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Abstract 
Microwave heating of liquid foods in laminar flow through a circular tube has 
been modeled. In particular, skim milk as a Newtonian fluid and apple sauce 
and tomato sauce as non-Newtonian fluids have been considered. The tem-
perature profiles have been obtained solving the motion and energy equations 
in transient regime and Maxwell’s equations in the frequency domain. Nu-
merical resolution of Finite Element Method has been implemented in Com-
sol Multiphysics. The generation term due to the microwave heating has been 
evaluated according both to Lambert’s law and Poynting theorem. Finally, a 
comparison between the two methods has been made in order to check to 
what extent the results obtained with the simpler Lambert’s law approxima-
tion are comparable with those deriving from the exact solution of Maxwell 
equations. Dielectric properties are considered to be temperature dependent. 
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1. Introduction 

Microwave heating has been utilized since the 1940s [1] in different fields such 
as polymer and ceramics industries [2] [3] and medicine [4] [5]. However, food 
processing is the largest consumer of microwave energy, that can be employed 
for cooking, thawing, tempering, drying, freeze drying, pasteurization, steriliza-
tion, baking, heating and re-heating. In microwave heating, electromagnetic field 
polarizes the molecules of dielectric materials and creates dipole moments that 
cause these molecules to rotate. The resulting molecular friction causes heat 
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generation in the body. Due to intrinsic heat generation capability, microwave 
heating can provide prompt rise of temperature within the low thermal conduc-
tive products, especially in food items. On the other hand, the presence of hot 
and cold spots determines an uneven heating. This is primarily caused by the 
non-uniform distribution of microwave energy in the foodstuff, due to factors 
such as dielectric loss, penetration depth, thickness, shape and size of the sample. 

Microwave heating of solid foods has been largely investigated in the last years, 
writing the energy equation as a conductive heat transfer with a generation term. 

The latter has been modeled by many authors, using two different approaches to 
evaluate the effects of the microwave distribution: by solving the Maxwell’s equa-
tions [2] [6] [7] or by applying the Lambert’s law [8] [9]. The Lambert’s law is a 
simple power formulation that was believed to simulate temperature profiles for 
Cartesian geometries and for cylindrical geometries with high radius. Ayappa et al. 
[2] deduced the minimum value of the characteristic sample dimension to suc-
cessfully apply the law for slabs; Oliveira and Franca [7] found that this value was 
higher for cylinders than for slabs. Finally, Romano et al. [10] correctly applied 
Lambert’s law considering the geometry of the sample, thus finding the same field 
of application for both the shapes and a power concentration along the central axis 
for a cylindrical domain, according with the experimental observations [9]. 

As regards fluids, there are fewer studies and the most are about batch 
processes, conducted only by means of Maxwell equations solution [11] [12]. 

As regards continuous microwave heating, the problem of temperature dis-
tribution analysis in liquid foods that flow in cylindrical ducts was faced by Ro-
mano and Apicella [13], taking into account also the velocity field and different 
rheological characteristics. In that work, generation term due to microwaves in 
the energy balance was modeled with Lambert’s law while in the present work, 
problem is faced also by solving the electromagnetic problem and results are 
then compared to check at what extent Lambert’s law estimation produces valid 
and accurate outcomes respect to Maxwell equation solution. 

Sheryl Barringer and others [14] compared Lambert’s law and Maxwell equa-
tions solution on agar gel made slabs, observing that only exact solution of 
Maxwell equation can appreciate electric field oscillations; moreover, Lambert’s 
law seems to underestimate the absorbed power and, therefore, the temperature 
profile. However, an approximately exponential decay from surface towards the 
inner of sample is followed in both cases. 

In the present paper, an analysis on liquid foods and a cylindrical geometry is 
made. The results of the two different models hypothesis are compared in terms 
of absorbed power and temperature profile. 

2. Mathematical Model 
2.1. Physical System 

The physical system to be modeled is a cylindrical horizontal tube with a length  
L = 0.3 m and a radius R = 0.02 m (Figure 1) in which different liquid foods are 
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heated by microwave irradiance in the radial direction. A laminar flow is rea-
lized by a pressure drop between the inlet and the outlet sections. Only the axial 
component of the velocity is different from zero and it is a function of the radial 
direction : ( )z zv v r= . The temperature, even though the microwave penetra-
tion is only radial, is also function of the axial direction by the effect of the flow 
field: ( ),T T r z= .  

The aim is to check the temperature profile and to compare results obtained 
with Lambert’s law and Maxwell equations resolution. 

2.2. Balance Equations 

The mathematical model consists of the following three differential equations in 
vector form with their boundary conditions [15]. 

( )vD
Dt

ρ ρ= − ⋅∇
 

(continuity equation)              (1) 

vD p g
Dt

ρ τ ρ = −∇ − ∇ ⋅ + 
 

(momentum equation)         (2) 

2
p

Dc T k T Q
Dt

ρ = ∇ +
 

(energy equation)             (3) 

In cylindrical coordinate system, Equations (1) and (2) for the specific prob-
lem become: 

0zv
z

∂
=

∂                            
(4) 

( )  in outz
rz

P Pv r
t r L

ρ τ
−∂ ∂

= − +
∂ ∂                    

(5) 

with the following initial and boundary conditions. 
As initial condition, the fluid is stationary. 

@ 0, 0, ,zt v r z= = ∀                       (i) 

As boundary conditions, we assume no slipping at the wall 
@ , 0, , 0zr R v z t= = ∀ ∀ >                    (ii) 

And we consider the symmetry on the axis. 
 

 
Figure 1. Simple representation of the cylindrical duct. 
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@ 0, 0, , 0rzr z tτ= = ∀ ∀ >                   (iii) 

Similarly, Equation (3) turns out to be 
2

2

1
p z

T T T Tc v k r Q
t z r r r z

ρ
 ∂ ∂ ∂ ∂ ∂   + = + +    ∂ ∂ ∂ ∂ ∂                 

(6) 

With the following initial and boundary conditions. 
As initial condition, the temperature of the fluid is assumed to be uniform 

0@ 0, , ,t T T r z= = ∀                      (iv) 

As boundary conditions for the radial direction we consider the symmetry 
respect the z-axis and the heat exchange at the wall by external convection. 

@ 0, 0, ,Tr z t
r

∂
= = ∀

∂                      
(v) 

( )@ , , ,air
Tr R k hc T T z t
r

∂
= = − ∗ − ∀

∂               
(vi) 

With initial and boundary conditions for the radial direction, so defined, the 
system results to be axial-symmetric.  

For the z direction uniform temperature in the inlet and Danckwerts’s condi-
tion in the outlet section are imposed 

@ 0, , ,inz T T r t= = ∀                     (vii) 

@ , 0, ,Tz L r t
z

∂
= = ∀

∂                    
(viii) 

Initial temperature 0T  and input temperature inT  are both equal to envi-
ronmental temperature airT . 

Heat generation due to microwaves can be modeled as the QLR predicted by 
Lambert’s law or as the QMR provided by the Poynting theorem after the reso-
lution of Maxwell equations. 

Lambert’s law forecasts an exponential decay inside the sample, Romano et al. 
(2005) 

( ) ( )2 2
12 e eR r R rRQLR Q

r
α αα − − − +   = ⋅ ⋅ ⋅ +                   

(7) 

where 

( )
0

1 2π
Q

Q
R R L

=
+  

1
2 2

0

1 1

2π
2

εε
ε

α
λ

 
 ′′  ′ + −   ′    
 =

 
ε
ε
′′
′

 is the loss tangent, known as tanδ. 

The attenuation factor α for each fluid has been considered as a temperature 
function, calculated by interpolation starting from graphic relationships for di-
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electric constant and loss tangent versus temperature in a range 10˚C - 90˚C [16]. 
Maxwell equations are a system of four vectory equations [17] [18]: 

t
∂

∇× = −
∂
BE  Faraday’s law                   (8) 

t
σ∂

∇× = + +
∂
DH J E

 
Ampère-Maxwell law            (9) 

ρ∇ ⋅ =D  Gauss’s law for electric field            (10) 

0∇⋅ =B  Gauss’s law for magnetic field           (11) 

Keeping in mind also the following constitutive equations: 

ε=D E                           (12) 

µ=B H                           (13) 

Making the rotor of first and second member of (8) 

( )
t

µ ∂ ∇× ∇× = ∇× − ∂ 

HE  

Hence 

( ) ( )2  
t

µ ∂
∇ ∇⋅ −∇ = − ∇×

∂
E E H  

Using Equations (9) and (10) 
2

2
2    

t tt
ρ µε µ µσ
ε

∂ ∂ ∂
∇ −∇ = − − −

∂ ∂∂
E J EE

 
2

2
2

1
t t

ρ µσ µε
ε

∂ ∂
∇ = ∇ + +

∂ ∂
E EE

 
For source-free region ( 0ρ = ) and media with negligible electrical conduc-

tivity ( 0σ ≈ ) it becomes: 
2

2
2 2

1 0
c t

∂
∇ − =

∂
EE

                      
(14) 

that is the wave equation in which 1c
µε

=  is the speed of light (299,792,458 m/s). 

It can be noticed that solution of the latter equation, that is second order re-
spect to time, is equivalent to solution of the original system made by two first 
order equations. Passing from time domain to frequency domain: 

2 2 0k∇ + =E E                        (15) 

where 

2π 2π fk
c c
ωω µε

λ
= = = =  

The equation assumes the following form: 
2 2 0ω µε∇ + =E E                       (16) 

Anyway, once solved for electric field, magnetic field H can be easily found 
using Equation (9). 
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After that electric and magnetic fields have been calculated, one can also de-
termine the volumetric unit power generated by the correspondent wave thanks 
to the so called Poynting theorem. 

Poynting vector [ ] 2

W
m

=S  is defined as the vector product ×E H  and 

represents the directional energy flux of an electromagnetic field. 
Poynting’s theorem is a statement of conservation of energy for the electro-

magnetic field. In differential form, defining energy density as e: 

[ ] 3

W
m

e
t
∂

− = ∇ ⋅ + ⋅ =
∂

S J E
                  

(17) 

( )e
t
∂

− = ∇ ⋅ × + ⋅
∂

E H J E  

e
t
∂

− = ⋅∇× − ⋅∇× + ⋅
∂

H E E H J E  

Using (8), (9), (10) and (11) 
e
t t t

µ ε∂ ∂ ∂
= +

∂ ∂ ∂
H EH E  

( )2 21
2

e
t t

µ ε∂ ∂
= +

∂ ∂
H E

                   
(18) 

In dielectric materials, the magnetic permeability is usually small and the first 
term of the equation second side can be neglected; so, shifting to the frequency 
domain, considering that is jε ε ε′ ′′= −  and taking only the real component: 

2
0

1  
2

e P
t

ωε ε∂ ′′= =
∂

E
                     

(19) 

3. Materials and Methods 

To solve the previous partial differential equations, a Finite Elements Method 
(FEM) [19] has been used. To practically implement this solution, COMSOL 
Multiphysics® 5.3 has been utilized and in Figure 2 a possible mesh of the system is  

 

 
Figure 2. Generic mesh. 
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shown. 
Three fluid foods have been considered: skim milk, with a Newtonian beha-

vior and constant viscosity, apple sauce and tomato sauce as non Newtonian 
fluids, modeled with a power law having different fluid consistency coefficient 
and flow behavior index [20], as reported in Table 1 together with the other 
physical and rheological properties.  

As ε' and ε" are temperature functions, average values have been obtained by 
integrating in the entire domain and in the time (range 0 - 100 s). They are fun-
damental for microwave heating, because they determine respectively the energy 
absorbed and the fraction converted in heat power. 

4. Results 

In the next pages, velocity and temperature profiles and generation term mod-
eled with both Lambert’s law and Poynting theorem are reported. 

In all cases, the average velocity is the same (4 mm/s). To practically realize 
that, as the three fluid present different rheological properties, different pressure 
drops, reported in Table 2, have been calculated from integration of the mo-
mentum flux distribution for the flow through a circular tube for Newtonian and 
non-Newtonian fluids. 

To ensure a comparability between the two heat generation terms, a proper 
value of electric field has been chosen as boundary condition in wave equation 
so that the volume integral over all the domain is the same: 

d d
V V

QLR V QMR V=∫ ∫  

In this way, the total heat supplied in the different cases is the same. Values of 
total power P for all cases and correspondent values of electric field in case of 
Poynting generationare reported in Table 3. 

 
Table 1. Physical, dielectric and transport properties. 

 Skim milk Apple sauce Tomato sauce 

Density, ρ [kg m−3] 1047.7 1104.9 1036.9 

Specific heat, cp [J kg−1 K−1] 3943.7 3703.3 4000.0 

Thermal conductivity, k [W m−1 K−1] 0.5678 0.5350 0.5774 

Viscosity, μ [Kg m−1 s−1] 0.0059   

Fluid consistency coefficient  32.734 3.9124 

Flow behavior index  0.197 0.097 

Dielectric constant, ε' 66.31 68.97 74.27 

Dielectric loss, ε'' 13.26 46.42 5.30 

 
Table 2. Pressure drops applied in the three cases. 

 Skim milk Apple sauce Tomato sauce 

Pressure drop [Pa] 0.1425 1080 129 
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All the results showed above are obtained for the same fixed time of 100 
seconds. It can be seen that skim milk, that is a Newtonian fluid, shows a para-
bolic shape (Figure 3), while the other two fluids present a flatter profile. In par-
ticular tomato sauce (Figure 5) is flatter than apple sauce (Figure 4), having a 
lower flow behavior index value n. 

The three fluids show a very similar temperature distribution even though ap-
ple sauce values are smaller (Figure 6, Figure 7). Temperature profiles can be 
explained observing the generation terms (Figure 8). Barringer’s result of  

 
Table 3. Power absorbed and electric field applied to the three fluids. 

 Skim milk Apple sauce Tomato sauce 

P [W] 640 210 750 

E [V/m] 1060 1950 850 

 

 
Figure 3. Velocity profile for skim milk. 
 

 
Figure 4. Velocity profile for apple sauce. 
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Figure 5. Velocity profile for tomato sauce. 
 

 

Figure 6. Temperature profile with Lambert generation term. 
 

underestimation of heating in case of Lambert’s law use is confirmed also in this 
case with a different geometry. 

Actually, in order to better understand the phenomenon, it has been consi-
dered that the fluid elements of each of the three liquids have different velocity 
profiles along the radial direction (Figures 3-5) and so different residence times 
depending to the radius. For the fluid elements having higher velocities, near the 
tube axis, the residence times are lower; for those near the wall, the velocities are 
lower and so the residence times are longer. In skim milk this difference is more 
important, whereas in the other two cases the profile is quite flat, especially in 
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the case of tomato sauce. Anyway, outlet section (z = 30 cm) has been fixed and 
temperature profile evaluated for each position based on the real residence time 
are overlapped in Figure 9. 

 

 
Figure 7. Temperature profiles with Poynting generation term. 
 

 
Figure 8. Comparison between QLR and QMR for the three liquid foods. 
 

 
Figure 9. Overlapping of temperature profiles predicted by Lambert’s law and Maxwell equations solution. 
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It is evident that in the three cases the trend is always the same: in the first 
part near the axis in which Lambert’s laws overestimates Maxwell results in term 
of temperature. This is due to Lambert’s generation term that goes to infinite for 
r = 0 that in turn is due to the pre exponential factor R/r. In the larger middle 
part, Lambert’s law curve is instead always under Maxwell predictions, save to 
slightly raise in the last part near the wall. 

In both cases temperature increases near the wall because of the longer resi-
dence times, but in Lambert’s law case the effect is more evident. After all, apart 
few points, a good agreement between the two models has been found. 

5. Conclusions 

In conclusion, it can be stated that Lambert’s law allows to estimate power gen-
erated during a microwave heating process without solving for electric field and 
so in a relatively simply way, but it presents some problems like the singularity 
of infinite power for r = 0 and an appreciable underestimation of the real power 
and so of the temperature distribution. Moreover as it suppose an exponential 
decay, it can’t forecast the oscillations of the electric field and so of Poynting 
generation. 

On the other hand, solution of Maxwell equations allows to exactly know the 
real electric field and then, thanks to Poynting theorem, the actual generated 
power, although it is obviously more expensive in terms of time and resource of 
calculations. 
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Symbol Nomenclature Units 
L tube length [m] 
R tube radius [m] 
z axial direction [m] 
r radial direction [m] 
v fluid velocity [ms−1] 
Q0 incident microwave power at the sample surface [Wm−2] 
f microwave frequency [s−1] 

0λ  microwave wavelength [m] 
c speed of light constant [ms−1] 
a attenuation factor [m−1] 
ε ′  dielectric constant  
ε ′′  dielectric loss  
δ  penetration depth [m] 
T temperature [K] 
t time [s] 
P pressure [Pa] 
g gravitational acceleration [ms−2] 
QLR heat generation due to microwave, Lambert’s law [Wm−3] 
QMR heat generation due to microwave, Maxwell’s equations [Wm−3] 
hc convective heat transfer coefficient [Wm−2K−1] 
E electric field vector [Vm−1] 
H magnetic field vector [Am−1] 
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