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Abstract 

The article explores the issue of designing a new design of a loading cylinder 
with a casing filled with vulcanized rubber for pneumomechanical spinning 
machines. The theoretical calculation of the deformed state of a cylindrical 
shell filled with vulcanized rubber is given. Deflections and stresses in the 
rubber layer are determined, which we use approximately for the Ritz me-
thods. The theory of the radial and axial moving rubber layer was analyzed. 
The specific energy of deformation of a cylindrical layer of a compound cy-
linder is determined. The statics of the case and the loading cylinder of spin-
ning machines are thoroughly studied. 
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1. Study of the Characteristic of Stretching Unfilled Rubber 

As a rule, rubber differs from other structural materials by its ability to be stretch. 
Figure 1 shows the stretching curve of a specimen filled with rubber from natu-
ral rubber obtained in [1] [2] [3] [4] from which it can be seen that the sample 
can be stretched without breaking up to a tenfold initial length. In this case, the 
sample can be stretched almost to destruction without significant residual de-
formations. The experiments show that when the rubber is deformed its volume 
remains practically unchanged. This regularity is confirmed by the graphs shown 
in Figure 2, obtained by experiments in [1] [5] [6] [7]. 

It can be seen from the curves that before deformation, 400%ε =  the 
change in volume is within the limits of the accuracy of the measurements and  
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Figure 1. Characteristic of the stretching of unfilled rubber. 

 

 
Figure 2. Changes in the volume of stretching rubber out natural rubber according to 
Holtaand Makferson. 

 
for large deformations the volume of the sample decreases. In connection with 
this, the volume of rubber can be neglected for small values of its strain. Thus, 
for small deformations, according to Hooke’s law for linearly elastic materials, 
the Poisson’s ratio will be 0.5ν = , and Young’s module can be adopted 

3E G=  (G-shear modulus of rubber material). In this case, the mechanical 
property of the rubber material is determined only through the Young’s mod-
ulus E or shear modulus G. If we denote by zε , rε , θε -axial, zrγ , zθγ  and 

rθγ -shear deformations in polar coordinates, then the specific strain energy, 
taking into account the condition of absence of volume deformation 

0r zθε ε ε+ + =  will be [8]. 
 

( )2 2 2 2 2 2
0

1
2x r zr z rW G θ θ θε ε ε γ γ γ = + + + + +  

              (1) 

The consistency of the volume of rubber must be taken into account not only 
when calculating, but also when designing rubber products. If this property is 
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not taken into account, then the rigidity of the rubber will be very high, and be-
come inefficient for carrying out the corresponding technological task. 

Consider the problem of deformation of a metal cylindrical shell filled with a 
layer of rubber when it rotates at a constant angular velocity ω  (Figure 3). 

Let l denote the length of the cylinder, R0 and R the internal and external radii 
of the rubber layer, the thickness of the shell through h, the density of the rubber 
and the shell material, respectively, through cρ  and oρ . We establish the ori-
gin of coordinates in the middle of the cylinder and direct the 0z axis along the 
axis of the cylinder. In the absence of external forces in the transverse direction, 
the 0z axis is the axis of symmetry. We denote by rU  and zU  the radial and 
axial displacements in an arbitrary section of the layer, the angular displacement 
Uθ  will then be zero. To determine the strains and stresses in the rubber layer, 
we use approximately the Ritz method.  

2. Radial and Axial Displacement of the Rubber Layer of the 
Composite Feed Cylinder 

To this end, it is seen that the cross-section of the layer before and after deforma-
tion remains flat, and during the deformation process the axial displacement 

zU  depends only on the coordinate, then the deformations of the cross sections 
of the layer are determined by the formulas 

r
r

U
r

ε
∂

=
∂

, rU
rθε = , z

z
U
z

ε
∂

=
∂

, r
rz

U
z

γ
∂

=
∂

, 0r zθ θγ γ= =       (2) 

The displacements of the shell along the radius and the axis of rotation, re-
spectively, will be denoted by ( )ru z  and ( )zu z . Since the volume of the rub-
ber layer is constant, condition, 0r zθε ε ε+ + =  from which, in view of (2), it 
follows that 

0r r zU U U
r r z

∂ ∂
+ + =

∂ ∂
                     (3) 

 

 
Figure 3. Feed-in cylinder with resilient hobs. 
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According to the assumed assumptions, it has assumed ( )zU f z=  and inte-
grate equation (3) with condition 0rU =  at 0r R= , equals 

( )( )2 2
0

1
2rU f z r R r′= − −                    (4) 

It has shown ( ) ( ),rU R z u z=  and from (4) that it is established the connec-
tion between the functions ( ),ru U R z=  и ( )f z′  

( ) 2 2

2
z

o

uRU f z
R R

′ ′= = −
−

                    (5) 

The radial displacement layer and deformation layer with allowance for (4) 
and (5) are expressed in terms function u by formulas 

2 2
0

2 2
0

r
r RuRU

rR R
−

=
−

                     (6) 

2
0

2 2 2
0

1r
RuR

R R r
ε

 
= + 

−  
, 

2
0

2 2 2
0

1
RuR

R R rθε
 

= − 
−  

, 

2 2
0

2
z

uR
R R

ε = −
−

, 
2 2

0
2 2

0
rz

r Ru R
rR R

γ
′ −

=
−

               (7) 

The components of the stress tensor will be equal to 

2r rGσ ε= , 2Gθ θσ ε= , 2z zGσ ε= , rz rzGσ γ=           (8) 

By supplying deformation expressions from (7) in (1), it has determine the 
specific strain energy of the cylindrical layer 

( )
( )22 2 2 2 22 22

020 0
0 2 2 2 22 2

0

1 1 4
2

u r RR RRW G u
r r rR R

   ′ −     = + + − + +    
    −    

    (9) 

Integrating over the cross section, we find the strain energy per unit length of 
the cylindrical layer 

( )
( )

0

4 2 2 42
20 0

0 2 22 2
00

4 2 2 4 4 2
0 0 0 0

2 3
2π d 2π

1 4 3 4 ln
8

R

R

R R R RRW W r r G u
RR R

R R R R R R R u

 + −= = 
−

  ′+ − + +   

∫
       (10) 

It has proved that the process of shell deformation takes place due to the ac-
tion of the force of its interaction with a cylindrical layer which magnitude is 
proportional to the difference between the radial displacements of a shell and a 
surface of the rubber layer and centrifugal force 

( ) 2 2
r cP k u u Rρ ω= − +                    (11) 

where 
k—coefficient of elastic connection between the shell and rubber layer, deter-

mined experimentally. The magnitude (per unit length of the cylinder) of these 
forces is expressed by the formula 

( )2 2 22π 2r cA k u u R uρ ω = − +   
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The total energy of the system will be 

( )
( )

( )

4 2 2 42
20 0

2 22 2
0

4 2 2 4 4 2
0 0 0 0

2 2 2

3 2
2π

1 4 3 4 ln
8

2π 2r c

П W A

R R R RRG u
RR R

R R R R R R R u

k u u R uρ ω

= +

 − −
= 

−

  ′+ − + +   
 + − + 

         (12) 

Taking u variable function, using the variational principle, the Euler equation 
is 

d 0
d

П П
u z u

∂ ∂
− =

′∂ ∂
 

the expression ( ),П u u′  in the last equation is 

rau bu ku c′′ − = +                       (13) 

where 

( )
( )

2
4 2 2 4 4

0 0 0 022 2
0

π 4 3 4 ln
2

GRa R R R R R R R
R R

 = − + + 
−

, 

( )
( )

2 4 2 2 4
0 0

22 2 2
0

3 2
π 4

R R R R R
b G k

R R R

 − − = +
 −  

, 2 22π cc R ρ ω=  

Equation (13) contains unknown displacement of the shell ru  for the deter-
mination of which, is used in the membrane theory of a cylindrical shell [5]. In 
the case under consideration, the relationship between deformation and forces 
are determined by means of formula 

( )0
0

1
z zu N v N

E l φ′ = − , ( )0
0

r z
Ru N N

E l φ ν= − ,           (14) 

where 0E  and 0ν —Young’s modulus and Poisson’s ratio for the shell material, 
force 

xN , Nφ —are expressed by the equations 

d 0
d

zN
z
=                           (15) 

( )2π rN k u u Rφ = −                      (16) 

From the Equation (15) it is clearly seen that 0zN const N= = , 0N —acting 
at the edges of shell force. Equations (14), taking into account expressions zN  
and Nφ  are given to species 

( ) ( )0 0 0 0
0 0

1 2π 2πz r r r
Ru R k u u N u Rk u u N

E l E l
ν ν′ = − − − = − −        

The last dependences are reduced by the form 

0ru u RNβ= − , 0
1 0

r
z

u
u N

R
ν

β′ = −                (17) 
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where 
2

2
0

2π
2π
R k

E l R k
β =

+
, 

( )
( )

2
0 0

1
0

1 1
1

ν ν β
β

ν β
− + −

=
−

, 0 0
0 2

0

.
2π
N

N
E l R k

ν
=

+
 

Equation (11) after excluding the displacement of the shell ru  with the aid of 
(17) reduces to the form 

1 1au b u c′′ − =                        (18) 

here 1b b kβ= + , 1 0 .c c kRN= +  

The general solution of Equation (18) proves the symmetry form ( )0 0u′ =  
can be represented in the form ( 1b aλ = ) 

( ) 1

1

cu Ach z
b

λ= +                       (19) 

where A—arbitrary constant. The axial displacement of the layer is determined 
by solving the Equation (5), which proves the symmetry form ( )0 0zU =  

1
2 2

10

2
z

cR AU sh z z
bR R

λ
λ
 

= − + −  
 

3. Graphic Dependencies of Cylinder Rotation on Its Radial 
and Axial Displacement 

To determine an arbitrary constant A it has given two cases of fulfillment of 
boundary forms in sections 2.z l= ±  

1) Cross-sections 2z l= ±  free from stress, i.e. 0zσ = . According to for-
mulas (8), it fallows 0u =  at 2.z l= ±  

The solution of Equation (18) which proves these forms 

( )
1

1

1
2

c ch zu
b ch l

λ
λ

 
= − 

   , 

The radial and axial displacements of the layer along the length of the cylinder 
according to formulas (6) and (19) are distributed according to the laws 

( )
2 2

0 1
2 2

10

1
2r

r R cR ch zU
r b ch lR R

λ
λ

 −
= − 

−   
             (20) 

( ) ( )
1

2 2
0 1

2
2z

Rc sh zU z
ch lR R b

λ
λ λ

 
= − − 

−   
               (21) 

It follows from formula (2) that, due to the assumed incompressibility condi-
tion, the axial movement of the rubber does not depend on the radial coordinate. 

Figure 4 shows the distribution curves of the radial displacement of the layer 
for two values of the cylinder rotation at different distances from the axis of the 
cylinder. It is seen that as the distance and displacement increase. A zone with a 
constant value of displacement is formed along the cylinder. 

Figure 5 shows the distribution of the axial displacement of the layer along the 
axis of the cylinder for two values of the cylinder’s rotation: the graph on the left 
side with the rotation speed of the cylinder n = 8.5 turn/of minutes, and on the  

https://doi.org/10.4236/eng.2018.106025


M. O. Abdukarimovich et al. 
 

 

DOI: 10.4236/eng.2018.106025 351 Engineering 

 

 
Figure 4. Distribution of radial displacement of the layer along the axis of the cylinder for two values of the 
cylinder rotation n at various distances from its center ( )мr : 1— 0.4r R= , 2— 0.5r R= , 3— 0.6r R= , 

4— 0.8r R= , 5— r R= . 

 

 
Figure 5. Distribution of the axial displacement of the layer along the axis of the cylinder for two values of 
the cylinder rotation n. 

 
right—n = 85 turn/of minutes. The displacement has a parabolic character of the 
change, that is, at the center of the axis the displacement has a minimum value 
and with an increase in the coordinate the displacement sharply increases in ac-
cordance with the power law. In this case, a large number of revolutions lead to a 
smaller displacement. 

Figure 6 and Figure 7 show similar curves for the distribution of the axial 
displacement of the rubber layer (Figure 6) for two values of the cylinder rota-
tion. From the analysis of the curves it follows that the radial and axial displace-
ments of the rubber layer for the case under consideration have the same order 
and practically insignificant, therefore their deformation can be neglected. 

2) The ends of the cylindrical rubber layer (section 2z l= ± ) stationary in 
the longitudinal direction, which corresponds to the contact of the end of the cy-
lindrical layer with a stationary smooth disk (flange) 

0zU =  in (at) 2z l= ±  

The solution of Equation (19) with respect to ( )zU z , satisfying these condi-
tions can be represented in the form 
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Figure 6. The distribution of the radial displacement of the layer along the axis of the cylinder for two val-
ues of the cylinder rotation n at various distances from its center ( )мr : 1— 0.4r R= , 2— 0.5r R= , 3—

0.6r R= , 4— 0.8r R= , 5— r R= . 
 

 
Figure 7. Distribution of the axial displacement of the layer along the axis of the cylinder for two values of 
the cylinder rotation n. 

 

( )
1

1 2 2z
c lsh zU z
b sh l

λ λ
λ

λ
 

= − 
  

                   (22) 

The radial displacement of the layer is expressed by formula (4) 

( ) ( )
( )

2 2 2 2
0 0 1

1

1
2 2 2 2

z
r

r R U r R c lch zU
r b r sh l

λ λ λ
λ

′− −  
= − = − − 

  
        (23) 

Using the dependences (17), it is determined the radial and derivative with 
respect to the coordinate of the axial displacement of the shell 

( )0 0,r ru u RN U R z RNβ β= − = −                 (24) 

( )0 0
1 0 1 0 ,r

z r
uu N N U R z
R R

ν ν β
β β′ = − = −              (25) 

Let is consider the first case of free ends of a layer from a force where the dis-
placements of the cross sections of the layer are determined by formulas (20) and 
(21). Movements of the shell are calculated using dependences (24) and (25) 
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( )
1

0
1

1
2r

c ch zu RN
b ch l

λ
β

λ
 

= − − 
  

                 (26) 

( )
( )

( )

2 2
0 0 1

1 0 0 2
1 2 22z

R R c lsh zu N z z
sh lb R

λν β λ
β βν

λ

−  
= + + − 

  
       (27) 

From the analysis of the obtained formulas it follows that the axial displace-
ment of the shell turns in the center due to the observance of the symmetry con-
dition and assumes maximum values (with opposite signs) at the edges of the 
shell. Two types of fulfillment of the boundary condition at the edges of the shell 
in the axial direction. 

1) The shell edges in the axial direction are free, then it should be assumed 

0 0N =  
Then in the formulas (20) and (21) it is necessary to assume 1 0c = . 
The shell interpolations are calculated from formulas 

( )
1

1

1
2r

c ch zu
b ch l

λβ
λ

 
= − 

  
                   (28) 

( )
0 1

1 2z
c sh zu z

Rb ch l
ν β λ

λ
λ λ

 
= − 

  
                  (29) 

Curves for changes in the radial displacement of the shell are shown in Figure 
8. It is evident that, due to the high rigidity of its material, the movement of the 
shell at the contact boundary is much lower than the displacement of the rubber 
layer. 

Analogous curves for the distribution of the axial displacement of the shell are 
shown in Figure 9. It is evident that the nature of the distribution of the axial 
displacements of rubber layer and shell differ significantly from each other. In 
this case, the movement of the shell by an order of magnitude (102 - 103 times) 
less than moving the layer. 

2) The edges of shell in the axial direction are fixed. Then setting in formula 
(27) ( )2 0zu l± =  and taking expression 1 0c c kRN= + , it is formulated an 
equation for determining the quantity 0N  

( )
( ) ( )0 0

0
1 1 0

2 2
c kRN

N th l l
Rb

ν β
λ λ

λ β ν β

+
= − −  +

 

From this equation, it follows the value 0N  

0
0

01
m cN
kRm

=
−

                       (30) 

where ( ) ( ) ( )0 0 0 1 1 0, 2 2m m R k v l th l Rbβ λ λ λ β ν β= = − +   , it can be seen 

that 0 0.m ≥  

Since the edges of the shell in this case under consideration are in a com-
pressed state, it is necessary to require that condition 0 0N < , from where fol-
lows 
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Figure 8. The distribution of the radial displacement of the shell along the axis of the cylinder for two val-
ues of the cylinder rotation n. 

 

 
Figure 9. Distribution of axial movement of the shell along the axis of the cylinder for two values of the cy-
linder rotation n. 

 

( )0 , 0kR m R k− > .                     (31) 

Inequality (31) in the ( ),R k  determines the radius values R and coefficient k, 
where the shell will be in a compressed state. With values ( ),R k , lying on the 
curve ( )0 , 0kR m R k− = , loss of stability of the shell occurs. 

For the selected values of the task parameters, the value 0N  has order 
15 2010 10− −÷ . 

Therefore, in this case the second case is practically not realized. 
In the second case, when boundary conditions are satisfied at the ends of the 

rubber layer, the movement is determined by formulas 

( )
( )

2 2
0 1

0
1

1
2 2 2r

R R c lch zu RN
b R sh l

λ β λ λ
λ

−  
= − − − 

  
           (32) 

( )
( )

( )

2 2
0 0 1

1 0 0 2
1 2 22z

R R c lsh zu N z z
sh lb R

λν β λ
β ν β

λ

−  
= + + − 

  
      (33) 

It can be seen from formula (33) that the axial movement of the shell at the 
edges becomes zero only in the absence of an axial force 0N . This case can be 
realized by contacting the ends of the rubber layer with a fixed flange, and the 
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edges of the shell remain free. In this case, in the formulas (22), (23), (32) and 
(33) it is necessary to assume 0 0N = . 

Figure 10 and Figure 11 show the distribution of radial and axial displace-
ments of the shell for two values of the angular velocity rotation of the cylinder 
in rpm. 

When 0 0,N ≠  the axial displacement edges of shell do not vanish. It is poss-
ible that there is no movement of shell in the radial direction. Assuming in for-
mula (28) 0ru = , we find the value of the axial force 0N  in which the shell  

will not mix in the radial direction 
( )

( )
2 2

0 1
0 2

1

2 1
22

R R c lN cth l
b R

λ β λ
λ

−  = −  
 

From this equality, it follows the quantity: 1
0

11
m cN
kRm

=
−

 

Where ( ) ( ) ( )2 2 2
1 1 0 1, 2 2 2 .m m R k c R R l th l R bλ β λ λ= = − −    

4. Conclusions 

1) Theoretical distributions of the radial moving of layer have being studied 
for two values of turn cylinder in different distances from the axis to cylinder. 

2) It is possible to improve process parameters feed in pneumomechanic spinning  
 

 
Figure 10. The distribution of the radial displacement of the shell along the axis of the cylinder for two 
values of the cylinder rotation n. 

 

 
Figure 11. The distribution of the axial displacement of the shell along the axis of the cylinder for two val-
ues of the cylinder rotation n. 
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machines. 
3) The given diminishes such as damages of fibers in are feeding zone. 
4) The graphs of the distribution for the radial displacement of the layer for 

two values of cylinder rotation with different distances from the axis to the 
cylinder are presented. 
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