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Abstract 
The physical limitations of complementary metal-oxide semiconductor 
(CMOS) technology have led many researchers to consider other alternative 
technologies. Quantum-dot cellular automate (QCA), single electron tunne-
ling (SET), tunneling phase logic (TPL), spintronic devices, etc., are some of 
the nanotechnologies that are being considered as possible replacements for 
CMOS. In these nanotechnologies, the basic logic units used to implement 
circuits are majority and/or minority gates. Several majority/minority logic 
circuit synthesis methods have been proposed. In this paper, we give a com-
parative study of the existing majority/minority logic circuit synthesis me-
thods that are capable of synthesizing multi-input multi-output Boolean func-
tions. Each of these methods is discussed in detail. The optimization priorities 
given to different factors such as gates, levels, inverters, etc., vary with tech-
nologies. Based on these optimization factors, the results obtained from dif-
ferent synthesis methods are compared. The paper also analyzes the optimiza-
tion capabilities of different methods and discusses directions for future re-
search in the synthesis of majority/minority logic networks. 
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1. Introduction 

The complementary metal-oxide semiconductor (CMOS) technology has played 
a vital role in constructing integrated systems for the past four decades. This 
technology has provided the requirements of implementing high-density, high- 
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speed and low-power very large scale integrated systems. However, the funda-
mental physical limits of this technology have been reached [1]. Many researches 
have introduced different nanotechnologies such as quantum-dot cellular auto-
mate (QCA) [2]-[7], single electron tunneling (SET) [8] [9], tunneling phase 
logic (TPL) [10], spintronic devices [11], and many other nanotechnologies. 
These nanotechnologies are being considered as possible replacements for 
CMOS technology and expected to provide further scaling down of feature sizes 
and other features of integrated systems. In CMOS technology, logic NAND, 
NOR and NOT gates are the basic units used to implement circuits. However, 
the post-CMOS nanotechnologies use logic majority and/or minority gates. 

Traditional Boolean logic functions are simplified and expressed in two stan-
dard forms which are sum of products (SOP) and product of sums (POS) in 
terms of logic AND, OR and NOT gates. These standard forms are always pro-
duced using logic reduction methods that target CMOS technology. However, 
these methods are not efficient enough to produce simplified expressions in 
terms of logic majority or minority for post-CMOS nanotechnologies due to the 
complexity of multi-level majority and minority circuits. Since the function of 
minority gate is just the complement of majority gate, a minority logic network 
can be easily produced from its equivalent majority network. This process can be 
done by using De Morgan’s theorem which is based on the use of inverters. 
Thus, by having an efficient majority logic synthesis method, both majority and 
minority logic networks can be obtained. 

The history of research in majority logic synthesis dates back to the 1960s. 
Karnaugh-map (K-map) [12], reduced-unitized-table [13], and Shannon’s de-
composition principle [14] are some of these methods that were developed to 
synthesize majority logic network. However, these methods are suitable only for 
small networks because they are used to synthesize majority networks by hand. 
Other majority synthesis methods were introduced based on geometric inter-
pretation of the three-variable Boolean functions to convert sum of products ex-
pressions into optimal majority logic networks [15] [16]. However, these me-
thods can synthesize only up to three-variable Boolean functions. For synthesiz-
ing majority logic networks with more than three-variable, several approaches 
have been proposed based on different concepts [17]-[22]. Methods in [17] [18] 
are developed based on genetic algorithm [23] [24] and the concept of Boolean 
disjointness, respectively. Other approaches described in [19] [20] [21] [22] use a 
standard logic synthesis tool which is sequential interactive synthesis (SIS) [25] 
to decompose Boolean functions into three-feasible or four-feasible networks. 
The decomposed networks are then converted into their equivalent majority ex-
pressions based on different techniques. Recently, Wang et al. [26] have pro-
posed a new comprehensive majority/minority synthesis method. This method 
also uses SIS tool. However, the decomposition methods used in this approach is 
developed to decompose input Boolean functions into both three-feasible and 
four-feasible networks. Based on a developed table that contains optimal equiva-
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lent majority expressions for all four-variable Boolean functions, the decom-
posed networks are then converted into their corresponding majority expres-
sions. 

Even though many majority/minority logic network synthesis methods have 
been proposed, none of these methods can synthesize optimal majority/minority 
logic networks for all cases. As the purpose of this paper is to provide a review of 
the best synthesis methods, we only concentrate on the multi-input multi-output 
majority/minority logic networks synthesis methods and do not discuss the li-
mited methods. 

The rest of the paper is organized as follows. In Section 2, we discuss some of 
majority/minority-based post-CMOS nanotechnologies and the implementation 
of their logic devices. Section 3 describes the best available comprehensive ma-
jority/minority logic synthesis methods. Section 4 compares the synthesis me-
thods described in Section 3 and discusses experimental results using these me-
thods. The paper is concluded in Section 5.  

2. Majority/Minority-Based Post-CMOS Nanotechnologies 

In this section, we review some post-CMOS nanotechnologies and the imple-
mentation of their majority and/or minority logic devices. 

2.1. Quantum-Dot Cellular Automata Technology 

Quantum-dot cellular automata (QCA) technology is one of nanotechnologies 
that provide a new technique of computation information transformation. This 
technology uses a QCA majority gate as the basic device along with QCA wire 
and QCA inverter to implement logic circuits. 

2.1.1. QCA Cell 
A QCA cell contains four quantum dots that are located at the corners of a 
square. By charging a cell with two free electrons, which tunnel between dots, 
there are only two states of electrons pairs that are energetically stable due to 
Coulombic interactions. The two configurations of electrical charges in a cell 
encode binary information. Each of these configurations has a different cell po-
larization. These polarizations are 1P = +  and 1P = −  which represent logic 1 
and 0, respectively. Figure 1 shows a QCA cell and its two possible electron con-
figurations. 

2.1.2. QCA Devices 
In QCA, a logic circuit is implemented using three primitive devices that are 
QCA wire, QCA inverter, and QCA majority logic gate. The construction of 
these devices is based on QCA cell which is the fundamental unit in QCA. 

A QCA wire can be constructed by placing a group of cells next to each other 
as shown in Figure 2(a). The binary signal propagates from the leftmost cell 
which is the input along the wire to the rightmost cell which is the output [27]. 
The direction of signal flow can be determined by the QCA clocks [28]. 
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Figure 1. The possible elctron configurations of a QCA cell. 

 

 

Figure 2. QCA devices: (a) QCA wire; (b) QCA inverter; (c) QCA majority gate. 
 

By placing cells in a diagonal position, the polarizations of these cells will be 
reversed. Based on this characteristic, the QCA inverter can be constructed as 
shown in Figure 2(b). 

The function of a QCA majority gate is a three-input logic function given in 
(1). The majority function is to produce an output logic 1 if two or more of the 
three inputs ( )1 2 3, ,x x x  are 1. Otherwise, it produces an output logic 0. The 
layout of QCA majority gate is shown in Figure 2(c). As seen in the figure, a 
QCA majority gate is constructed of one cell surrounded by four cells, one in 
each side. Three of these cells are the gate inputs which are the upper, leftmost 
and lower cells. Based on the polarizations of the three input cells, the middle 
cell polarization is determined because it represents the lowest energy state. 
Then, the signal propagates to the rightmost cell which is the output cell. 

( )1 2 3 1 2 1 3 2 3, ,M x x x x x x x x x= + +                   (1) 

By forcing one of the inputs ( )1 2 3, ,x x x  in a three-input majority gate to log-
ic 0 or 1, the gate will perform as a two-input logic AND or a two-input logic OR 
function as given in (2) and (3), respectively. 

( )1 2 1 2, ,0M x x x x=                        (2) 

( )1 2 1 2, ,1M x x x x= +                       (3) 
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2.2. Single Electron Tunneling Technology  

In single electron tunneling (SET) technology, both majority and minority gates 
are used to implement logic circuits. A SET minority gate implements a three- 
input logic function given in (4). Since the minority function is just the comple-
mentary of majority function, it produces an output 0 if one or more of its in-
puts are 1. Otherwise, it produces an output 1. 

( )1 2 3 2 3 31 1 2, ,m x x x x x x x x x′ ′ ′ ′ ′ ′= + +                   (4) 

Figure 3(a) shows a basic SET minority gate. It consists of three input capa-
citors, single-electron boxes (SEBs), and an output capacitor. The inputs of mi-
nority gate (V1, V2, and V3) move through the input capacitors to form a voltage 
summing network. These capacitors produce the mean voltage of their inputs at 
node A. Based on the value of the mean voltage, an electron will tunnel through 
SEBs and make the voltage at node A negative. Otherwise, the voltage will re-
main positive. The negative and positive values represent logic 0 and 1, respec-
tively. 

By setting one of the three inputs of the minority gate as a logic 0 or 1, the gate 
implements a two-input logic NAND or two-input logic NOR gate, respectively 
[8]. The obtained functions are given by 

( ) ( )11 2 2 1 2, ,0m x x x x x x ′′ ′= =+                    (5) 

( ) ( )11 2 2 1 2, ,1m x x x x x x′ ′= = + ′                    (6) 

A SET majority gate is constructed of three input capacitors, a balanced pair 
of SEBs, three output capacitors as shown in Figure 3(b). When the bias voltage 
(Vdd) increases, the electron tunneling occurs and results in either (0, 1) or (1, 
0) stable voltage state. The (0, 1) state occurs and produces a positive value at 
node B if the majority of the inputs are 1. Otherwise, the (1, 0) state will occur 
and produce a negative value at node B [9]. 

2.3. Tunneling Phase Logic Technology 

A tunneling phase logic (TPL) minority gate is the basic unit used in TPL tech-
nology to implement logic circuits. As shown in Figure 4, the inputs of a TPL 
minority gate are three waveforms (W1, W2, and W3). The phases of a waveform 
are used to represent logic 0 and 1. Based on the input waveforms, the phase of 
the output waveform is determined. If two phases of the three input waveforms  

 

 
Figure 3. (a) SET minority gate; (b) SET majority gate. 
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Figure 4. TPL minority gate. 

 
are different, they will neutralize each other and the reverse of the third wave-
form will be the output. However, if all input waveforms have the same phases, 
the output will be the reverse of these phases. 

2.4. Spintronic Majority Gate 

A spintronic majority gate (SMG) is a device that performs a three-input major-
ity function. This device is implemented with a cross of ferromagnetic wires with 
a size of 140 × 140 nm [29] [30]. Over the four ends of the cores, the three inputs 
(A, B, C) and output (Out) terminals are formed as nanopillars (20 × 20 nm 
each) with a separate ferromagnetic layer as shown in Figure 5(a) and Figure 
5(b). Based on the polarity of the input voltage (either positive (+V) or negative 
(−V)) applied on each nanopillar, the current exerts spin torque in order to 
switch the magnetization of the common layer to a certain direction. The final 
direction of the magnetization (Iout) is determined by the majority directions of 
the inputs and sensed via the tunneling magnetoresistance (TMR) effect using a 
sense amplifier. Figure 5(b) shows the width and length of arms, the size of pil-
lars, and distance between them (a = 20 nm). 

2.5. All Spin Logic 

An all spin logic (ASL) device is also spin based device [31] [32]. It constructed 
of copper wires and nanomagnets. To implement an ASL device that performs a 
three-input majority function, four nanomagnets, which represent the three in-
puts and one output, are placed over the ends of the copper wires as shown in 
Figure 6(a). The input and output sides of each of these nanomagnets are sepa-
rated by an insulator. Due to the current driven to the ground terminal from the 
voltage supplied to the top of each nanomagnets, spin polarized electrons accu-
mulate in the two sides of each nanomagnet with different concentrations. This 
difference causes a diffusion spin current, which exerts torque on a nanomagnet 
and is able to switch its polarization. Based on the majority of input polariza-
tions, the output is determined and delivered via the output nanomagnet as a 
logic value. The inverters also can be implemented based on the same properties 
of polarization changes as shown in Figure 6(b). 
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Figure 5. (a) SMG device [29]; (b) Top view of SMG [29]. 

 

 

Figure 6. ASL devices: (a) ASL majority gate [33]; (b) ASL inverter [33]. 
 

 
Figure 7. STO logic majority gate [11]. 

2.6. Spin Torque Oscillator Logic 

A spin torque oscillator (STO) logic is a device that can perform a three-input 
majority function [34]. This device consists of four nanopillars (three inputs and 
one output) with their own layers. Similar to SMG, the oscillators have a com-
mon ferromagnetic layer as shown in Figure 7. The input currents pass through 
nanopillars and exert spin torques that drive oscillators. Because of the driven 
oscillators, spin waves propagate in the common layer that make the oscillators 
signal coupled. Based on the majority of the inputs, the frequency of the output 
oscillator is determined. This can be sensed via the effect of giant magnetoresis-
tance (GMR) or TMR. The frequency of the output serves in the circuit as the 
logic signal. 

2.7. Spin Wave Device Technology 

In spin wave device (SWD) technology, computation and information transfor-
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mation occur via spin waves [11] [35] [36]. SWD technology uses the majority 
gate as the logic primitive. A SWD majority gate is constructed of the symmetric 
merging of three waveguides [37] [38]. Its operation is based on the interference 
of the input spin waves. The output is determined based on the interference of 
the three phases of the input spin waves via magneto-electron (ME) cells [39]. 
Another logic device in SWD technology is a SWD inverter which is imple-
mented by a waveguide to deliver the inverse of spin wave signal to the output 
ME cell [38] [40]. Figure 8(a) and Figure 8(b) show the areas and designs for a 
SWD majority gate and inverter, respectively. It can be seen that the length of 
waveguide in the inverter is 1.5× of the length of spin wavelength (λSW), while 
the length of each waveguide in the majority gate is 1.0× of the spin wavelength. 

2.8. Nanomagnetic Logic 

The process of computation and information transformation in nanomagnetic 
logic (NML) [42] is based on magnetization of patterned array of elongated na-
nomagnets. In NML, there are two stable magnetization states of magnets that 
are used to represent binary information. These states are commonly referred to 
as “up” or “down” which represent logic 1 or 0, respectively, as shown in Figure 
9(a). The fundamental logic element in NML technology is a three-input major-
ity gate. This gate is constructed of a cross of five dots, which are one central dot 
surrounded by four dots that represent inputs (A, B, C) and output as shown in 
Figure 9(b). Based on the majority of magnetization of the three inputs, the 
output is calculated via magnetic interactions. 

 

 
Figure 8. SWD devices: (a) SWD majority gate [41]; (b) SWD inverter [41]. 

 

 
Figure 9. (a) The possible stable magnetizations; (b) NML majority gate. 
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2.9. DNA Technology 

DNA technology is being considered as a possible alternative to silicon-based 
technologies especially for implantable medical devices. The small size, light 
weight, and compatibility with bio-signals of DNA technology show its ability of 
implementing logic circuits. Several researchers have introduced different de-
signs of DNA majority gates [43] [44] [45] based on different techniques such as 
the four-way junction-driven DNA majority gate, spatially localised DNA ma-
jority gate, etc. The basic operation associated with such majority gates is the 
DNA strand displacement mechanism. Different designs of DNA majority gates 
are shown in Figure 10. 

In addition to the nanotechnologies discussed in this paper, other nanotech-
nologies such as graphene [46] [47] reconfigurable gate [48], resistive RAM [49] 
[50] [51], carbon nanotube [52] [53] [54] [55], etc., use logic majority and/or 
minority gates as circuit primitives. Hence, in order to implement an efficient 
logic circuit in any of these nanotechnologies including all the nanotechnologies  

 

 
Figure 10. Different designs of DNA majority gates: (a) Four-way junction-driven DNA majority gate [43]; (b) DNA majority 
gate given in [44]; (c) Spatially localised DNA majority gate [45]. (Each color represents a particular domain in the strand). 
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discussed earlier, the circuit has to be converted into its equivalent majority- or 
minority-based logic circuit. 

As mentioned earlier, since minority logic is the complement of majority 
function, De Morgan’s theorem can be used to drive a minority logic network 
from its equivalent majority network. This process results in a minority network 
with the same number of majority gates and levels as in its equivalent majority 
network. This means that an efficient majority network synthesis method can be 
used to obtain both majority and minority networks. The simplified Boolean 
functions expressed in standard forms SOP and POS can be directly converted 
into majority or minority logic networks by implementing the majority AND/ 
OR mapping method. This method is to map each logic gate in the simplified 
Boolean functions to majority AND/OR gates. However, in most cases, this me-
thod does not results in optimal majority/minority expressions. In other words, 
the number of gates, levels, etc., used in majority/minority expressions obtained 
from the AND/OR mapping method are not the optimal results. For example, 
consider the majority function 1 2 1 3 2 3f x x x x x x= + + . By using the AND/OR 
mapping method, it requires five majority gates, three levels as 1 1 2n x x= , 

2 1 3n x x= , 3 2 3n x x= , 4 1 2n n n= + , and 3 4f n n= + , whereas it can be realized 
with only one majority gate in one level, i.e., ( )1 2 3, ,f M x x x= . Therefore, an 
efficient majority/minority logic network synthesis is needed in order to gener-
ate optimal majority/minority logic networks. In the next section, we review the 
best existing comprehensive majority/minority logic synthesis methods in detail. 

3. Majority/Minority Logic Synthesis Methods 

Several researchers have proposed different techniques for majority/minority 
logic synthesis. However, none of these techniques are capable of generating op-
timal majority or minority expressions in terms of gates, levels, inverters and 
gate inputs for all cases. In addition, only a few of these methods can be used for 
synthesizing multi-input multi-output majority/minority logic networks. These 
methods are discussed in detail as follows: 

3.1. Majority Logic Synthesis (MALS) [20] 

MALS is the first proposed comprehensive majority/minority logic network 
synthesis method that is capable of synthesizing multi-level multi-output majority/ 
minority logic networks. The input to MALS is a minimized algebraically fac-
tored multi-output combinational network, and the output is an equivalent ma-
jority logic network. The method starts by preprocessing and decomposing the 
input network such that each node in the decomposed network has at most three 
input variables. This process is done by using preprocessing and decomposition 
methods in SIS. The next step is to check each decomposed node to see whether 
it is a majority function. If so, the node will be converted and the process will 
move to check the next node. Otherwise, the node function will be checked if 
there is any common literal. If this is the case, the literal will be factored out and 

https://doi.org/10.4236/eng.2017.910054


A. Almatrood, H. Singh 
 

 

DOI: 10.4236/eng.2017.910054 900 Engineering 
 

an AND/OR mapping is then performed on the factored function. If the node 
function has no common literal and it can be realized with less than four major-
ity AND/OR gates, an AND/OR mapping will then be performed. Otherwise, the 
node will be converted into its equivalent majority expression with at most four 
majority gates in two levels using K-map. This procedure is accomplished by 
first getting the K-map of the logic function of the node. Next, the first majority 
function f1 is determined by finding the admissible pattern from the K-map of 
the node. Based on the K-map of the node and the first admissible pattern, the 
second admissible pattern is then found which gives the second majority func-
tion f2. Lastly, the third admissible pattern is found based on the K-map of the 
node and the first and the second admissible patterns. The third admissible pat-
tern gives the third majority function f3. These three majority functions are de-
termined such that the original node can be replaced with the majority function 
of these three functions as ( )1 2 3, ,M f f f . 

3.2. Kong’s Synthesis [21] 

Another comprehensive majority/minority logic network synthesis method was 
introduced by Kong et al. [21]. The input to this methodology is an arbitrary 
multi-output Boolean function, and its output is an equivalent majority logic 
network. The method begins by preprocessing the input network and checking 
its correctness using SIS. If the input function is correct, multiple preprocessing 
scripts given in Figure 11 are applied to simplify and factor it algebraically, 
where all “(x)” are replaced with “3”. Otherwise, error information will be shown 
and the process will be ended. After preprocessing, the factored functions are 
decomposed using SIS such that each node has at most three input variables. For 
decomposition, four different methods given in Figure 12 are performed in or-
der to obtain the minimum number of three-feasible nodes. In these decomposi-
tion methods, all “(x)” are replaced with “3” to produce three-feasible decom-
posed networks. After decomposition, all nodes in the decomposed network are 
then checked to see if there is any node that can be collapsed into its fanout 
while retaining feasibility. This process can reduce further the number of nodes. 
In the next step, each node in the decomposed network is then checked to see if 
it is a majority function. If so, the function is then converted into its corres-
ponding majority expression based on forty primitive functions which are all the 
possible three-variable Boolean functions. Otherwise, all admissible expression 
groups are found from the forty majority expressions such that each group con-
sists of three majority expressions ( )1 2 3, ,f f f  where the node is the majority 
function of these expressions, i.e., ( )1 2 3, ,M f f f . Then, all the majority func-
tions that consist of expression groups with a minimum number of majority 
gates are selected. Next, the selected functions are checked to select the functions 
with a minimum number of gate inputs. Then, the selected functions are 
checked again to select the functions with a minimum number of inverters. The 
same steps are repeated for the complement of the node function. The next step  
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1. collapse 
2. sweep 
3. eliminate 5 
4. simplify − m nocomp − d 
5. resub − a − d 
6. gkx − abt (x)0 
7. resub − a − d 
8. sweep 
9. gcx − bt (x)0 
10. resub − a − d 
11. sweep 
12. gkx − abt 10 

13. resub − a − d 
14. sweep 
15. gcx − abt 10 
16. resub − a − d 
17. sweep 
18. gkx − ab 
19. resub − a − d 
20. sweep 
21. gcx − b 
22. resub − a − d 
23. sweep 
24. eliminate 0 

Figure 11. Preprocessing script used in [21] and [26]. 
 

Method 1: xl_split − n (x) 
Method 2: xl_imp − n (x) 
Method 3: xl_part_coll − n (x) − m − g 2 

xl_coll_ck − n (x) 
xl_partition − n (x) − m 
full_simplify 
xl_imp − n (x) 
xl_partition − n (x) − t 
xl_cover − n (x) − e (x)0 − u 200 
xl_coll_ck − n (x) − k 

Method 4: xl_part_coll − n (x) − m − g 2 
xl_coll_ck − n (x) 
xl_partition − n (x) − m 
sweep; eliminate − 1 
simplify − m nocomp 
eliminate − 1 
sweep; eliminate 5 
simplify − m nocomp 
resub − a 
fx 
resub − a; sweep 
eliminate − 1; sweep 
full_simplify − m nocomp 
xl_imp − n (x) 
xl_partition − n (x) − t 
xl_cover − n (x) − e (x)0 − u 200 
xl_coll_ck − n (x) − k 

Figure 12. Four decomposition methods scripts used in [21] and [26]. 
 

is to select the majority function with a minimum number of majority gates, gate 
inputs, and inverters from the selected majority functions that consist of expres-
sion groups and their complements. The last step is to check obtained majority 
expressions and see if there are repeated nodes. If so, these nodes will be re-
moved and the majority network will be updated. This process keeps running 
until no repeated nodes exist. 
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3.3. Majority Expression Lookup Table (MLUT)-Based Synthesis  
[26] 

One of the majority/minority logic network synthesis methods is MLUT-based 
method [26]. The input to this method is an arbitrary Boolean functions net-
work, and the output is an equivalent majority logic network. This method also 
starts by preprocessing and decomposing the input network using SIS as used in 
Kong’s method. However, the preprocessing and decomposition methods used 
here are able to preprocess and decompose the input Boolean functions network 
up to four-feasible networks. In preprocessing, the input Boolean functions are 
simplified by algebraically factoring the common terms out and removing the 
repeated terms by applying the preprocessing script given in Figure 11, where all 
“(x)” are replaced with “4”. For decomposition, the same four methods used in 
Kong’s method are implemented in order to find the minimum number of de-
composed networks. However, these four decomposition methods will decom-
pose the network into two-feasible, three-feasible and four-feasible networks by 
replacing all “(x)” in Figure 12 with “2”, “3”, and “4” in order to find the best 
solution. In this method, a majority expression lookup table is developed. This 
table is developed by generating equivalent majority expressions for all possible 
four-variable Boolean functions. This results in a table that contains ninety 
four-variable Boolean functions and their equivalent majority expressions. Based 
on this table, each decomposed node, which consists of four or fewer variables, is 
then converted into its corresponding majority expression. A redundancy re-
moval method is also used. This process can provide further simplification by 
implementing several steps. It starts by checking all nodes in the obtained ma-
jority network and removing the repeated nodes. All nodes with duplicated in-
puts are then simplified. The next step is to sweep all nodes without majority 
gates. The last step in the redundancy removal method is to minimize the num-
ber of inverters. This step is implemented if the majority network has two cas-
caded inverters which can cancel each other out. Another case would be if a ma-
jority gate in the network has two or three internal inverters that can be factored 
out to have only one external inverter. The redundancy removal method may 
require more than one iteration until no further simplification is possible. 

4. Comparison and Discussion 
4.1. Comparison of the Comprehensive Synthesis Methods 

The three majority/minority synthesis methods discussed in this paper differ 
from each other in their preprocessing methods, decomposition methods, con-
version techniques, and optimization targets: gates, levels, inverters, and gate 
inputs. Table 1 gives a summary of these differences. These differences are dis-
cussed in detail as follows: 

4.1.1. Preprocessing 
The first step in all three synthesis methods is preprocessing. This process is  
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Table 1. Comparison of the best comprehensive synthesis methods. 

Method 
Preprocessing 

(r-feasible  
networks) 

Decomposition 
Conversion technique 

Optimization targets 

Methods r-feasible networks Node reduction Gates Levels Inverters Gate inputs 

MALS [20] 3r =  1 3r =  No K-map Yes No No No 

Kong’s [21] 3r =  1, 2, 3, 4 3r =  Yes 40 Primitive functions Yes No Yes Yes 

MLUT [26] 4r =  1, 2, 3, 4 2,3,4r =  Yes 90 Primitive functions Yes Yes Yes Yes 

 
used to simplify the input Boolean functions by removing the redundant terms 
and algebraically factoring the common terms out. For example, consider the 
Boolean function 1 2 1 3 2 3 1 2 3F x x x x x x x x x′ ′ ′= + + + . This function is first simplified 
to 1 2 1 3 2 3F x x x x x x′ ′= + + . Then, the common terms are factored out and the 
function is simplified to ( )2 3 1 2 3F x x x x x′ ′= + + . In all algorithms, this process is 
done by using the simplification and factorization methods in SIS. However, the 
preprocessing method used in MLUT is improved by performing the operations 
of kernel and cube extraction for four-feasible networks instead of three-feasible 
networks as used in MALS and Kong’s method. 

Although, the preprocessing method provides simplified Boolean functions in 
terms of logic AND, OR and NOT, these functions are not expressed properly to 
be converted into their equivalent majority expressions for some cases. To 
demonstrate this point, consider the same function that we used for simplifica-
tion. After removing the redundant term, the function is expressed by  

1 2 1 3 2 3F x x x x x x′ ′= + + . It can be seen that this function is expressed as a majority 
function which can be realized with only one majority gate in one level, i.e., 

( )1 2 3, ,F M x x x′= . However, if the common terms are algebraically factored out, 
i.e., ( )2 3 1 2 3F x x x x x′ ′= + + , the function will have a different expression which 
can result in an equivalent majority expression with more than one majority gate 
and one level. This specific example may not fall in this category due to its sim-
plicity. However, this case can occur especially while processing large circuits 
which can cause a large change in the final result. 

4.1.2. Decomposition 
For decomposition, MALS uses method 1 in Figure 12 to decompose the input 
network into smaller nodes such that each node in the network has at most three 
input variables which can be easily converted into its equivalent majority expres-
sion. In Kong’s method, the decomposition process is also used to decompose 
the input networks into three-feasible networks. However, this method uses four 
different decomposition methods as given in Figure 12. Any function with three 
input variables can be realized with at most four majority gates in two levels [14] 
[56]. Thus, the total number of majority gates in the synthesized majority net-
work is between the number of nodes and the number of nodes multiplied by 4. 
Therefore, in order to reduce the number of majority gates in a synthesized ma-
jority network, the number of nodes must be reduced. None of the four decom-
position methods used in Kong’s method give the minimum number of nodes 
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for all cases. Therefore, all four methods are applied to find out the best results. 
In MLUT, the same four decomposition methods are used. However, these me-
thods are improved to decompose the input network into two-feasible, three- 
feasible, and four-feasible networks. Based on the obtained networks from the 
four decomposition methods, the best solution is then chosen. The obtained de-
composed networks from the four methods are not guaranteed to be optimal. 
However, they provide a fundamental library of heuristic techniques for de-
composition. In both Kong’s method and MLUT, all nodes in the obtained de-
composed networks are then checked to see if there are nodes that can be col-
lapsed into their fanouts while retaining feasibility. This can provide further re-
duction in the number of gates, levels, inverters, and gate inputs. However, this 
process is not considered in MALS. 

4.1.3. Converting Boolean Functions into Majority Expressions 
For converting the decomposed networks into their equivalent majority expres-
sions, each method uses a different technique. The MALS method uses K-map to 
obtain one-level majority functions 1 2,f f  and 3f  for each node, such that the 
function can be represented as ( )1 2 3, ,M f f f . This method can generate only 
one admissible majority expression for a given Boolean function. This is consi-
dered as a drawback for this method. Therefore, this technique does not guaran-
tee that it results in optimal majority expressions. In Kong’s method, the process of 
converting the function of a node is based on forty optimal majority expressions. If 
the Boolean function belongs to these forty expressions, it is converted into its cor-
responding majority expression. Otherwise, all admissible three-expression groups 
from the forty expressions are found such that the function of the node can be 
represented as a majority function of the three expressions. This conversion 
technique is also used in MLUT. However, this method is based on ninety pri-
mitive functions instead of forty as used in Kong’s method. These primitives are 
the equivalent majority expressions for all possible four-variable Boolean func-
tions. Each node in the decomposed network is replaced with its equivalent ma-
jority expressions if it has a corresponding expression. Otherwise, a combination 
of three majority expressions is chosen from the ninety expressions such that the 
function of the node can be represented as the majority function of the chosen 
three expressions. 

4.1.4. Optimization Targets 
Since the gate count and level count determine the latency and the size of a ma-
jority/minority circuit, they are the most important factors that play an essential 
role in enhancing performance. Therefore, by reducing the number of gates and 
the number of levels, the performance can be improved. In the three compre-
hensive synthesis methods (MALS, Kong’s, and MLUT), the optimization is tar-
geted to reduce either the number of gates or levels. In MALS and Kong’s me-
thod, the gate count reduction is taken as the first priority for optimization. 
However, in MLUT, either the number of gates or levels can be taken as the first 
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priority. In addition to the number of gates and level count, there are other fac-
tors that can play an essential role in providing further scaling down of feature 
sizes of a generated majority circuit. One of these factors is inverter count. In 
some nanotechnologies, the implementation of an inverter requires a larger area 
than a majority gate. For example, in QCA technology, the implementation of an 
inverter requires seven QCA cells as shown in Figure 2(b), whereas five QCA 
cells are required to implement a majority gate as shown in Figure 2(c). Another 
factor that can lead to additional optimization is the number of gate inputs. For 
example, consider the majority functions ( )( )1 3 1 2 3,1, , ,F M x M x x x=  and 

( )( )2 3 1 2,1, , ,0F M x M x x= . Both 1F  and 2F  are the equivalent majority ex-
pressions to the Boolean function 1 2 3F x x x= + . However, 1F  has four gate 
inputs and 2F  has three gate inputs. Since the logic 0 and 1 in QCA technology 
can be generated from external sources at their positions, the best majority ex-
pression to implement this circuit in QCA is 2F . Therefore, by reducing the 
number of gate inputs of a circuit, the routing complexity can be reduced. The 
optimization of inverters and gate inputs are only considered in Kong’s method 
and MLUT. 

4.2. Comparison of Experimental Results 

In this section, we demonstrate an overall comparison between the results ob-
tained from the existing synthesis methods. In Table 2, the obtained equivalent 
majority expressions for eight standard three-variable Boolean functions [15] 
using the comprehensive synthesis methods discussed in this paper and other 
five three-variable synthesis methods [15] [16] [17] [18] [19] are given. In the 
same table, the numbers of majority gates, levels, inverters, and gate inputs used 
in each majority expression are given as well. From the table, it can be seen that 
MALS results in an optimal solution for some functions, whereas Kong’s method 
and MLUT give the optimal expressions in terms of gates, levels and inverters 
for all Boolean functions. However, none of these methods result in the mini-
mum number of gate inputs for all functions. For example, the equivalent ma-
jority expression for the Boolean function 1 2 2 31F x x x x x′ ′= +  obtained from 
Kong’s method and MLUT is ( ) ( ) ( )( )1 2 1 2 1 3  ,0, , ,1, , ,1,F M M x x M x x M x x′= . 
This expression requires four gates, two levels, one inverter and nine gate inputs. 
From the AND/OR mapping method and methods in [15] [18] [20], the ob-
tained majority expression is ( )( ) ( )( )2 3 1 21,0, ,0, ,1, ,0,F M M M x x x M x x′ ′= . This 
expression requires four gates, two levels, one inverter and eight gate inputs. 

For Boolean functions with more than three variables, we compare the results 
of 40 Microelectronics Center North Carolina benchmark circuits [57] using the 
comprehensive synthesis methods in Table 3. The results obtained from each of 
the three methods are compared with the majority AND/OR mapping method. 
In this table, only the number of majority gates and levels are considered for 
comparison. As shown in the table, when the MLUT method is targeted to re-
duce the number of gates, there is an average reduction of 36.1% in gate counts  

https://doi.org/10.4236/eng.2017.910054


A. Almatrood, H. Singh 
 

 

DOI: 10.4236/eng.2017.910054 906 Engineering 
 

Table 2. Comparison of 8 three-variable standard Boolean functions using exist synthesis methods. 

Standard function Method Majority expression Gates Levels Inverters Gate inputs 

1 2 2 31F x x x x x′ ′= +  

AND/OR mapping ( )( ) ( )( )1 2 3 1 2,0, ,0, ,1, ,0,M M M x x x M x x′ ′
 

4 3 2 8 

[15] [18] [20] ( )( ) ( )( )1 2 3 1 2,0, ,0, ,1, ,0,M M M x x x M x x′ ′
 

4 3 2 8 

[16] ( ) ( ) ( )( )1 3221 2,1, , ,0, , ,0,M M x x M x x M x x′ ′
 

4 2 2 9 

[17] ( ) ( ) ( )1 2 1 2 1 3,0, , ,1, , ,1,M M x x M x x M x x ′ 
   

4 2 1 9 

[19] ( ) ( ) ( )( )3 1 21 22 1,1, , , , , ,0,M M x x M x x x M x x′ ′
 

4 2 2 10 

[21] [26] ( ) ( ) ( )1 2 1 2 1 3,0, , ,1, , ,1,M M x x M x x M x x ′ 
   

4 2 1 9 

1 2 3 3 12 32F x x x x x x xx ′ ′ ′= + +  

AND/OR mapping 
( )( ) ( )( )( )(

( )( ))
1 2 3 2

1 3

1 3

2

,0, ,0, ,0, ,0, ,0, ,

0, ,0, ,0,

M M M M x x x M M x x x

M M x x x

′ ′

′ ′
 

8 4 4 16 

[15] [16] ( ) ( ) ( )( )3 2 31 2 31 1,0, , , , , , ,M M x x M x x x M x x x′ ′ ′ ′
 

4 2 4 11 

[17] ( )( ) ( )1 3 1 3 1 2 32, , ,1, , , , ,M M M x x x x x M x x x ′ ′ 
   

4 3 2 11 

[18] [20] ( ) ( ) ( )( )1 2 13 3 2 31, , , ,0, , , ,M M x x x M x x M x x x′ ′ ′ ′
 

4 2 4 11 

[19] ( ) ( ) ( )( )1 2 1 2 33 21, , , , , , ,0,M M x x x M x x x M x x′ ′ ′
 

4 2 3 11 

[21] [26] ( ) ( ) ( )1 3 1 2 3 1 32,0, , , , , , ,M M x x M x x x M x x x ′ ′ 
   

4 2 2 11 

1 2 3F x x x= +  

AND/OR mapping ( )( )2 3 1,0, ,1,M M x x x
 

2 2 0 4 

[15] [16] [18] [19] ( )( )2 3 1,0, ,1,M M x x x
 

2 2 0 4 

[17] ( )( )1 3 1 2,1, , ,M M x x x x
 

2 2 0 5 

[20] [21] [26] ( )( )2 3 1,0, ,1,M M x x x
 

2 2 0 4 

1 2 32F x x x x′= +  

AND/OR mapping ( ) ( )( )2 321 ,0, ,1, ,0,M M x x M x x′
 

3 2 1 6 

[15] [16] [18] [19] ( ) ( )( )2 321 ,0, ,1, ,0,M M x x M x x′
 

3 2 1 6 

[17] ( ) ( )1 2 1 2 3,1, , , ,1,M M x x x M x x ′ 
   

3 2 1 7 

[20] [21] [26] ( ) ( )( )2 321 ,0, ,1, ,0,M M x x M x x′
 

3 2 1 6 

11 2 3 2 3F x x x x x x′ ′ ′= +  

AND/OR mapping ( )( ) ( )( )( )3 1 21 2,0, ,0, ,1, ,0, ,0,M M M x x x M M x x x′ ′ ′
 

5 3 3 10 

[15] [18] [20] ( )( ) ( )( )( )3 1 21 2,0, ,0, ,1, ,0, ,0,M M M x x x M M x x x′ ′ ′
 

5 3 3 10 

[16] [19] ( ) ( ) ( )( )2 1 31 32,1, , ,0, , ,0,M M x x M x x M x x′ ′ ′
 

4 2 3 9 

[17] ( ) ( ) ( )1 2 2 3 1 3,1, , ,0, , ,0,M M x x M x x M x x ′ ′ ′ 
   

4 2 2 9 

[21] [26] ( ) ( ) ( )1 2 2 3 1 3,1, , ,1, , ,1,M M x x M x x M x x ′ ′ 
   

4 2 2 9 
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Continued 

1 2 2 3 21 3F x x x x x x x′ ′ ′= + +  

AND/OR mapping ( ) ( )( ) ( )( )( )1 2 2 3 1 2 3,0, ,1, ,0, ,1, ,0, ,0,M M M x x M x x M M x x x′ ′ ′
 

6 3 3 12 

[15] [16] [19] ( )( ) ( )( )( )3 1321 2,1, ,0, ,1, ,0, ,0,M M M x x x M M x x x′ ′ ′
 

5 3 3 10 

[17] ( ) ( ) ( )( )1 2 3 2 31 2, , , ,1, , ,0,M M x x x M x x M x x′ ′ ′ ′
 

4 2 3 10 

[18] [20] ( ) ( ) ( )( )3 321 212 ,0, , , , , ,1,M M x x x M x x M x x′ ′ ′ ′
 

4 2 3 10 

[21] [26] ( ) ( ) ( )2 2 3 1 2 31 ,1, , ,1, , , ,M M x x M x x M x x x ′′ 
   

4 2 2 10 

 

1 2 3 2 3

1 32 1 2 3

1F x x x x x x
x x x x xx

′ ′= +
′ ′ ′ ′+ +  

AND/OR mapping 
( )( ) ( )( )( )(

( )( ) ( )( )( ))
1 2 3 3

1

1 2

2 3 1 32

,0, ,0, ,1, ,0, ,0, ,

1, ,0, ,0, ,1, ,0, ,0,

M M M M x x x M M x x x

M M M x x x M M x x x

′ ′

′ ′ ′ ′
 

11 5 6 22 

[15] [16] [19] ( ) ( )( )1 2 31 32 3, , , , , ,M M x x x x M x x x′ ′ ′
 

3 2 3 9 

[17] ( ) ( )1 2 3 3 1 2 3, , , , , ,M M x x x x M x x x ′ ′ 
   

3 2 2 9 

[18] [20] ( ) ( ) ( )( )1 3 322 3 1 2 1, , , , , , , ,M M x x x M x x x M x x x′ ′ ′
 

4 2 3 12 

[21] [26] ( ) ( )1 2 3 1 31 2, , , , , ,M M x x x x M x x x ′ ′ 
   

3 2 2 9 

3 21 2 1 3F x x x x x x′ ′= +  

AND/OR mapping ( )( ) ( )( )( )2 31 3 1 2,0, ,0, ,1, ,0, ,0,M M M x x x M M x x x′ ′
 

5 3 2 10 

[15] [16] [19] ( ) ( )( )2 321 3 1, , ,0, , ,M M x x x M x x x′ ′
 

3 2 2 8 

[17] ( ) ( )2 3 1 2 3,0, , , ,1,M M x x x M x x ′ 
   

3 2 1 7 

[18] [20] ( ) ( )( )( )2 3 2 3 1,0, ,1, ,0, ,0,M M M x x M x x x′ ′
 

4 3 2 8 

[21] [26] ( ) ( )2 3 1 2 3,0, , , ,1,M M x x x M x x ′ 
   

3 2 1 7 

 
Table 3. Comparison of 40 Benchmarks using the best exist synthesis methods. 

Benchmark 

AND/OR 
mapping 

MALS [20] Kong’s [21] 

MLUT [26] Reduction% 

Gate 
priority 

Level 
priority 

MALS [20] Kong’s [21] 
MLUT [26] 

(Gates) 
MLUT [26] 

(Levels) 

Gates Levels Gates Levels Gates Levels Gates Levels Levels Gates Gates Levels Gates Levels Gates Levels Levels Gates 

b1 9 3 9 3 7 2 6 2 2 6 0.0 0.0 22.2 33.3 33.3 33.3 33.3 33.3 

cm42a 21 2 21 2 18 2 18 2 2 18 0.0 0.0 14.3 0.0 14.3 0.0 0.0 14.3 

decod 28 3 28 3 28 3 28 3 3 28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

cm82a 50 7 16 8 7 3 6 3 3 6 68.0 −14.3 86.0 57.1 88.0 57.1 57.1 88.0 

majority 12 5 6 5 6 4 5 4 3 6 50.0 0.0 50.0 20.0 58.3 20.0 40.0 50.0 

z4ml 71 10 27 8 9 4 9 4 4 9 62.0 20.0 87.3 60.0 87.3 60.0 60.0 87.3 

9symml 276 15 216 12 47 10 45 12 10 47 21.7 20.0 83.0 33.3 84.0 20.0 33.3 73.2 

ldd 91 9 73 13 67 7 67 7 7 67 19.8 −44.4 26.4 22.2 26.4 22.2 22.2 26.4 

alu2 495 15 354 18 340 18 329 18 16 347 28.5 −20.0 31.3 −20.0 33.5 −20.0 −6.7 29.9 
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x2 49 6 42 8 37 7 34 7 6 36 14.3 −33.3 24.5 −16.7 30.6 −16.6 0.0 26.5 

cm152a 31 5 21 5 21 6 17 6 6 17 32.3 0.0 32.3 −20.0 45.2 −20.0 −20.0 45.2 

cm85a 80 10 34 10 26 6 19 6 6 19 57.5 0.0 67.5 40.0 76.3 40.0 40.0 76.3 

cm151a 56 8 42 8 23 7 20 7 7 20 25.0 0.0 58.9 12.5 64.3 12.5 12.5 64.3 

cm162a 57 7 46 9 41 7 36 9 7 41 19.3 −28.6 28.1 0.0 36.8 -28.6 0.0 28.1 

cu 61 8 46 7 40 7 39 7 6 40 24.6 12.5 34.4 12.5 36.1 12.5 25.0 34.4 

cm163a 52 7 42 9 38 7 32 7 7 32 19.2 −28.6 26.9 0.0 38.5 0.0 0.0 38.5 

cmb 44 4 44 5 28 4 26 4 4 26 0.0 −25.0 36.4 0.0 40.1 0.0 0.0 40.1 

pm1 49 6 45 7 35 6 32 6 6 32 8.2 −16.7 28.6 0.0 34.7 0.0 0.0 34.7 

tcon 24 2 24 2 24 2 24 2 2 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

vda 856 13 738 14 700 15 670 14 14 670 13.8 −7.7 18.2 −15.4 21.7 −7.7 −7.7 21.7 

pcle 78 9 67 8 62 8 62 8 8 62 14.1 11.1 20.5 11.1 20.5 11.1 11.1 20.5 

sct 86 7 72 10 65 6 65 6 6 65 16.3 −42.9 24.4 14.3 24.4 14.3 14.3 24.4 

cc 49 5 44 5 43 5 43 5 5 43 10.2 0.0 12.2 0.0 12.2 0.0 0.0 12.2 

cm150a 54 8 46 8 46 9 37 6 6 37 14.8 0.0 14.8 −12.5 31.5 25.0 25.0 31.5 

mux 55 7 46 7 46 9 37 6 6 37 16.4 0.0 16.6 −28.6 32.7 14.3 14.3 32.7 

ttt2 187 11 154 11 145 11 144 10 10 144 17.6 0.0 17.6 0.0 22.5 9.0 9.0 23.0 

i1 54 7 41 8 36 6 35 6 6 35 24.0 −14.3 33.3 14.3 35.2 14.3 14.3 35.2 

lal 123 7 95 9 82 8 64 9 8 82 22.8 −28.6 33.3 −14.3 48.0 −28.6 −14.3 33.3 

pcler8 107 11 90 8 80 9 80 9 8 90 15.9 27.3 25.2 18.2 25.2 18.2 27.3 15.9 

frg1 196 17 111 23 105 18 102 17 17 102 43.4 −35.3 46.4 −5.9 48.0 0.0 0.0 48.0 

c8 124 8 115 8 112 7 108 8 7 112 10.2 0.0 12.5 12.5 15.6 0.0 12.5 12.5 

term1 352 12 174 16 106 11 89 10 10 89 50.1 −33.3 69.9 8.3 74.7 16.7 16.7 74.7 

unreg 84 5 84 4 84 5 84 5 5 84 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 

k2 1602 18 1313 19 1301 19 1193 19 19 1193 18.0 −5.6 18.8 −5.6 25.5 −5.6 −5.6 25.5 

cht 121 4 120 4 120 4 120 4 4 120 0.8 0.0 0.8 0.0 0.8 0.0 0.0 0.8 

x1 573 12 320 13 264 11 253 11 11 253 44.2 −8.3 53.9 8.3 55.8 8.3 8.3 55.8 

example2 285 9 259 9 247 10 241 9 9 241 9.1 0.0 13.3 −11.1 15.4 0.0 0.0 15.4 

apex6 984 16 701 14 662 17 662 17 15 677 28.8 12.5 32.7 −6.3 32.7 −6.3 6.3 31.2 

frg2 759 14 672 15 582 14 568 15 13 600 11.5 −7.1 23.3 0.0 25.2 −7.1 7.1 20.9 

i2 395 14 209 18 209 13 209 13 13 209 47.0 −28.6 47.0 7.1 47.0 7.1 7.1 47.0 

Average reduction% 22.0% −7.5% 31.8% 5.7% 36.1% 6.9% 11.1% 34.3% 
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as well as 6.9% in level counts, whereas Kong’s method and MALS have an av-
erage reduction of 31.8% and 22.0% in the number of gates, respectively. When 
the MLUT method is targeted to optimize the level counts, there is an average 
reduction of 11.1% in the number of levels as well as 34.3% in the number of 
gates, whereas Kong’s method and MALS have an average reduction of 5.7% and 
−7.5% in level counts, respectively. It can be noticed that all methods give better 
average reduction results for gates and levels except the MALS method which 
results in a worse average reduction for level counts as compared to the 
AND/OR mapping method. Even though the MLUT method results in the high-
est average reduction for gate and level counts compared to other methods, it 
does not result in the optimal majority networks for some circuits. For example, 
the obtained majority network for the benchmark circuit cm152a using MLUT 
when targeted to optimize either majority gates or levels, requires six levels, 
whereas it can be realized with five levels as obtained from Kong’s method. 

As a result, it can be observed from Table 2 and Table 3 that none of the 
comprehensive synthesis methods can generate the optimal majority/minority 
logic networks in terms of all optimization factors for all cases. However, some 
of these methods can result in best solutions in terms of some optimization fac-
tors for three-variable or multi-variable Boolean functions. Table 4 shows the 
capability of each synthesis method to optimize gates, levels, inverters and gate 
inputs for all cases of three-variable and multi-variable Boolean functions. From 
the table, it can be seen that Kong’s method and MLUT can generate the optimal 
majority networks in terms of gates, levels and inverters for all cases of three- 
feasible networks. However, none of these methods can generate the optimal 
majority networks in terms of gate inputs for all cases. For Boolean functions 
with more than three variables, only the MLUT method can synthesize the op-
timized majority networks in terms of gates and inverters for all cases. Although 
these results are the best compared to other methods, they are not guaranteed to 
be optimal. For levels and gate inputs, none of the synthesis methods can give 
the optimal solutions in terms of these factors for all cases of multi-variable 
Boolean functions. 

Even though these methods result in the best majority networks in terms of 
some or all optimization factors for all cases, these networks are not guaranteed 
to be optimal especially while synthesizing multi-output Boolean functions. The 
process of selecting the optimal majority network for multi-output Boolean 
functions is not considered in any of the three synthesis methods, which is a very  

 
Table 4. Optimization capability analysis for best comprehensive synthesis methods. 

Method 
Decomposition Optimization targets 

Gates Levels Inverters Gate inputs Gates Levels Inverters Gate inputs 

MALS [20] No No No No No No No No 

Kong’s [21] Yes Yes Yes No No No No No 

MLUT [26] Yes Yes Yes No Yes No Yes No 

https://doi.org/10.4236/eng.2017.910054


A. Almatrood, H. Singh 
 

 

DOI: 10.4236/eng.2017.910054 910 Engineering 
 

serious drawback. For a multi-output Boolean function, by synthesizing the 
equivalent majority expression for each output separately, which is performed in 
the three methods, the obtained majority expression can be the optimal in terms 
of all optimization factors for this output. However, the final majority network 
realized from these expressions is only optimal in terms of levels, which is the 
maximum number of levels used in these expressions. For the number of major-
ity gates, inverters, and gate inputs, the final network is not always the optimal 
solution in terms of these factors. In other words, the number of gates, inverters, 
and gate inputs used in a majority network obtained from one of these methods 
for a multi-output Boolean network can be further reduced. To clarify this point, 
consider a Boolean network N with two outputs, i.e., 1 2 3 3 11 2 3F x x x x x x x x′ ′ ′ ′= + +  
and 3 211 2 3G x x x x x x′ ′= + . For the output F, one of its equivalent optimal majority 
expressions is ( ) ( ) ( )1 3 1 2 3 2 31  ,0, , , , , , ,F M M x x M x x x M x x x ′ ′=  

 
. For the out-

put G, two of its equivalent majority expressions are  

( ) ( )1 1 2 3 3 1 2 3  , , , , , ,G M M x x x x M x x x ′ ′=  
 

 and  

( ) ( )2 1 2 3 1 2 31  , , , , , ,G M M x x x x M x x x ′ ′=  
 

. It can be noticed that both majority  

expressions for the output G have the same number of gates, levels, inverters, 
and gate inputs as 3, 2, 2, and 9, respectively. Now, the final majority network 
for N can be realized by selecting either majority expressions ( )1,F G  or 
( )2,F G . However, these networks are different in terms of some optimization 
factors. For the network ( )1,F G , it has 5 gates, 2 levels, 2 inverters, and 14 gate 
inputs, whereas the second network ( )2,F G  has 6 gates, 2 levels, 3 inverters, 
and 16 gate inputs. From the two solutions, it can be seen that the number of le-
vels is the only factor that does not change. However, the second network 
( )1,F G  has the minimum number of gates, inverters, and gate inputs. There-
fore, the best solution for network N is ( )1,F G . Consequently, it can be seen 
that this is an important process that can provide further reduction and give 
better results in terms of different optimization factors. 

As discussed earlier, since the different characteristics of nanotechnologies 
and their logic devices implementations can affect the optimization priorities 
given to different factors such as gates, levels, inverters, etc., a majority/minority 
logic network generated from the existing synthesis methods is not guaranteed 
to be the best solution for all nanotechnologies. Therefore, there is a strong need 
for developing an efficient majority/minority logic synthesis method that can 
synthesize the optimal majority/minority networks in terms of all optimization 
factors for any majority/minority-based nanotechnology. 

5. Conclusions 

Due to the physical limitations of CMOS technology, many emerging nanoscale 
technologies such as quantum-dot cellular automate (QCA), single electron 
tunneling (SET), tunneling phase logic (TPL), spintronic devices, etc., have been 
proposed and considered as possible replacements for CMOS. As known, CMOS 
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technology uses logic NAND, NOR and NOT gates to implement circuits. How-
ever, in post-CMOS nanotechnologies, majority and/or minority gates are the 
fundamental logic units used to implement Boolean functions. Since traditional 
reduction methods cannot result in optimal majority or minority logic networks, 
several papers have introduced different synthesis methods based on different 
principles. In this paper, we give a comprehensive review of majority/minority 
logic network synthesis methods that are capable of synthesizing multi-input 
multi-output Boolean functions. Each of these methods is discussed in detail. 
We also compare and discuss the obtained results from these methods based on 
different optimization factors such as the number of gates, the number of levels, 
etc. From this comparison, we observe that the existing techniques can give sub- 
optimal solutions. However, none of these methods results in the optimal major-
ity/minority logic networks in terms of all optimization factors for all cases. 

For future work in the majority/minority logic synthesis methods, it is sug-
gested that the synthesis method should be developed to synthesis the equivalent 
majority and minority logic circuits for multi-input multi-output Boolean func-
tions based on optimization techniques that can lead to optimal majority/minority 
circuits for more than four-feasible networks. In addition, as discussed pre-
viously, for a multi-output Boolean function, by generating the optimal majority 
circuit for each output Boolean function separately, the final majority circuit 
may not always be optimal. Therefore, it is better to synthesize the majority or 
minority circuit for any output function with consideration of the other output 
Boolean functions. Moreover, it suggested that the synthesis method should be 
developed to generate the optimal majority circuit in terms of all optimization 
factors based on the given priorities. By developing a method that can synthesize 
the majority circuits based on different priorities such as gates, levels, inverters, 
and gate inputs, the method can be used to generate the equivalent circuits for 
any majority and/or minority-based nanotechnologies. 
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