

4) Simultaneous failures do not exist  

( )( )
0

, 2
lim 0.
t

P N t t t
t∆ →

+ ∆ =
=

∆
 

The probability of random value ( )N t n=  is given by: 

( )( )
( ){ } ( ){ }0 0

exp d d
, 0.

!

nt t
V t t V t t

P N t n t
n

−
= = >

∫ ∫
         (1) 

Crow (1974) proposed a Non-Homogeneous Poisson Process (NHPP) , which 
is a Poisson Process with a time varying intensity function, given by: 

( ) ( )
1

; , , 0, 0, 0,tV t V t t
βββ θ β θ

θ θ

−
 = = > > > 
 

          (2) 

with β  and θ  are the shape and scale parameters, respectively. This Non- 
Homogeneous Poisson Process is also known as the Power Law Process (PLP). 

The joint probability density function (PDF) of the ordered failure times 

1 2, , , nT T T�  from a NHPP with intensity function ( ); ,V t β θ  is given by: 

( ) ( ) ( ){ }1 1 0
, , ; , exp ; , d ,

wn
n iif t t V t V t tβ θ β θ

=
= −∏ ∫�         (3) 

where w is the so-called stopping time; nw t=  for the failure truncated case. 
Considering the failure truncation case, the conditional reliability function of the 
failure time nT  given 1 1T t= , 2 2T t= , 3 3T t= , � , 2 2n nT t− −= , 1 1n nT t− −=  is a 
function of ( ); ,V t β θ . 

As a numerical assessment, the estimate of the key parameter β  in the 
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( ); ,V t β θ  has an important role in evaluating the reliability of a software 
package. When the estimates of β  are less and larger than 1, they indicate that 
the software reliability is improving and decreasing, respectively. The PLP is 
reduced to a homogeneous Poisson process when the estimate of β  equals to 
1. 

The NHPP has been used for analyzing software’s failure times, and prediction 
of the next failure time. The subject model has been shown to be effective and 
useful not only in software reliability assessment [2]-[11], but also in cyber- 
security; the attack detection in cloud systems [12] [13], breast and skin cancer 
treatments’ effectiveness, [14] [15] [16], respectively, finance; modeling of 
financial markets at the ultra-high frequency level [17], trnasportation; modeling 
passengers’ arrivals [18] [19] [20] [21] [22], and in the formulation of a software 
cost model [23]. 

Since the conditional reliability function of the PLP is a function of the 
( ); ,V t β θ , which includes the key parameter β . That being said updating the 

estimation methods for the key parameter will affect positively the ( ); ,V t β θ  
and the software reliability estimation, and therefore help the structuring of 
maintenance strategies. The authors [24] and [25] obtained the Bayesian estimates 
of the parameter β  under the the squared-error and Higgins-Tsokos loss 
functions, respectively, and compared them to their approximate maximum 
likelihood estimate (MLE). They also showed the superiority of the Bayesian 
estimates to the MLE of the key parameter β , and the improvement in the 
reliability assessment under the PLP. 

To perform Bayesian analysis on a real world problem, one needs to justify the 
applicability of such analysis. Then, the analysis process starts by identifying the 
probability distribution of the failure times of a software under development, the 
prior PDF of the key parameter β , and a loss function. The analytical 
tractability have made the squared-error loss function commonly used, where it 
places more weight on the estimates that are far from the true value than the 
estimates close to true value. Higgins and Tsokos [26] proposed a new loss 
function that maintains the analytical tractability feature and places exponentially 
more weight on extreme estimates of the true value. 

In the present study, we investigate the effectiveness, in Bayesian Analysis, of 
using the commonly used squared-error (S-E) loss function versus the Higgins- 
Tsokos (H-T) loss function that puts the loss at the end of the process, for 
modeling software failure times. To accomplish this, we used the underline 
failure distribution to be the Power Law Process subject to using Burr PDF as a 
prior of the key parameter β . In addition, we utilize both loss functions to 
perform sensitive analysis of the prior selections. We perform parametric and 
non-parametric priors, namely Burr, Inverted Gamma, Jeffery, and two Kernel 
PDFs. Therefore, the primary objective of the study is to answer the following 
questions within a Bayesian framework:  

1) How robust is the assumption of the squared-error loss function being 
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challenged by the Higgins-Tsokos loss function in estimating the key parameter 
β  of PLP for modeling software failure times?  

2) Is the Bayesian estimate of the intensity function, ( ); ,V t β θ , of the PLP 
sensitive to the selections of the prior (parametric and non-parametric) and loss 
function (Higgins-Tsokos and S-E loss functions)?  

The paper is organized as follows, Section 2 describes the theory and 
development of the Bayesian reliability model. Section 3 presents the results and 
discussion. Section 4 are the conclusions. 

2. Theory and Bayesian Estimates 
2.1. Review of the Analytical Power Law Process 

The probability of achieving n failures of a given system in the time interval  
( ]0, t  can be written as 

( )
( ){ } ( ){ }0 0

exp d d
; , 0,

!

nt t
V x x V x x

P x n t t
n

−
= = >

∫ ∫
          (4) 

where ( )V t  is the intensity function given by (2). The reduced expression is 
given by: 

( ) 1; exp ,
!

nt tP x n t
n

β β

θ θ
  = = − 
  

                 (5) 

is the PLP that is commonly known as Weibull or Non-Homogeneous Poisson 
Process. 

When the PLP is the underlying failure model of the failure times  

1 2 3 1, , , , nt t t t −�  and nt , the conditional reliability function of nt  given  

1 2 3 1, , , , nt t t t −�  can be written mathematically as a function of the intensity 
function, given by: 

( ) ( ){ }
1

1 2 1 1| , , , exp ; , d , 0,n

n

t
n n n nt

R t t t t V t t t tβ θ
−

− −= − > >∫�       (6) 

since it is independent of 1 2 3 2, , , , nt t t t −� .  
Note that the improvement in estimating the key parameter β  in the  
( )1 2 1| , , ,n nR t t t t −�  of the PLP, Equation (6), will improve the reliability esti- 

mation.  
The maximum likelihood estimation (MLE) of β  is a function of the largest 

failure time and the MLE of θ  is also a function of the MLE of β . Let  
1 2, , , nT T T�  denote the first n failure times of the PLP, where 2l nT T T< < <�   

are measured in global time; that is, the times are recorded since the initial 
startup of the system. Thus, the truncated conditional probability distribution 
function, ( )1 1| , ,i if t t t −� , in the Weibull process is given by 

( )
1

1
1 1 1| , , exp , .i

i i i
tt tf t t t t t

β βββ
θ θ θ θ

−
−

− −

   = − + <  
    

�        (7) 
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With ( )1 2, ,. , nt t t t= � , the Likelihood function for the first n failure times of 
the PLP 1 1 2 2, , , n nT t T t T t= = =�  can be written as 

( )
1

1
, exp .

n n
n i

i

t t
L t

β βββ
θ θ θ

−

=

     = −           
∏              (8) 

The MLE for the shape parameter is given by 

1

ˆ ,
log

n
n n
i

i

n
t
t

β

=

=
 
 
 

∑
                       (9) 

and for the scale parameter is 

ˆ1
ˆ .

n

n
n

t
n β

θ =                           (10) 

Note that the MLE of θ  depends on the MLE of β . 

2.2. Development of the Bayesian Estimates 

The authors [24] and [25] justified the applicability of Bayesian analysis to the 
PLP based on the Crow, [2] [27], failure data from a system undergoing 
developmental testing (Table 1), by showing that the MLE of the key parameter 
β  varies depending on the last failure time (largest time). Moreover, the 
authors used the Crow data (40 successive failure times) to compute the MLE of 
β  ( 40

ˆ 0.49β = ), then computed the estimate considering the 39 3181t =  is the 
largest failure time ( 39

ˆ 0.48β = ) and so on. After computing all MLEs of the key 
parameter β , they found that the MLEs of β  follows a four-parameter Burr 
probability distribution, ( ); , , ,g β α γ δ κ , known as the four-parameter Burr 
type XII probability distribution, with a PDF given by: 

( ) ( )

1

1
; , , ,

1

0 otherwise

Bg g

α

κα

β γακ
δ γ β

β β α γ δ κ β γδ
δ

−

+

 − 
  

  ≤ < ∞  = =  − +      


   (11) 

where the hyperparameters α , γ , δ  and κ  are being estimated using 
MLEs in the Goodness of Fit (GOF) test applied to the β  estimates. The MLE  
 
Table 1. Crow’s failure times of a system under development. 

Failure times 

0.7 3.7 13.2 17.6 54.5 99.2 112.2 

120.9 151 163 174.5 191.6 282.8 355.2 

486.3 490.5 513.3 558.4 678.1 688 785.9 

887 1010.7 1029.1 1034.4 1136.1 1178.9 1259.7 

1297.9 1419.7 1571.7 1629.8 1702.4 1928.9 2072.3 

2525.2 2928.5 3016.4 3181 3256.3 - - 
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of the key parameter β  is always affected by the largest failure, and therefore it 
is recommended not to consider it unknown constant. This recommendation 
provides the opportunity to study Bayesian analysis in the PLP with respect to 
various selections of loss functions and priors. 

The Bayesian estimates of β  will be derived using the squared-error and 
Higgins-Tsokos loss functions.  

2.2.1. Bayesian Estimates Using Squared Error (S-E) Loss Function 
The S-E loss function is given by: 

( ) ( )2ˆ ˆ, .L ξ ξ ξ ξ= −                       (12) 

The risk using the S-E loss function, where ξ β=  represents the estimate of 
ˆ ˆξ β= , is given by: 

( ) ( ) ( )
2ˆ ˆ, | d ,E L h tβ β β β β β

∞

−∞

   = −    ∫              (13) 

By differentiating ( )ˆ,E L β β 
   with respect to β  and setting it equal to 

zero we solve for β̂ , the Bayesian estimate of β  with respect to the S-E loss 
function and Burr probability distribution, Equation (11), given by: 

( ).
ˆ | d ,B SE h tβ β β β

∞

−∞
= ⋅∫                    (14) 

where the posterior PDF of β  given data (t), ( )|h tβ , using the Bayes?€? 
theorem, is given by: 

( ) ( ) ( )
( ) ( )

|
| .

| d
B

B

L t g
h t

L t g

β β
β

β β β
∞

−∞

=
∫

                 (15) 

Then, the Bayesian estimate of β , under the squared-error loss, is given by 
1

11

11

. 1

1

11

exp d

1
ˆ .

exp d

1

n
nn i

n i

B SE

n
nn i

n i

t t

t t

α

β β

κγ α

α

β β

κγ α

β γ
β δ β

θ θθ β γ
δ

β
β γ

β δ β
θ θθ β γ

δ

−

−+
∞

+=

−

−
∞

+=

− 
        −    

        − +     =
− 

        −    
        − +     

∏∫

∏∫

  (16) 

2.2.2. Bayesian Estimates Using the Higgins-Tsokos Loss Function 
The H-T loss function (1976) is given by  

( ) ( ){ } ( ){ }1 2 2 1

1 2
1 2

ˆ ˆexp exp
ˆ, 1, , 0.

f f f f
L f f

f f

ξ ξ ξ ξ
ξ ξ

− + − −
= − >

+
    (17) 

Higgins and Tsokos [26] showed that it places more weight on the extreme 
underestimation and overestimation when 1 2f f>  and 1 2f f< , respectively. 
The risk using the H-T loss function, where ξ β=  represents the estimate of 
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ˆ ˆξ β= , is given by:  

( ) ( ){ } ( ){ }
( )

1 2 2 1

1 2

ˆ ˆexp exp
ˆ, 1 | d

f f f f
E L h t

f f

β β β β
β β β β

∞

−∞

 − + − −
   = −   +
  

∫ (18) 

By differentiating ( )ˆ,E L β β 
   with respect to β  and setting it equal to 

zero we solve for β̂ , the Bayesian estimate of β  with respect to the H-T loss 
function, given by: 

{ } ( )
{ } ( )

1
.

1 2 2

exp | d1ˆ ln .
exp | d

B TH

f h t

f f f h t

β β β
β

β β β

∞

−∞
∞

−∞

 
 =
 + − 

∫
∫

            (19) 

The Bayesian estimate of β  with respect to the Higgins-Tsokos loss function 
and Burr probability distribution, as the prior, has ( )|h tβ  given by 

( )

1

1

11

11

11

exp d

1

| .
( )

exp d

1

n
nn i
i

n
nn i
i

t t

h t

t t

α

β β

κα

αβ β

κγ α

β γ
β δ β
θ θ θ β γ

δ
β

β γ
β δ β
θ θ θ β γ

δ

−

−

+=

−
−

∞

+=

− 
         −                − +     =

−
       −                − +     

∏

∏∫

  (20) 

With the use of Equation (6), the conditional reliability of it , the analytical 
structure of the conditional Bayesian reliability estimate for the PLP that is 
subject to the above information is given by: 

( ) ( ){ }
1

1 2 1 1
ˆ ˆ| , , , exp ; , d , 0,i

i

t
B i i B i it

R t t t t V t t t tβ θ
−

− −′= − > >∫�      (21) 

where  

( )
*

*

*

ˆ 1ˆ
ˆˆ ; , , 0, 0,

B
B

B B

tV t t
ββ

β θ θ
θ θ

−
 ′ = > > 
 

            (22) 

where *
ˆ

B
β  is the Bayesian estimate using .

ˆ
B SEβ  or .

ˆ
B THβ  for the squared 

error or Higgins-Tsokos loss functions, respectively. We are also interested in 
comparing the Bayesian estimates, using Higgins-Tsokos loss function, of the 
subject parameter for different parametric and non-parametric priors, and with 
respect to its MLE given by Equation (9), assuming β  has a random behavior 
and θ  as known; as well as, comparing Equation (10) with an adjusted MLE 
considered as a function of β . 

2.3. Sensitivity Analysis: Prior and Loss Function 

In this section, we seek the answer to the following question: Is the Bayesian 
MLE estimate of the intensity function, ( ); ,V t β θ , of the PLP sensitive to the 
selections of the prior( parametric and non-parametric) and loss function 
(Higgins-Tsokos and S-E loss functions)? Assuming β  is a random variable, 
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using simulated data, sensitive analysis was done for the following parametric 
and non-parametric priors ([25]): 

1) Jeffreys’ prior ([28]): Jeffreys’ prior is proportional to the square root of the 
determinant of the Fisher information matrix ( ( )I β ). It is a non-informative 
prior, where the Jeffreys?€? prior for the key parameter of the PLP ( )I β  is 
scalar in this case, is given by:  

( ) ( ) ( )2

2

log ; 1 , 0.J

L t
g I E

β
β β β

ββ

 ∂
∝ = − ∝ >  ∂ 

         (23) 

2) The inverted gamma: The PLP and inverted gamma probability distributions 
belong to the exponential family of probability distributions, which makes the 
latter a logical choice for an informative parametric prior for β . The inverted 
gamma probability distribution is given by: 

( ) ( )

1
1 exp , 0, 0, 0,

v

IGg v
v

µ µβ β µ
β µ β

+
   −

∝ > > >   Γ   
       (24) 

where v and µ  are the shape and scale parameters.  
3) Kernel’ prior:  
The kernel probability density estimation is a non-parametric method to 

approximately estimate the PDF of β  using a finite data set. It is given by: 

( )
1

1 ,
n

i
K

i
g K

nh h
β β

β
=

− =  
 

∑                  (25) 

where K is the kernel function and h is a positive number called the bandwidth.  

2.3.1. The Jeffreys’ Prior 
Assuming Jeffreys’ PDF (23) as the prior of β  and using the likelihood (8) and 
(15), the posterior density of β  is: 

( )
( )

( )

1
1

1

1
1

10

exp

| .

exp d

n
nn

in i

J n
nn

in i

t t

h t
t t

β
β

β

β
β

β

β
θ θ

β
β β

θ θ

−
−

=

−
∞ −

=

   
  
   =
   
  
   

∏

∏∫
        (26) 

Thus, the Jeffreys’ Bayesian estimate of the key parameter β  under the S-E 
and H-T loss functions, using (14) and (19), are given by: 

( ). 0
ˆ | d ,J

B SE Jh tβ β β β
∞

= ⋅∫                  (27) 

and 

{ } ( )
{ } ( )

10
.

1 2 20

exp | d1ˆ ln .
exp | d

JJ
B HT

J

f h t

f f f h t

β β β
β

β β β

∞

∞

 
 =
 + − 

∫
∫

         (28) 

We must rely on a numerical estimation because we cannot obtain close 
solutions for both .

ˆ J
B SEβ  and .

ˆ J
B HTβ . Also note that it depends on knowing or 

being able to estimate the scale parameter θ . 
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2.3.2. The Inverted Gamma Prior 
The following is an examination of the problem when the prior density of β  is 
given by the inverted gamma (24). Using the likelihood (8), the posterior density 
of β  is given by: 

( )
( )

( )

1
1

1

1
1

10

exp

| .

exp d

n v
nn

in i

IG n v
nn

in i

t t

h t
t t

β
β

β

β
β

β

β µ
θ βθ

β
β µ β

θ βθ

− −
−

=

− −
∞ −

=

   − −  
   =

   − −  
   

∏

∏∫
         (29) 

Thus, the Bayesian estimates of β  under the inverted gamma with respect to 
the S-E and H-T loss functions, using (14) and (19), are given by: 

( ). 0
ˆ | d ,IG

B SE IGh tβ β β β
∞

= ⋅∫                     (30) 

and  

{ } ( )
{ } ( )
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.

1 2 20

exp | d1ˆ ln .
exp | d

IGIG
B HT

IG

f h t

f f f h t

β β β
β

β β β

∞

∞

 
 =
 + − 

∫
∫

             (31) 

Here as well, we must rely on a numerical estimation because we cannot 
obtain close solutions for .

ˆ IG
B SEβ  and .

ˆ IG
B HTβ . Also note that it depends on 

knowing or being able to estimate the scale parameter θ . 

2.3.3. The Kernel Prior 
Assuming Kernel density (25) as the prior of β  and using the likelihood (8), 
the posterior density of β  is: 
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    
     

∑∏

∑∏∫
    (32) 

Thus, the kernel Bayesian estimates of the key parameter β  under the S-E 
and H-T loss functions, (14) and (19), are given by:  

( ). 0
ˆ | d ,K

B SE Kh tβ β β β
∞

= ⋅∫                    (33) 

and  

{ } ( )

{ } ( )
1

.
1 2 2

exp | d1ˆ ln .
exp | d

kK
B HT

k

f h t

f f f h t
γ

γ

β β β
β

β β β

∞

∞

 
 =  + −  

∫
∫

           (34) 

We must rely on a numerical estimation because we cannot obtain close 
solutions for .

ˆ K
B SEβ  and .

ˆ K
B HTβ . Also note that it depends on knowing or being 

able to estimate the scale parameter θ . In addition, the kernel function, ( )K u , 
and bandwidth, h, will be chosen to minimize the asymptotic mean integrated 
squared error (AMISE) given by: 

( )( ) ( ) ( )( )2ˆ ˆAMISE d ,f E f fβ β β β = −  ∫             (35) 
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where ( )f̂ β  and ( )f β  are the estimated probability density of β  and the 
true probability density of β  respectively. 

Table 2 shows the acronyms and notations used in this study. 

3. Results and Discussion  
3.1. Numerical Simulation 

A Monte Carlo simulation was used to compare the Bayesian, under the S-E and 
H-T loss functions, and the MLE approaches. The parameter β  of the intensity 
function for the PLP was calculated using numerical integration techniques in 
conjunction with a Monte Carlo simulation to obtain its Bayesian estimates. 
Substituting these estimates in the intensity function we obtained the Bayesian 
intensity function estimates, from which the reliability function can be esti- 
mated. 

For a given value of the parameter θ , a stochastic value for the parameter β  
was generated from a prior probability density. For a pair of values of θ  and 
β , 400 samples of 40 failure times that follow a PLP were generated. This 
procedure was repeated 250 times and for three distinct values of θ . The 
procedure is based on the schematic diagram given by Algorithm 1. 
 
Table 2. Acronyms and notations used in this study. 

Acronyms 

HPP Homogeneous Poisson Process 

NHPP Non-Homogeneous Poisson Process 

PLP Power Law Process 

MLE Maximum likelihood estimate 

PDF Probability density function 

CDF Cumulative density function 

Notations 

β  and θ  Shape and Scale parameters of PLP 

1 2, , , nT T T�  First n successive failure times of the PLP 

( ); ,V t β θ  Intensity function of the PLP 

RE Relative efficiency 

AMISE Asymptotic mean integrated squared error 

H-T Higgin-Tsokos 

S-E Squared-Error 

ˆ
HTβ  Bayesian estimate of β  under H-T loss function 

ˆ
SEβ  Bayesian estimate of β  under S-E loss function 

ĤTV  Bayesian MLE estimate of ( ); ,V t β θ  under H-T loss function 

ŜEV  Bayesian MLE estimate of ( ); ,V t β θ  under S-E loss function 

.B HT  Bayesian estimate under Burr PDF and H-T loss function 

.B SE  Bayesian estimate under Burr PDF and S-E loss function 
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Algorithm 1. Simulation to analyze Bayesian estimates of β  for a given θ . 

 
For each sample of size 40, the Bayesian estimates and MLEs of the parameter 

were calculated when { }0.5,1.7441,4θ ∈ . The comparison is based on the mean 
squared error (MSE) averaged over the 100000 repetitions. The results are given 
in Table 3. It is observed that .

ˆ
B SEβ  and .

ˆ
B HTβ  maintain similar accuracy, 

where both are superior to β̂  in estimating β . 
For different sample sizes, the Bayesian estimates under S-E and H-T loss 

functions and the MLEs of the parameter β  were calculated and averaged over 
10,000 repetitions. Table 4 displays the simulated result of comparing a true 
value of β  with respect to its MLE and Bayesian estimates for  

20,30, ,160n = � . 
It can be observed that the Bayesian estimates of β  are closer to the true 

value than the MLE of β , where the Bayesian estimate under the H-T loss 
function is slightly performing better even for a very small sample size of 

20n = . A graphical comparison of the true estimate of β  along with the 
Bayesian estimates (under both S-E and H-T loss functions) and MLE as a 
function of sample size is given in Figure 1. 

Figure 1 shows the the excellent performance of he Bayesian estimates 
compared to the MLE of the key parameter β . The Bayesian estimates tend to 
underestimate while while the MLE estimate tends to overestimate the true 
value, especially for small sample sizes. The MSEs of the MLE and Bayesian 
estimates of β  for each sample size are given below by Figure 2. 

https://doi.org/10.4236/eng.2019.115020


F. N. Alenezi, C. P. Tsokos 
 

 

DOI: 10.4236/eng.2019.115020 283 Engineering 
 

 
Figure 1. β  estimates versus sample size. 
 

 
Figure 2. MSE of β  Bayesian estimates versus sample size. 
 
Table 3. MSE for Bayesian estimates, under squared error and Higgin-Tsokos loss 
functions, and MLEs of β . 

θ  MSE of β̂  MSE of .
ˆ

B SEβ  MSE of .
ˆ

B HTβ  

0.50000 0.01124360 0.0005077610 0.000507356 

1.74410 0.01105730 0.0005163560 0.000516057 

400000 0.01096100 0.0005190550 0.000518632 

 
For the considered sample sizes, the MSEs of the Bayesian estimates of β  are 

sufficiently smaller than the MSEs for the MLE of β . The Bayesian estimate 
under the H-T loss function performed slightly better than the Bayesian estimate 
under the S-E loss function.  
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Table 4. Bayesian estimates, under squared error and Higgin-Tsokos loss functions, and 
MLEs for the parameter 0.7054β =  averaged over 10,000 repetitions. 

n Fixedβ  β̂  .
ˆ

B SEβ  .
ˆ

B HTβ  

20 0.7054 0.784026 0.673706 0.675263 

30 0.7054 0.756617 0.689413 0.690189 

40 0.7054 0.743982 0.695989 0.696467 

50 0.7054 0.735310 0.698826 0.699158 

60 0.7054 0.729563 0.700393 0.700642 

70 0.7054 0.725977 0.701493 0.701690 

80 0.7054 0.723338 0.702220 0.702382 

100 0.7054 0.719117 0.703049 0.703165 

120 0.7054 0.716315 0.703496 0.703585 

140 0.7054 0.714821 0.703909 0.703980 

160 0.7054 0.713641 0.704185 0.704244 

 
Since the Bayesian estimates under both loss functions for β  are superior to 

its MLE, Molinares and Tsokos [24] showed the improvement in the scale 
paramter (θ ) when its estimate (10) is adjusted by using the Bayesian estimate 
of β  instead of the corresponding MLE. Therefore, we calculated the adjusted 
estimate of θ  using MLE and Bayesian estimates under S-E and H-T loss 
functions of β , shown in Table 5. 

This proposed adjusted estimates, .B̂ SEθ  and .B̂ HTθ , were averaged over the 
10,000 repetitions. It can be appreciated that, based on the Bayesian influence on 
β , .B̂ SEθ  and .B̂ HTθ  are better estimates than the MLE of θ  ( θ̂ ). This also 
can be seen in Figure 3, which visualize the performance of .B̂ SEθ  and .B̂ HTθ  
compared to the corresponding MLE. 

Figure 3 shows the excellent performance of the adjusted estimates of θ , 
where the adjusted estimate under the H-Twas slightly closer to the true value. 
The MSEs of these estimates of θ  are displayed in Figure 4 given below. 

The MSEs of the adjusted estimates of the shape parameter ( θ ) are 
significantly smaller that the MSEs of the MLE estimate. The MSEs of the 
adjusted estimates are then displayed alone in Figure 5 to look closer at their 
performance. 

It can be noticed that the adjusted estimate of θ  under the influence of the 
Bayesian estimate with the H-T loss function, is better, particularly when 
considering small sample sizes. 

We computed the adjusted estimate for the parameter θ  and its MSE over 
10000 repetitions for different values of θ  and sample size 40n = . The results 
are given in Table 6. 

The adjusted estimate of θ  are were more accurate when considering small 
true values of θ  than the larger values. 
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Figure 3. θ  estimates versus sample size. 

 

 
Figure 4. MSE of θ  Bayesian and MLE estimates versus sample size. 

 

 
Figure 5. MSE of θ  Bayesian estimates versus sample size. 
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Table 5. MLE Bayesian estimates, under squared error and Higgin-Tsokos loss functions, 
and and MLEs for the parameter 1.7441θ =  averaged over 10,000 repetitions. 

n θ  M̂LEθ  .B̂ SEθ  .B̂ HTθ  

20 1.7441 3.17139 1.3507 1.36422 

30 1.7441 2.908 1.50142 1.5097 

40 1.7441 2.73107 1.57545 1.58115 

50 1.7441 2.59245 1.61556 1.61985 

60 1.7441 2.48865 1.64065 1.64406 

70 1.7441 2.41782 1.65803 1.66084 

80 1.7441 2.36522 1.67055 1.67294 

100 1.7441 2.26774 1.68719 1.68902 

120 1.7441 2.20117 1.69776 1.69923 

140 1.7441 2.15539 1.70537 1.70659 

160 1.7441 2.11872 1.71089 1.71193 

 
Table 6. MSE of θ  estimates using Bayesian estimates, under squared error and 
Higgin-Tsokos loss functions, and MLE of β . 

θ  .B̂ SEθ  .B̂ HTθ  MSE of .B̂ SEθ  MSE of .B̂ HTθ  

0.50 0.5020220 0.5033140 0.00692919 0.00691164 

1.74410 1.746390 1.75090 0.0830342 0.0827802 

40 3.999920 4.010250 0.440474 0.439035 

 
The slight improvements in the estimation of the shape and scale parameters 

of the PLP is expected to jointly improve the estimate of the intensity function 
and therefore the reliability estimation of a software. For a fixed value of  

1.7441θ =  and a sample size similar to the size of the collected data, 40n = , 
the estimates of the intensity function ( )M̂LEV t , ( ).B̂ SEV t , and ( ).B̂ HTV t  were 
obtained when we use β̂ , .

ˆ
B SEβ , and .

ˆ
B HTβ , respectively, in (2). That is, 

( )
ˆ 1ˆˆ , 0, 0.MLE

tV t t
ββ θ

θ θ

−
 ′ = > > 
 

                 (36) 

( )
.ˆ 1

.
.

ˆ
ˆ , 0, 0.

B SE
B SE

B SE
tV t t

ββ
θ

θ θ

−
 ′ = > > 
 

              (37) 

( )
.ˆ 1

.
.

ˆ
ˆ , 0, 0.

B HT
B HT

B HT
tV t t

ββ
θ

θ θ

−
 ′ = > > 
 

             (38) 

Their graphs (Figure 6) reveal the superior performance of ( ).B̂ SEV t′  and 
( ).B̂ HTV t′ . 

In order to obtain Bayesian estimates of the intensity function, .B̂ SEV ∗  and 

.B̂ HTV ∗ , we substituted the Bayesian estimates of β  and its corresponding θ  
MLE in (2): 
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Figure 6. Graph for 1.7441θ =  and the corresponding β  Bayesian estimates and 

MLE’s used in M̂LEV ′ , .B̂ SEV ′ , and .B̂ HTV ′  (of time t) , n = 40. 

 

( )
.ˆ 1

.
.

ˆ
ˆ , 0.ˆ ˆ

B SE
B SE

B SE
tV t t

ββ
θ θ

−
∗  = > 

 
                  (39) 

( )
.ˆ 1

.
.

ˆ
ˆ , 0.ˆ ˆ

B HT
B HT

B HT
tV t t

ββ
θ θ

−
∗  = > 

 
                  (40) 

The MLE of the intensity function, M̂LEV , is obtained using the MLEs of β  
and θ . That is,  

( )
ˆ 1ˆˆ , 0.ˆ ˆMLE

tV t t
ββ

θ θ

−
 = > 
 

                    (41) 

The Bayesian MLE of the intensity function under the influence of the 
Bayesian estimates of β , denoted by .B̂ SEV  and .B̂ HTV , are obtained by subs- 
tituting .

ˆ
B HTβ  and .

ˆ
B SEβ  with .B̂ HTθ  and .B̂ SEθ , respectively, in (2): 

( )
.ˆ 1

.
.

. .

ˆ
ˆ , 0,ˆ ˆ

B SE

B SE
B SE

B SE B SE

tV t t
β

β
θ θ

−
 

= >  
 

                (42) 

and  

( )
.ˆ 1

.
.

. .

ˆ
ˆ , 0.ˆ ˆ

B HT

B HT
B HT

B HT B HT

tV t t
β

β
θ θ

−
 

= >  
 

               (43) 

To measure the robustness of .B̂ HTV  with respect to .B̂ SEV  and M̂LEV , we 
calculated the relative efficiency (RE) of the estimate .B̂ HTV  compared to the 
estimate .B̂ SEV  defined by: 

( ) ( ) ( )

( ) ( )

2

.
. . 2

.

ˆ d
ˆ ˆ, .

ˆ d

B HT
B HT B SE

B SE

V t V t t
RE V V

V t V t t

∞

−∞
∞

−∞

 − =
 − 

∫
∫

           (44) 
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If 1RE = , .B̂ HTV  and .B̂ SEV  will be interpreted as equally efficient. If  
1RE < , .B̂ HTV  is more efficient than .B̂ SEV . To the contrary, if 1RE > , .B̂ HTV  

is less efficient than .B̂ SEV . Similarly, we compared .B̂ HTV  and M̂LEV . Bayesian 
estimates and MLEs for the parameter 0.7054β =  and 1.7441θ =  (Table 7), 
averaged over 10000 repetitions, are used, for 40n = , to compare .B̂ HTV , .B̂ SEV  
and M̂LEV  using (44). The results are given in Table 8 and Table 9. 

For the comparison of .B̂ HTV  and .B̂ SEV , the ( ). .
ˆ ˆ,B HT B SERE V V  is less than 1, 

which implies that the intensity function using .
ˆ

B HTβ  and .B̂ HTθ  is more 
efficient than the intensity function under .

ˆ
B SEβ  and .B̂ SEθ . Comparing .B̂ HTV  

and .B̂ SEV  to M̂LEV , we obtained a similar result, establishing the superior 
relative efficiency of Bayesian estimates over MLE estimates. The corresponding 
graphs for the intensity functions are given in Figure 7. 

In addition, .B̂ HTV ∗  and .B̂ SEV ∗  are computed using Bayesian estimates for β  
and MLE estimates θ , which were less efficient compare to M̂LEV , .B̂ SEV , and 

.B̂ HTV . Based on the results, the Bayesian estimates under the H-T loss function 
will be used to analyze the real data. 
 

 
Figure 7. Estimates of the intensity function (of time t) using values in Table 7, n = 40. 
 
Table 7. Averages of the Bayesian (under the under squared error and Higgin-Tsokos 
loss functions) and MLE estimates of β  and θ . 

β  β̂  .
ˆ

B SEβ  .
ˆ

B HTβ  θ  θ̂  .B̂ SEθ  .B̂ HTθ  

0.7054 0.743982 0.695989 0.696467 1.7441 2.73107 1.57545 1.58115 

 
Table 8. Intensity functions with Bayesian and MLE estimates for β  and θ . 

( )V t  
M̂LEV  .B̂ SEV  .B̂ HTV  

0.29460.476465 t −⋅  0.2560180.352321 t −⋅  0.3040110.507238 t −⋅  0.3035330.5062 t −⋅  

 
Table 9. Relative efficiency of .B̂ HTV  to M̂LEV  and .B̂ BSV . 

( ).
ˆ ˆ,B SE MLERE V V  ( ).

ˆ ˆ,B HT MLERE V V  ( ). .
ˆ ˆ,B HT B SERE V V  

0.087746 0 0.07619190 0.868324 0 
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3.2. Using Real Data 

Using the reliability growth data from Table 1, we computed .
ˆ

B HTβ  and the 
adjusted estimate .B̂ HTθ  in order to obtain a Bayesian intensity function under 
H-T loss function. We followed Algorithm 2 to obtain the Bayesian intensity 
function for the given real data. 

For the failure data of Crow, provided in Table 1, .
ˆ

B HTβ  is approximately 
0.501199 and .B̂ HTθ  is approximately 2.07144. Therefore, with the use of .B̂ HTθ , 
the Bayesian MLE of the intensity function ( ( ).B̂ HTV t ) for the data is given by: 

( ) 0.498801
.

ˆ 0.347933 , 0.B HTV t t t−= ⋅ >                 (45) 

To obtain a Bayesian MLE for the reliability function under H-T loss function, 
we use this Bayesian estimate for the intensity function. The analytical form for 
the corresponding Bayesian reliability estimate, based on the data, is given by: 

( ) { }
1

0.498801
. 1 1 1

ˆ | , , exp 0.347933 d , 0.i

i

t
B HT i i i it

R t t t x x t t
−

−
− −= − > >∫�     (46) 

Thus, the conditional reliability of the software given that the last two failure 
times were 39 3181t =  and 40 3256.3t =  is approximately 63%. 
 

 
Algorithm 2. Estimate of the intensity function using Crow data in Table 1. 
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3.3. Sensitivity Analysis: Prior and Loss Function  

To answer the second research question, “Is the Bayesian estimate of the 
intensity function, ( ); ,V t β θ , of the PLP sensitive to the selections of the prior 
(both parametric and non-parametric priors) and loss function?”, we developed 
a simulation procedure, Algorithm 3, given below. 

The algorithm compares the Bayesian and MLE estimates of the intensity 
function, ( ); ,V t β θ , under different prior PDFs, for various sample sizes, with 
the H-T and S-E loss functions. The relative efficiency is used to compare these 
estimates of the ( ); ,V t β θ . The relative efficiency with a value less than 1, larger 
than 1, and approximately equal to 1 indicate that the Bayesian estimates under 
the H-T loss function are more, less, equally efficient to the Bayesian estimate 
under the S-E loss function and the same analysis is applied when we compared 
to the MLE of ( ); ,V t β θ , respectively. The algorithm starts by initializing the 
shape and scale parameters of the PLP, β  and θ , respectively, and the 
number of iterations p. 
 

 
Algorithm 3. Simulation to compare Bayesian and MLE estimates of the intensity 
function. Notations found in Table 2. 
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For various sample sizes ( 20,40,80,140n = ), random failure times (time to 
failures) distributed according to the PLP are simulated using the initialized 
values of the PLP parameters. Then, the Bayesian and MLE estimates of the key 
parameter β  are computed and used to compute the Bayesian estimates of θ , 
respectively. After a predetermined number of iterations, the average values of 
the Bayesian and MLE estimates of β  and θ  were used to obtain the 
analytical forms of the ( ); ,V t β θ  under Bayesian, for both H-T and S-E loss 
functions and MLE, namely ˆ ˆ,HT SEV V , and M̂LEV , respectively. Informative 
parametric priors were considered such as the inverted gamma and the Burr 
PDFs, whereas the Jeffery prior was chosen as non-informative prior. In addition, 
probability kernel density function is selected as a non-parametric prior PDF. 
Probability kernel density estimation depends on the sample size, bandwidth, 
and the choice of the kernel function ( ( )K u ). In this study, the optimal 
bandwidth ( *h ) and kernel function were chosen to minimize the asymptotic 
mean integrated squared error (AMISE). The simplified form of the AMISE is 
reduced to: 

( )( ) ( ) ( ) ( )( )24 2
2

1ˆAMISE
4

C K
f h k R f

n h
β β = + ⋅ ⋅ ⋅ ⋅  

         (47) 

where:  
 ( ) ( )( )2

dK uC uK = ∫ .  
 n: sample size.  
 h: bandwidth.  

 ( )2
2 dk u K u u

+∞

−∞
= ⋅∫ .  

 ( ) ( )2f β  is the second derivative of Burr PDF.  

 ( ) ( )( ) ( ) ( )( )22 2 dR f fβ β β= ∫ .  

 ( )
( ) ( )( )

1 5

* 1 5
22

2

C K
h n

k R f β
−

 
 = ⋅
 ⋅ 

.  

AMISE was numerically calculated using the optimal bandwidth, with respect 
to different samples sizes for each kernel function considered in this study, 
namely Epanechnikov, Cosine, Biweight, Triweight, Gaussian, Triangle, Uniform, 
Tricube, and Logistic kernel functions. The results is given by Table 10. 

The minimum AMISE corresponds to the Epanechnikov kernel function  

( ( ) ( )2
1

3 1
4 uK u u I ≤= − ). In addition to the Epanechnikov kernel function, the 

Gaussian kernel function ( ( )
21 exp

22π R
uK u I

 −
=  

 
 ) was also used in the 

calculation since it is commonly used for its analytical tractability. 
Numerical integration techniques were used to compute the Bayesian 

estimates of the intensity function, ( ); ,V t β θ , parameters under both H-T and 
S-E loss functions according to the equations defined in Section 2.3, for each of 
the parametric and non-parametric prior PDFs. Samples of size 20, 40, 80, and 

https://doi.org/10.4236/eng.2019.115020


F. N. Alenezi, C. P. Tsokos 
 

 

DOI: 10.4236/eng.2019.115020 292 Engineering 
 

Table 10. Calculations of the AMISE with respect to different sample size, optimal 
bandwidth, and kernel function. 

Kernel function 
Sample size 

50 100 150 200 500 

Epanechnikov 0.362827 0.208389 0.150662 0.119688 0.0575042 

Cosine 0.362986 0.208481 0.150728 0.119741 0.0575295 

Biweight 0.364607 0.209412 0.151401 0.120275 0.0577863 

Triweight 0.366740 0.210637 0.152286 0.120979 0.0581243 

Gaussian 0.377644 0.216900 0.156814 0.124576 0.0598525 

Triangle 0.366972 0.210770 0.152383 0.121056 0.0581612 

Uniform 0.384675 0.220938 0.159734 0.126895 0.0609669 

Tricube 0.363433 0.208737 0.150913 0.119888 0.0576002 

Logistic 0.399132 0.229241 0.165737 0.131665 0.0632582 

 
140 were generated where the parameters β  and θ  were initialized to be 
0.7054 and 1.7441, respectively. In the analytical form (17), 1f  and 2f  are 
conditioned to be positive numbers and play a big role in assigning the weight of 
loss depending on the estimator’s behavior, whether underestimating or 
overestimating. Therefore, the simulation procedure was repeated three times 
according to the following cases:  

1) 1 2f f>  
2) 1 2f f<  
3) 1 2f f=  
The results for 1000 repetitions, 1 2f f> , and 20,40,80,140n = , are shown 

in Table 11. 
It can be observed that the Bayesian estimate of the ( ); ,V t β θ  under the H-T 

loss function ( ĤTV ) and S-E loss function ( ŜEV ) had an outstanding efficiency 
compared to the MLE of the ( ); ,V t β θ  ( M̂LEV ) for all sample sizes and prior 
PDFs, with the exception of the sample sizes 20 and 40 when inverted gamma 
PDF was the selected prior. The ĤTV  was more efficient (6% - 11% estimation 
improvement) compared to the ŜEV  when Burr PDF is selected to be the prior. 
The ĤTV  had similar efficiency compared to the ŜEV  when Jeffrey prior is 
selected and for large sample sizes, whereas unsurprisingly ŜEV  was more 
efficient for small sample sizes since Jeffrey Bayesian estimate of the key 
parameter β  tends to overestimate and for the H-T loss function gives more 
exponential weight on the extreme overestimate loss than the extreme under- 
estimate loss when 1 2f f> . For Bayesian Gaussian and Epanechnikov kernel 
estimates, the ĤTV  was more efficient compared to the ŜEV  for sample sizes 

20,40n =  and 80 with 11% - 13% of estimation improvement even though they 
tend to underestimate and the H-T loss function puts more exponential weight 
on the extreme underestimation, but tend to have similar efficiency for sample 
size 140n = . 
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Table 11. The relative efficiency (RE) of the Bayesian estimate under H-T loss function, 

ĤTV  when 1 2f f> , compared to the Bayesian estimate under S-E loss function, ŜEV , 

and the MLE, M̂LEV , of ( ); ,V t β θ . 

Prior PDF  ( )ˆ ˆ,HT MLERE V V  ( )ˆ ˆ,SE MLERE V V  ( )ˆ ˆ,HT SERE V V  

Burr 

20n =  

0.1356 0.1519 0.8923 

Inverted gamma 4.2461 4.1632 1.0199 

Jeffrey 0.0365 0.0289 1.2616 

Gaussian kernel 0.1187 0.1346 0.8818 

Epanechnikov kernel 0.1187 0.1346 0.8818 

Burr 

40n =  

0.3047 0.3345 0.9107 

Inverted gamma 6.3934 6.2832 1.0175 

Jeffrey 0.0166 0.0119 1.3947 

Gaussian kernel 0.1234 0.1424 0.8663 

Epanechnikov kernel 0.1221 0.1411 0.8659 

Burr 

80n =  

0.0136 0.0151 0.9007 

Inverted gamma 0.8058 0.7934 1.0156 

Jeffrey 0.0159 0.0144 1.1065 

Gaussian kernel 0.0105 0.0117 0.8988 

Epanechnikov kernel 0.0114 0.0127 0.8999 

Burr 

140n =  
 

0.0035 0.0037 0.9367 

Inverted gamma 0.1421 0.1399 1.0155 

Jeffrey 0.0040 0.0037 1.0680 

Gaussian kernel 0.0019 0.0018 1.0119 

Epanechnikov kernel 0.0021 0.0022 0.9670 

 
The results for 1000 repetitions, 1 2f f> , and 20,40,80,140n = , are shown 

in Table 12. 
Again, the Bayesian MLE estimate of the ( ); ,V t β θ  under the H-T loss 

function ( ĤTV ) and S-E loss function ( ŜEV ) had an outstanding efficiency 
compared to the MLE of the ( ); ,V t β θ  ( M̂LEV ) for all sample sizes and prior 
PDFs. When the inverted gamma was selected as prior, the ĤTV  was more 
efficient compared to the ŜEV  for all sample sizes with an approximately 2% of 
estimation improvement. As expected, the ĤTV  was less efficient compared to 
the ŜEV  when Burr PDF, and Gaussian and Epanechnikov kernel densities are 
selected as priors for sample sizes 20 and 40, since they tend to underestimate 
the ( ); ,V t β θ  parameters, and the H-T loss function tends to put more weight 
on the extreme overestimation than on the extreme underestimation when 

1 2f f> . But the ĤTV  and ŜEV  had approximately similar efficiency for 
sample size 80n = , and the ĤTV  tends to be slightly more efficient for large 
sample size ( 140n = ). The ĤTV  was more efficient (4% - 24% estimation  
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Table 12. The relative efficiency (RE) of the Bayesian estimate under H-T loss function, 

ĤTV  when 1 2f f< , compared to the Bayesian estimate under S-E loss function, ŜEV , 

and the MLE, M̂LEV , of ( ); ,V t β θ . 

Prior PDF  ( )ˆ ˆ,HT MLERE V V  ( )ˆ ˆ,SE MLERE V V  ( )ˆ ˆ,HT SERE V V  

Burr 

20n =  

0.2068 0.1860 1.1116 

Inverted gamma 4.7351 4.8309 0.9802 

Jeffrey 0.0232 0.0306 0.7589 

Gaussian kernel 0.1948 0.1735 1.1226 

Epanechnikov kernel 0.1949 0.1736 1.1227 

Burr 

40n =  

0.1500 0.1327 1.1305 

Inverted gamma 5.9173 6.0152 0.9837 

Jeffrey 0.0673 0.0785 0.8581 

Gaussian kernel 0.0516 0.0431 1.1980 

Epanechnikov kernel 0.051 0.0425 1.1985 

Burr 

80n =  

0.0126 0.0121 1.0406 

Inverted gamma 0.8155 0.8274 0.9856 

Jeffrey 0.0326 0.0349 0.9365 

Gaussian kernel 0.0111 0.0108 1.0307 

Epanechnikov kernel 0.0116 0.0112 1.0356 

Burr 

140n =  

0.0180 0.0183 0.9814 

Inverted gamma 0.2545 0.2576 0.9880 

Jeffrey 0.0329 0.0338 0.9733 

Gaussian kernel 0.0222 0.0227 0.9762 

Epanechnikov kernel 0.0204 0.0209 0.9772 

 
improvement) compared to the ŜEV  when Burr Jeffrey is chosen to be the prior 
PDF. The ĤTV  had similar efficiency compared to the ŜEV  for large sample 
sizes and when Jeffrey prior is selected, whereas unsurprisingly ŜEV  was more 
efficient for small sample sizes since Jeffrey Bayesian estimate of the key 
parameter β  tends to overestimate and for the H-T loss function gives more 
exponential weight on the extreme overestimate loss than the extreme under- 
estimate loss when 1 2f f> . For Bayesian Gaussian and Epanechnikov kernel 
estimates, the ĤTV  was more efficient compared to the ŜEV  for sample sizes 

20,40n =  and 80 with 11% - 13% of estimation improvement even though they 
tend to underestimate and the H-T loss function puts more exponential weight 
on the extreme underestimation, but tend to have similar efficiency for sample 
size 140n = . 

The results for 1000 repetitions, 1 2f f> , and 20,40,80,140n = , are shown 
in Table 13. 
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Table 13. The relative efficiency (RE) of the Bayesian estimate under H-T loss function, 

ĤTV  when 1 2f f= , compared to the Bayesian estimate under S-E loss function, ŜEV , 

and the MLE, M̂LEV , of ( ); ,V t β θ . 

Prior PDF  ( )ˆ ˆ,HT MLERE V V  ( )ˆ ˆ,SE MLERE V V  ( )ˆ ˆ,HT SERE V V  

Burr 

20n =  

0.0703 0.0702 1.0011 

Inverted gamma 3.7132 3.7135 0.9999 

Jeffrey 0.0612 0.0613 0.9981 

Gaussian kernel 0.0585 0.0583 1.0037 

Epanechnikov kernel 0.0585 0.0583 1.0037 

Burr 

40n =  

0.1195 0.1194 1.0008 

Inverted gamma 7.3018 7.3022 0.9999 

Jeffrey 0.1351 0.1352 0.9993 

Gaussian kernel 0.0384 0.0384 1.0008 

Epanechnikov kernel 0.0381 0.0381 1.0008 

Burr 

80n =  

0.0144 0.0144 1.0002 

Inverted gamma 0.8626 0.8734 0.9876 

Jeffrey 0.0250 0.0250 0.9998 

Gaussian kernel 0.0122 0.0122 1.0003 

Epanechnikov kernel 0.0131 0.0131 1.0002 

Burr 

140n =  

0.0065 0.0065 100000 

Inverted gamma 0.1863 0.1863 100000 

Jeffrey 0.0117 0.0117 0.9999 

Gaussian kernel 0.0070 0.0070 0.9999 

Epanechnikov kernel 0.0064 0.0064 0.9999 

 
Again, the Bayesian MLE estimate of the ( ); ,V t β θ  under the H-T loss 

function ( ĤTV ) and S-E loss function ( ŜEV ) had an outstanding efficiency 
compared to the MLE of the ( ); ,V t β θ  ( M̂LEV ) for all sample sizes and prior 
PDFs, with the exception of the sample sizes 20 and 40 when inverted gamma 
PDF was the selected prior. It is observed that both ĤTV  and ŜEV  had similar 
efficiency in estimation of the ( ); ,V t β θ  for all sample sizes and priors 
considered in this study. 

The sensitivity analysis shows that the Bayesian estimates of the intensity 
function of the PLP is sensitive to the prior and loss function selections. Tables 
11-13 indicate the efficiency of the Bayesian estimates under the H-T loss 
function when compared to the Bayesian estimate under S-E loss function and to 
the MLE, given that the engineer should choose the values of 1f  and 2f  based 
on his/her estimator’s behaviour (underestimating and over estimating). 
Moreover, 1 2f f>  is the recommended choice when the engineer selects Burr 
or kernel PDFs as their prior knowledge of the behavior of the key parameter β . 
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On the other hand, if the engineer does not have a prior knowledge of the key 
parameter β , it is still recommended to use H-T loss function in the Bayesian 
calculations with 1 2f f< . 

Thus far, we showed the more accuracy in estimating a software reliability 
when applying the Bayesian analysis under the H-T loss function compared to 
the Bayesian analysis under the S-E loss function and the MLE of the subject 
analysis. The performed extensive analysis requires efficiency in utilizing the 
existing programming languages, which therefore requires some programming 
experience, we developed an interactive user interface application using Wolfram 
language to compute and visualize the Bayesian and maximum likelihood 
estimates of the intensity and reliability functions of the Power Law Process for a 
given data.  

4. Conclusions 

In the present study, we developed the analytical Bayesian estimates of the key 
parameter β , under Higgin-Tsokos and squared-error loss functions, in the 
intensity function where the underlying failure distribution is the Power Law 
Process, that is used for software reliability assessment, among others. The 
reliability function of the subject model is written analytically as a function of 
the intensity function.  

The behavior of the key parameter β  is characterized by the Burr type XII 
probability distribution. Real data and numerical simulation were used to 
illustrate not only the robustness of the squared-error loss function being chal- 
lenged by the assumption of the Higgins-Tsokos loss function, but also the 
efficiency improvement in the estimation of the intensity function of PLP under 
Higgins-Tsokos loss function ( ( ).B̂ HTV t ). For 100,000 samples of software failure 
times, based on Monte Carlo simulations and sample size of 40, the Bayesian 
estimate of β  under Higgins-Tsokos loss function ( .

ˆ
B HTβ ) performed slightly 

better than the Bayesian estimate of β  under squared-error loss function 
( .

ˆ
B SEβ ) with respect to three different values of θ  (0.5, 1.7441, 4). Even for 

different sample sizes (20, 30, 40, 50, 60, 70, 80, 100, 120, 140, and 160), similar 
results were achieved using 0.7054β = , 1.7441θ = , and averaged over 10,000 
samples of software failure times.  

As the MLE of the second parameter in the intensity function (θ ) depends on 
the estimate of β , the adjusted estimate of θ  .

ˆ
B HTβ  provided better perfor- 

mance compared to the adjusted estimate of θ  using the ( ).
ˆ

B SE tβ . Moreover, 
the Relative Efficiency was used to compare the intensity function estimations, 
mainly using MLEs for both β  and θ  ( ( )M̂LEV t ), using Bayesian estimate of 
β  under the squared-error loss function and Bayesian of θ  ( ( ).B̂ SEV t ), and 
using Bayesian estimate of β  under the Higgins-Tsokos loss function and 
Bayesian of θ  ( ( ).B̂ HTV t ), showing that ( ).B̂ HTV t  is more efficient in estimating 
the intensity function ( )V t  with about 12% estimation improvement. 

With respect to the question: Is the Bayesian estimate of the intensity function, 

https://doi.org/10.4236/eng.2019.115020


F. N. Alenezi, C. P. Tsokos 
 

 

DOI: 10.4236/eng.2019.115020 297 Engineering 
 

( ); ,V t β θ , of the PLP sensitive to the selections of the prior, both parametric 
and non-parametric priors, and loss function? The parametric prior PDFs were 
Burr, Jeffrey, and inverted gamma probability distributions whereas the non- 
parametric priors were Gaussian and Epanechnikov kernel densities. The priors’ 
parameters were estimated using Crow failure times. Additionally, the optimal 
bandwidth and kernel functions were selected to minimize the asymptotic mean 
integrated squared error.  

Using the developed algorithm, 1000 samples of software failure times with 
respect to four sample sizes of n (20, 40, 80, and 140) were generated from the 
PLP to compare the Bayesian estimates of ( ); ,V t β θ  under the subject priors 
and loss functions using the Relative Efficiency among them. The simulation 
procedure was repeated three times for the cases when 1 2f f> , 1 2f f< , and 

1 2f f= . The results showed the efficacy of the Bayesian estimates of H-T loss 
function, and the choice of the 1f  and 2f  values depends on the prior know- 
ledge of the key parameter β . It is recommended to choose values where  

1 2f f>  when the engineer thinks the prior knowledge of β  is best charac- 
terized by Burr or Kernel based probability distributions with a proper justifi- 
cation, whereas a choice of 1 2f f<  and Jeffery’s prior is suggested when the 
engineer does not have a prior knowledge of β .  

Thus, based on this aspect of our analysis, we can conclude that the Bayesian 
analysis approach under Higgins-Tsokos loss function not only as robust as the 
Bayesian analysis approach under squared error loss function but also performed 
better, where both are superior to the maximum likelihood approach in estimating 
the reliability function of the Power Law Process. The interactive user interface 
application can be used without any prior coding knowledge to compute and 
visualize the Bayesian and maximum likelihood estimates of the intensity and 
reliability functions of the Power Law Process for a given data. 
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