
Engineering, 2015, 7, 625-643
Published Online October 2015 in SciRes. http://www.scirp.org/journal/eng
http://dx.doi.org/10.4236/eng.2015.710056

How to cite this paper: Warnecke, T. (2015) A Study on Configuration and Integration of Sub-Systems to System-of-Systems
with Rule Verification. Engineering, 7, 625-643. http://dx.doi.org/10.4236/eng.2015.710056

A Study on Configuration and Integration of
Sub-Systems to System-of-Systems with Rule
Verification
Tim Warnecke
Department of Computer Science, TU Clausthal, Clausthal-Zellerfeld, Germany
Email: tim.warnecke@tu-clausthal.de

Received 18 June 2015; accepted 23 October 2015; published 26 October 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Increasing complexity of today’s software systems is one of the major challenges software engi-
neers have to face. This is aggravated by the fact that formerly isolated systems have to be inter-
connected to more complex systems, called System-of-Systems (SoS). Those systems are in charge
to provide more functionality to the user than all of their independent sub-systems could do. Re-
ducing the complexity of such systems is one goal of the software engineering paradigm called
component-based software engineering (CBSE). CBSE enables the developers to treat individual
sub-systems as components which interact via interfaces with a simulated environment. Thus
those components can be developed and implemented independently from other components. Af-
ter the implementation a system integrator is able to interconnect the components to a SoS. De-
spite this much-used approach it is possible to show that constraints, which are valid in an iso-
lated sub-system, are broken after this system is integrated into a SoS. To emphasize this issue we
developed a technique based on interconnected timed automata for modelling sub-systems and
System-of-Systems in the model checking tool UPPAAL. The presented modelling technique allows
it to verify the correctness of single sub-systems as well as the resulting SoS. Additionally we de-
veloped a tool which abstracts the complicated timed automata to an easy to read component
based language with the goal to help system integrators building and verifying complex SoS.

Keywords
System-of-Systems, CBSE, Verification, Model Checking, UPPAAL

1. Introduction
Increasingly demanding user requirements for modern software systems have led to the complexity of the sys-

http://www.scirp.org/journal/eng
http://dx.doi.org/10.4236/eng.2015.710056
http://dx.doi.org/10.4236/eng.2015.710056
http://www.scirp.org
mailto:tim.warnecke@tu-clausthal.de
http://creativecommons.org/licenses/by/4.0/

T. Warnecke

626

tems being developed becoming more unmanageable. This tendency has been rapidly increasing not just with
pure software systems but also with a large number of cyber-physical systems. With the advent of IPv6 and the
associated “Internet of Things”, another layer of complexity has been added. This new level is also referred to
and described as System-of-Systems (SoS). This entails separate and independent systems being linked to a lar-
ger system to provide the user with enhanced services and information.

There are many approaches in research and industry used to control the ubiquitous problem of the rapidly in-
creasing complexity of software systems. One is the component-oriented software development approach [1],
which divides the system into individual software components with clearly defined responsibilities and assigns
well-defined interfaces. One advantage of this approach is that the development of individual components can
take place independently of one another. This is achieved by ensuring that the components needed for execution
are simply simulated with the desired values or entries. The real components are only connected to a joint sys-
tem later on in the development process. However, the component-oriented approach may also apply to the SoS
mentioned previously, since the isolated individual systems may again be regarded as components that provide
services for other systems or require these from other systems.

Nonetheless, although the development of complex software systems has become more structured using
methods such as component-oriented software development, these methods do not guarantee the correctness of
either the components that are to be developed or the way in which they interact in the overall system. Here
verification procedures and tools are used that test systems for certain specifications and constraints to prove
whether these are valid or not. Such procedures allow to identify (critical) design errors during the implementa-
tion or planning phase and to correct these before they are implemented in the system.

One such tool for software verification is the model checker UPPAAL [2] which is able to simulate system
models and check whether these models satisfy certain specifications. Due to the type of modelling, based on
networked and timed automata, this tool is used principally to verify real-time systems and communication pro-
tocols. The modelling based on networked automata means that UPPAAL is also an interesting tool for model-
ling networked software components and systems.

This work therefore investigates the suitability of UPPAAL in terms of component-oriented development and
the linking of components to a System-of-Systems. It will demonstrate how UPPAAL can be used to model in-
dividual sub-systems and SoSs. It will also exhibit that specifications that are valid in a sub-system do not nec-
essarily have to be valid in the interconnected SoS. In order to establish this, the study will first model the
sub-systems in UPPAAL and then link the sub-systems to a functioning SoS using a self-developed tool.

2. Component-Based Development of System-of-Systems
The difficulty of verifying the correctness of a software system in terms of a given specification should not be
underestimated. The use of the component-oriented development approach offers the possibility of reducing the
complexity of both the integral system that is to be developed and its verification. This is achieved by dividing
the system into smaller and more manageable components. Verification can then be carried out on these smaller
system components. However, it would be misleading to conclude that this process would ensure the correctness
of the entire system.

First we introduce the chosen type of component-oriented development for System-of-Systems with a closer
look to the left side of Figure 1. Initially a component (grey-coloured squares) is only a black box and its inter-
nal behaviour cannot be observed from the outside. The only thing that is known about a component are the
well-defined interfaces which provide either services and/or information (green rectangles). Other components
can use or require these (red rectangles), so that they are able either to perform their task or perform it better
than they would otherwise be able to. If a component defined as such were to be developed separately from the
other parts of the system, the values for the required interfaces will have to be provided by a dummy component.

This dummy component is also referred to as the expected environment (blue-colored squares), as it simulates
the environment which is expected by the component in order to be able to function correctly. If the interfaces of
the component and its expected environment are connected using communication channels, a dedicated
sub-system is created, since this system can now fully perform its functionality independently of other systems.
Based on this assumption, such a sub-system can also be tested to verify the correctness of certain properties
using verification procedures, e.g. model checking. Accordingly, as shown in definition 1, a sub-system is un-
derstood to embrace a combination of the components to be developed, the expected environment, the channels

T. Warnecke

627

Figure 1. Integration of sub-systems into a System-of-Systems.

between the interfaces of these two and any number of constraints.

Definition 1: A sub-system T is the 4-tuple (Comp, Env, Chans, Cons) where
• Comp is the component to be developed with any number of interfaces that are required (reqComp) and pro-

vided (provComp).
• Env is also a component with interfaces that are required (reqEnv) and provided (provEnv) and is called the

environment. The environment covers all interfaces which are expected by Comp. It offers the component
these interfaces.

• Chans is a set of channels connecting the interfaces of Comp and Env, where reqComp × provEnv, but not nec-
essarily provComp × reqEnv.

• Cons is the set of constraints φ, which have to apply for connecting Comp and Env.
The System-of-Systems to be designed (see Figure 1, on the right) logically comprises the combined set of

sub-systems where the expected environments are omitted. The previous interconnection between the compo-
nents with their environment (represented by the set of channels) is of course no longer valid using this process.
How the validity of the channels can be restored is one of the questions which arise when an integral system has
to be designed from sub-systems. Definition 2 provides a more formal specification of the meaning of a SoS.

Definition 2: A System-of-Systems S is the 3-tuple (Comp, Chans, Cons) where
• Comp is the combined total of all components, i.e.

1

n

i iComp
=

, from the selected sub-systems Ti.
• Chans is the set of channels connecting the interfaces of the integrated components, where

i jT Treq prov×
and i, j are pairwise different.

• Cons is the combined set of constraints, i.e.
1

n

i iCons
=

, from the selected sub-systems Ti.
The constraints of the sub-systems constitute an additional problem when it comes to integrating them into a

SoS. This is because they often relate to the previous environments. However, they no longer exist and therefore
no longer function on a syntactic and semantic level. On the other hand, it may happen that the constraints can
no longer be maintained in the SoS due to details not taken into account in the design of the environment. Nev-
ertheless, the constraints of the individual sub-systems must also be included in the SoS and be integrated ac-
cordingly. This study does not address this factor but demonstrates that even small systems and simple con-
straints can lead to major complications.

3. Introduction to Formal Verification of Software Systems
The formal verification of software systems is an area of research that has been going on since the 1980s. It has
enjoyed increasing popularity and use even in industry due to numerous disasters and mishaps caused by soft-
ware and hardware errors. In this area, a distinction can basically be made between verification at runtime and
design time. While runtime verification monitors a system during execution and therefore requires a fully im-
plemented program, the verification at the design time can already be applied during the design phase. This
study focus on the latter one and especially on a model checking tool named UPPAAL. The task of such a veri-

T. Warnecke

628

fication tool used at the design time is automated system checking against an often safety-critical specification.
Both model checking and UPPAAL are explained in detail in the following sections.

3.1. Model Checking
One of these formalized verification approaches is model checking, which was introduced first in [3]. The idea
of model checking is to find states in a Kripke structure [4] that apply to a given specification. A Kripke struc-
ture is a variant of a non-deterministic automaton and is defined in (1) as follows as a 5-tuple

()0, , , ,K S S R L AP= (1)

where S is a finite set of states, 0S S⊆ is a finite set of initial states, R S S⊆ × is a left-total transition rela-
tion, : 2APL S → is a labeling function, and AP is a set of atomic propositions.

The established structure which is equivalent to an abstract machine can help to model the processes required
in a program. The interpretation of these processes is generally performed using formulas, which are expressed
in temporal logic [5]. Temporal logic is a form of modal logic [6], which already allows conclusions in state-
ments and describes temporal relationships between events. Based on temporal logic, two different categories of
description techniques have emerged over time known as Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL). Although both types of logic make statements about whether a sought-after event will occur
in the future, LTL is based on the concept of paths and CTL used branches or trees as its basis. CTL, which in
turn is a subset of the more general CTL* [7], will be discussed in more detail below. An extension of CTL,
Timed Computation Tree Logic (TCTL), is used in the UPPAAL model checker, which will be introduced later.

As already explained, in CTL all possible execution paths of a program are represented by a tree in which the
nodes represent the predefined states of the Kripke structure K and the edges represent state transitions of the
transition relation R. The root corresponds to an initial state 0 0s S⊆ . The leaves, however, represent deadlocks.
A state is known as a deadlock when no further transition can take place, therefore terminating the execution of
the program. However, this is not wanted in many programs and therefore a frequently tested characteristic.

CTL defines a number of operators with which specifications can be described. These operators can initially
be divided into path and temporal quantifiers. The two path quantifiers All A and Exists E denote the number of
paths to which a temporal logical formula φ must apply. The term Aφ therefore states that formula φ must apply
to all paths of a tree and Eφ indicates that there must be at least one path to which θ applies. However, this type
of path quantifier can never be used without a temporal quantifier in CTL, as it is only possible in the more gen-
eral CTL*. These four temporal quantifiers are called Next (X), Finally (F), Globally (G) und Until (U) and in-
dicate when a given formula φ should apply. The unary temporal quantifiers Next, Finally und Globally indicate
that formula φ must apply in the next state (X), in any next state (F) or in all following states (G). The single bi-
nary quantifiers Until states that a state s1 applies until a new state s2 is reached.

According to the definition (1) and the temporal logics operating on them, the problem to be solved by model
checking can be formally defined accordingly [8] as formula (2)

,K S f′ (2)

where K is a Kripke structure, S K′ ⊆ is a set of K-based states, and f is a temporal logical formula.
This means that based on the two parameters K and f, all S' states of the K Kripke structure will be sought, in

other words the expression ,K S f′ has to be true. In order to identify these valid states S', the Kripke struc-
ture (which comprises all possible program processes) will first be generated, and then uninformed search
methods will be used on these. However, this is not trivial in practice as the size of a Kripke structure relates
exponentially to the description of the modelled system [9]. This problem is known as state space explosion and
ensures that the Kripke structure will either no longer be completely written into the working memory or that the
search for desired states can take a very long time. Many scientific works aim to mitigate this problem and cover,
for example, the use of symbolic model checking [10], partial order reduction [11], CEGAR (Counterexample-
guided abstraction refinement) [12] and some other methods which all have the common goal of keeping the
state space as small as possible.

3.2. Model Checking with UPPAAL
As already mentioned model checking has become very popular and so a lot of tools were developed. One of

T. Warnecke

629

them is UPPAAL which the developers label as an “integrated environment for modelling, validating and veri-
fying real-time systems” [13]. For modelling, the developers focused on networked and timed automata that
have been enriched by data types. These can be created and manipulated with a simple graphical interface.
Validation and simulation of the execution of the modelled systems take place in an environment similar to
modelling. This means that the modeller can view the graphical automata at runtime and thereby see which
edges to switch in the next execution step or which states will be accepted by the automata. The last area, veri-
fication, is the actual model checking. At this point, requirements may be imposed on the modelled system and
checked by UPPAAL.

The UPPAAL model checker refers to automata as templates, as this highlights that automata that have been
modelled once can be used repeatedly. The reuse of such automata not only shortens modelling time, but also
significantly simplifies their maintenance. The modelling of the templates is also complemented by two textual
descriptions that differ in terms of scope and visibility. The first description is the global declaration, which
contains variables and functions, which are visible to all templates in an UPPAAL program. Each template also
has its own local declaration which only includes visible variables and functions for the template in question.

The user has two objects available for the modelling of templates: locations and edges. Locations are the pos-
sible states of a program and as shown in Figure 2, they are depicted by a simple circle. Such a location may
have an optional name and an optional invariant. While the name of a location only facilitates better under-
standing and clarity, the invariants describe the latest point at which a location has to be exited again. This is
exactly the case when an invariant is violated.

A location can take on four different characteristics: initial, urgent, committed or normal. An initial location
designates the entry point to a template when the program starts. An urgent location refers to the timed approach
of automata used in UPPAAL. If the developer has modelled clocks, an urgent location can be used to indicate
that no time passes while the system is in this state.

The committed location is an escalation of the urgent location and therefore has the same characteristic with
only one addition: A committed location does not just stop time, but it also signals that the location has to be ex-
ited again in the next execution step. The last characteristic that a location may have is normal. This only means
that it has none of the three aforementioned characteristics.

The entry and exit of locations in automata take place via edges. Like the locations, they can also have certain
characteristics in the form of annotations, known as select, guard, sync and update. The select-instruction is able
to assign a variable with a random value. This allows to simulate non-deterministic user inputs and thereby trig-
ger behaviour which perhaps may not have been taken into account at the present time of development. To pre-
vent an edge from being enabled at any time by the system, the guard instructions will be used. These corre-
spond to conditions that have to be met so that an edge can be considered as a candidate for a state transition.
Such a condition is constructed using comparison operators and logic operations.

Communication between two or more automata is one of the fundamental concepts in UPPAAL and means
that individual templates are able to synchronize. The synchronisation instruction (sync for short) has therefore
been introduced to allow edges to model both as a synchronisation senders and synchronisation receivers. Such
an instruction consists of the name of the channel via which the synchronisation is to take place and appended to
this is either an exclamation mark for a sending edge or a question mark for a receiving edge. However, the de-
sired channel name must first be made known as a variable in the global declaration.

Manipulation of variables is achieved using the update instruction in two different ways. The first possibility
is direct manipulation of a variable value with help of mathematical operations. In order to make such manipula-
tions reusable there are also functions in UPPAAL, which can be accessed from the update command. These
functions are defined in the global or local declaration and can therefore be accessed like functions, provided
that they are within the visibility range of the template concerned.

4. Introduction to the Example System
Based on the theoretical review of the approach to the integration of individual, dedicated sub-systems into a
System-of-Systems and the resulting problems in the channels and the constraints, this study will now illustrate
these based on a simple example. The example introduces the case of a simple SoS called personnel manage-
ment system comprising three components which are outlined in Figure 3. As already discussed, the compo-
nents have both interfaces that provide services (prefix r_) and those that require services (prefix p_). The

T. Warnecke

630

Figure 2. UPPAAL: Graphical representation of various locations and edges.

Figure 3. Components of the personnel management system.

syntactical distinction is, however, not just meant for the reader. It should also denote that the interfaces of the
components must not be given the same name, if they are going to be connected.

The first component named Company Management Dashboard (CMDB) is the graphical interface of the per-
sonnel management system. The user can use this to enter new staff with their salaries and can request the sum
total of salaries for all the staff. For this purpose, the component also has three interfaces which perform the ac-
tions described. The interface p_infos provides the graphical interface. As the names already suggest, interface
r_addPerson requires a component for the comprehensive storage of the personal data and interface r_salarySum
needs the result of the sum calculation of all salaries of the persons entered.

The component Financial Control is responsible for the accounting system of the SoS. It has the ability of
calculating the salaries of all staff based on a given payroll. This calculation is performed within the component
and is made available to other parts of the system at the interface p_salarySum. The lists containing the salaries
of the staff needed for the calculation algorithm is requested via interface r_salaries by another component.

The final component is the Person Organizer which represents an electronic data management system, such as
a database. In this example, this component is a pure service provider. This means that it only offers services,
and requires none. The first of the two interfaces named p_addPerson offers other components the possibility of
storing personal data, i.e. the person’s name and their salary. With interface p_salaries, a component can retrieve
all the currently stored personal data as a list.

5. Modelling Components and Expected Environments
Planning and developing a System-of-Systems is a major undertaking and can only be carried out with difficulty
at a single central location. This is due to the fact that the systems involved often already have very complex
structures and because the domains in which they are located are very different. Furthermore, existing sub-sys-
tems in a SoS are mixed with newly developed sub-systems.

It is therefore a good idea to allocate the design and implementation of new sub-systems to different devel-
oper teams because this helps to reduce the complexity of the development process. The dummy components
mentioned in chapter 2 are required so that these can be developed separately from other sub-systems. These
expected environments simulate the parts of the SoS, which provide information and services for their own
sub-system. In order to prove that the sub-systems are correct, formal mechanisms like model checking and
tools like UPPAAL are used. However, before UPPAAL can be used for such a task, the very informal sounding
description of the sub-systems and their interfaces needs to be converted into UPPAAL’s modelling language.
This study has therefore established some simple but general rules according to which the sub-system descrip-
tions can be translated into UPPAAL automata.

According to convention, only one sub-system per UPPAAL program, containing component and environ-
ment, will be modelled. This not only preserves the clarity, but also helps to keep the state space as small as
possible during verification. In a distributed system, this is also far more realistic than would be the case if all

T. Warnecke

631

the sub-systems were available. As already stated in section 3.2, this type of UPPAAL program first contains a
global declaration and any number of templates combined with the same number of local declarations. Another
rule stipulates that the component and its environment should be modelled as stand-alone automata. This means
that there are always two templates in a program. The local declarations associated with the templates carry out
the functions which are called at the interfaces of the component or environment. They also carry out other
functions which may be needed for the system flow in the components. The nature of UPPAAL is such that
when communication takes place between two or more templates, only synchronisation instructions (i.e. no val-
ues) are exchanged. This means that global variations have to be used for exchanging data. Accordingly, all
values that are exchanged between a component and its environment will be processed by variables which are
defined in the global declaration.

Modelling a single software component in UPPAAL begins with the creation of an initial location into which
the automaton will keep returning after one of its interfaces has been called. The further setup of the automata
depends on how the component itself is described by its interfaces. The simplest is the presentation of an inter-
face providing a service. Here an edge is created starting from the initial location and returning to it (see Figure
4 on the left). The functionality offered by this edge is entered as a function in the edge’s update property and
implemented in the local declaration of the template.

The situation is different if an interface has to be modelled which calls another component, because it is then
necessary to distinguish between synchronous and asynchronous calls. If another component is called asyn-
chronously, it will also be modelled as an edge which again returns to it directly from the initial state. It is also
again defined as a function via the update property. As shown in Figure 4 (middle), the only difference is that
the starting point of a synchronisation channel is added to this edge so it can start calls to other components.
This call then returns directly and the component is ready for further actions. If parameters are also transferred
in this call, this can be randomized by a select instruction in order, for example, to simulate user input.

In contrast to an asynchronous call, a synchronous call is modelled in a different way and in this case used for
a different purpose. In this study, the synchronous calls are therefore used to obtain variable values from other
components. This is necessary because when a synchronisation between templates takes place, UPPAAL has a
fixed order of function executions. If an edge that has a synchronisation starting point is called, first the update
instruction and then the synchronisation instruction of the sending template will be called. Subsequently, in the
received template, first the synchronisation instruction and then the update instruction will be processed. This
means that the received template is not able to calculate the requested variable value and bind this simultane-
ously to the global communication variable. In this case, synchronous calls will therefore be used which initially
call and then block synchronisation in order to wait for the result. In order to model this call, two edges and a
committed location will be used, as shown in Figure 4 (right). The first edge points from the initial location to
the committed location and marks the starting point of a synchronisation channel. This call signals to the called
component to calculate the desired values and to bind to the global communication variable. The calling
automaton is then located in the committed location, which it exits directly in the next execution step via the
second edge in the direction of the initial location. In this way, the actual function is called and the value of the
global variable is copied into a local variable of the component.

The environment component is still needed to enable the component to call services. Presenting an environ-
ment using an automaton is quite easy to do, as at this point no account has to be taken of the different forms of
call. Each interface is going to be provided by the environment and will be presented as synchronous call. Fur-
thermore, the edge with the end of the required synchronisation channel is annotated with a channel-statement in
order to enable communication with the component. The interfaces of the environment are indeed necessary if
the component requires this. However, it may also be the case that a component is only a service provider. In

Figure 4. A component’s service providing interface (l.), asynchronous call
(m.) and synchronous call (r.).

T. Warnecke

632

this case, it requires no further services or data and can therefore be modelled fully without an expected envi-
ronment.

6. Verification of Single Software Components and Their Expected Environments
The division of sub-systems into component and environment is used in the following for the individual com-
ponents in the example from chapter 4 and then implemented using UPPAAL’s automaton language. The com-
ponent which is modelled exemplary in the manner described below is the Company Management Dashboard
(the other two components are modelled accordingly). As this component has two interfaces which require ser-
vices from other sub-systems, the environment must have two interfaces which provide the desired functional-
ities (Figure 5 left). Interface r_addPerson is therefore able to store the personal data, and r_salarySum contains
the total of the salaries in order to be able to display this with the graphical interface p_infos. Consequently, the
environment is only the combination of the two non-usable components Financial Control and Person Organizer
and their provided interfaces.

Based on this informal description of the sub-system, a transfer into the UPPAAL automaton language takes
place. The component and its environment as respective templates are illustrated in Figure 5 (right), where the
component is placed at the top and the environment at the bottom. The component’s automaton contains three
parts representing the interfaces. The first p_infos has been modelled with a simple edge as this can be offered to
other sub-systems, in this case the user. The function r_addPerson uses a synchronous call to transfer the pa-
rameter ID and salary to the environment. The parameters are selected non-deterministically and synchronised
using the channel addPersonChannel. The third interface r_salarySum is used to obtain the sum of the. The
component uses this to synchronise with the environment with channel getSalarySumChannel and then obtains
the value.

As already indicated, the modelling of sub-systems as UPPAAL automata has the crucial advantage of ensur-
ing that properties can be verified using constraints or specifications. This ability is used to show that it makes a
significant difference whether such a constraint is applied to a single sub-system or a jointed SoS. An example
constraint which checks an invariant property of the CMDB component is therefore defined in the following.
This invariant should indicate that the salary sum, which provides the environment as a value, is always the
same as it would be if CMDB were to calculate this itself. In UPPAAL’s specification language, such a re-
quirement could be formulated as follows:

[] . (.) . _ ()A Cmdb calculateSalarySum CmdbEnv salaryList CmdbEnv p salarySum== (3)

Equation (3) describes how the invariance of the constraint is achieved by the expression A[] which is equal to
the statement AG in TCTL. As already explained, this means that a formula φ must apply to all execution paths
and in all states. Subsequently, the CMDB component calls the calculateSalarySum function, which takes the
environment’s salary list (salaryList) as a parameter (here referred to as CmdbEnv) and calculates the total from

Figure 5. The Company Management Dashboard sub-system as an UPPAL automaton.

T. Warnecke

633

this. It should be noted that this function is only used for this constraint and within the component and is there-
fore not included in the associated template. The calculated salary sum is compared via the equality operator
with the sum provided by the environment’s p_salarySum interface. If the UPPAAL verifier is executed with the
stipulated constraint, it will report that this is always valid. The sub-system has therefore been designed and
constructed correctly from the developer’s perspective.

7. System-of-Systems Integration
Having addressed the question of modelling single sub-systems, the next question is how they can be integrated
into a System-of-Systems which contains of three parts: components, channels and constraints. The first step is
to collect all modelled sub-systems and to remove all dummy components respectively expected environments.
The result is shown in Figure 6.

However, this procedure, only ultimately results in individual components no longer being able to function
because the interface channels are no longer correctly connected. The channel ends must therefore be adjusted
unilaterally, as the starting points are already registered correctly at the edges. Of course, knowledge of the
structure of the automata and their importance as networked components is indispensable. This is because the
received synchronisation instructions have to be annotated to the correct edges that are currently not equipped
with this instruction in order to produce the interconnection between the components. Unwanted select instruc-
tions must also be removed. Otherwise, the SoS would have inconsistent data.

A possible outcome of this manual adjustment of automata is shown in Figure 7 and has been achieved add-
ing three new channel ends to the edges p_salarySum, p_salaries and p_addPerson. The correct designation of
the ends has meant that these have been connected to their respective counterparts. The select statement of the
Person Organizer has also been removed, as the random inputs have now been reprocessed via the CMDB.

After the components have been interconnected, the set of constraints which were initially and knowingly not
taken into account, remain. Without loss of generality, in this example the set contains only a single constraint.
This has already been mentioned in the previous section and verified a characteristic of the CMDB component.
The constraint in Equation (3) was formulated as follows:

[] . (.) . _ ()A Cmdb calculateSalarySum CmdbEnv salaryList CmdbEnv p salarySum==

The question that now arises is whether the constraint, which is correct for the CMDB component, can still be
valid in the constructed SoS. First, it can be stated that the constraint is no longer verifiable, as the template
CmdbEnv (the environment of CMDB) is no longer available. The two references to CmdbEnv must therefore
be replaced by components used in the new interconnection of the SoS. In the first verification, CmdbEnv rep-
resented the data from the Person Organizer (PO), as CMDB is meant to calculate the sum total with the salaries

Figure 6. The personnel management system as non-interconnected UPPAAL automata.

Figure 7. The personnel management system as interconnected UPPAAL automata.

T. Warnecke

634

that are currently available using the calculateSalarySum method. The CmdbEnv behind the equality operator
represents the component which will take over the calculation of the salary sum. In this case it is Financial Con-
trol (FC) and given the assumptions and observations that have been made, the constraint appears as follows:

[] . (.) . _ ()A Cmdb calculateSalarySum PO salaryList FC p salarySum== (4)

Equation (4) describes the constraint adjusted to the SoS can now be verified again by UPPAAL with the new
result that this is no longer valid. The reason for this lies in the interconnection of the SoS. In the initial verifica-
tion of Equation (3), the storage of the personal data and the calculation of the salary sum have been carried out
by the same components but this is no longer the casein Equation (4). These responsibilities have been separated
and therefore so has the information. If the user now enters personal data into the system, this data will first be
stored in the PO. At this moment, the constraint is already invalid, because FC does not know anything about the
new entry as its interface r_salaries has not yet queried the new salary sum. The amount calculated by FC for
one execution step is therefore different to that which CMDB would calculate itself. There are therefore contra-
dictory variable values in the system.

This simple example clearly shows how easily a constraint suddenly loses its validity if applied in a SoS. The
situation described only appears very briefly in the personnel management system and only when a user enters
new data. However, these brief moments in safety-critical systems might determine whether a fatal error occurs
or not. As has happened in the example shown, conflicting variable values, may lead to disasters, as other
sub-systems may rely on these values. It is therefore important to have a better understanding of the constraints
used and their importance for a SoS, and to develop methods to recognise and resolve these defects in advance.

8. Tool Support
To support the development and verification of component-based software systems a small tool called Inter-
Connection Tool (ICT), shown in Figure 8, was developed. The main idea of the ICT is that modelling of com-
ponents and systems is completely different of modelling timed automata. Because of that the tool transforms
subsystems modelled as timed automata to a component-based representation consisting of components, inter-
faces and channels. Using this representation it is very easy for the system integrator to build a SoS even if he
has no knowledge of modelling automata. After building a SoS the ICT transforms it back to automata repre-
sentation so the system integrator is able to verify the correctness of his design.

The interaction with the ICT is kept as simple as possible, but requires some preparation from the component
developer, because first he has to model the sub-systems behavior as timed automata. After he has completed the
modelling, simulation and verification of the sub-systems, he stores each component in a separate XML file.
This format is already provided by UPPAAL. Subsequently, these files are loaded by the system integrator using
the ICT. Once the loading process is complete, all detected components are displayed on the left in the list of
inactive components (Figure 8 on the left).

Figure 8. Graphical interface of the Inter Connection Tool (ICT).

T. Warnecke

635

The system integrator is now able to drag the components from the list onto the workspace and they will be
displayed as grey squares with attached red (required interfaces) respectively green rectangles (provided inter-
faces). If he selects an interface, a connection edge appears which is anchored at the selected interface and fol-
lows the cursor. To complete the interconnection, the interface of another component, that does not match the
color of the interface already chosen, must be selected. The user can repeat this process until the interconnection
is complete. Afterwards the ICT transforms the result into a new combined UPPAAL automaton. This file can
now be loaded in UPPAAL in order to check whether the system still has the required properties.

9. Case Study
In order to test our approach and the ICT presented in the previous chapter in terms of its suitability for common
daily use, this study has examined and modelled an example which is more complex than the personnel man-
agement system. This chapter therefore outlines a scenario in the area of alerting and dispatching of operational
services in emergency situations and then models these as UPPAAL automata based on the rules already de-
scribed in chapter 5. Three selected sub-systems are then checked for their accuracy using UPPAAL specifica-
tions. Once the test is completed, the automata are transformed with the implemented connection tool into the
linking language. The components are subsequently interconnected semi-automatically and retransformed back
into a single UPPAAL automaton, the System-of-Systems. It is then shown that the SoS is no longer able to
meet the combined constraints of the sub-systems.

9.1. Scenario
Any kind of incident that threatens the lives of people and animals is the responsibility of organisations such as
the fire, ambulance and police services. These services are responsible for dealing with emergencies that fall
under their area of responsibility and taking countermeasures. For example, police officers can arrest the perpe-
trator of a robbery and the fire service can rescue people involved in a car accident. The coordination of re-
sources within this type of organisation is already a difficult undertaking. It is, for example, possible that there
are not enough fire engines at a fire station to be able to deal with a major fire and therefore other fire engines
from other fire stations further away will be needed. In this type of case, the coordinators responsible have to
react quickly and be able to make a good assessment of the situation.

This problem will be more complex if there are emergencies that have to be dealt with and which involve two
or more of the organisations mentioned at the same time. A fire would, for example, require resources from the
fire, police and ambulance services, because in this type of operation people are rescued by the fire service and
then passed on to the ambulance service. The police must also block off the streets to ensure the smooth running
of the rescue operation.

Coordinating these activities that involve the input of various organisations provides a basis for the following
case study. As shown in Figure 9, this scenario involves twelve parties and four different types of operation,
which are described in more detail below.

9.2. Parties Involved in the Scenario
The caller is any person who sets the entire process into motion by calling the control centre. He or she may also
be questioned by the control centre regarding the details of the emergency. The control centre receives the call
and asks the caller for details regarding the type of emergency and the number of casualties. Once the type of
operation has been identified (the types of operation are explained in the following sub-section), the control cen-
tre can ask for available resources from the organisations that are required in order to determine whether their
services can be called upon. For example, if a fire service has no more fire engines, it is not helpful to call upon
these engines to attend to a fire. If there are sufficient resources available, the organisation will be alerted. If this
is not the case, the control centre can still access and alert external services. Finally, the control centre can store
all reported operational data in a database.

The archive is a software database, which is able to store the operational data reported by the control centre.
However, to simplify the example, the operational data only contains the reported operational type.

The external forces function as surrogate support for each organisation that can provide no further vehicles for
new operations. In a realistic context, the The Federal Agency for Technical Relief would, for example, provide

T. Warnecke

636

Figure 9. Overview of the case study.

support to the fire service, the Red Cross would provide a back-up to the ambulance service and the armed
forces would preserve public order in the last resort if the police were no longer able to do this. In the scenario
described here, external forces may, however, only be alerted as the management of the resources for these op-
erational services is not the responsibility of the modelled control centre.

The headquarters for the three organisations (fire service, hospital and police) have a limited contingent of
certain types of vehicle that are available to them for dealing with emergencies. The control centre can ask for
this contingent at any time. Each particular type of operation costs operational headquarters a certain number of
particular types of vehicle, and when no more of these are available, the service concerned will turn down any
further operations. These types of emergency vehicles differ depending on the organisation. The fire service may
send fire engines for fire fighting. The hospital may provide doctors and ambulances for medical emergencies
and the police may provide patrol cars and police vans for combating crime.

The resources deployed in this scenario are the vehicles of each organisation. All vehicles may be sent from
their respective headquarters. As already mentioned, every time a vehicle is deployed it will cost the organisa-
tion concerned a certain amount of resources. The fire engine is the only vehicle at the fire station and is able to
rescue people and extinguish fires. The police maintain two different types of vehicles: the patrol car and the po-
lice van. The crew of the patrol car can check a person’s identity and the police van is used if there are suspects
to be arrested. The last two vehicles are the emergency car and the ambulance belonging to the ambulance ser-
vice. The emergency car is used for first aid at the scene of the accident. Once first aid has been administered,
the patient is transferred to the crew of the ambulance to be taken to the hospital.

9.3. Types of Operations in the Scenario
The case study modelled also differentiates between four types of operation, which are not shown in Figure 9.
These types of operation relate to false alarms, bank robberies, house fires and medical emergencies. At the be-
ginning of the scenario, the caller selects a random type of operation and communicates this to the control centre.
The type of operation chosen determines not only the organisations that are to be alerted but also the number of
vehicles that these organisations will send to deal with the emergency.

If the control centre determines that the reported emergency is a false alarm, the control centre will alert none
of the organisations and only save the call in the archive. The control centre will not carry out any further steps
and the operation will be considered complete.

If the caller reports a bank robbery, the control centre will only alert police headquarters and relay the ac-
companying operational code. The police station will use the code to send three patrol cars and a police van to
deal with the situation.

alerts
Control centreCaller External Forces

Archive

Fire service Hospital Police

Fire Engine Emergency
vehicle Patrol Car

Ambulance Police vans

calls

questions

saves data in

alertsasks about available resources

sends

sends sends

extinguishes fires /
saves peoples

checks personal details

transports casualties arrests suspects

stabilizes casualties

T. Warnecke

637

If the eye witness reports a medical emergency, such as a heart attack, the control centre will only alert the
hospital with the associated type of operation. In medical emergencies, the protocol of the hospital is always to
send an ambulance in the first instance to administer first aid. An emergency car will follow shortly thereafter to
provide the patient with medical care. The patent will then be taken to hospital by ambulance.

House fires are the last type of emergency that can be communicated to the control centre. This emergency
involves all three organisations being alerted, as people have to be rescued and treated, the fire has to be extin-
guished and the traffic has to be redirected. Once the alarm has been raised, two fire engines, two emergency
cars, two ambulances and two patrol cars are deployed from the operational centres.

9.4. Modelling of the Sub-Systems
After introducing the scenario, the specified expertise of the parties involved and the types of operation are
transferred using the rules described in chapter 5 to UPPAAL automata and their expected environments are
modelled. This also applies to systems which not only consist of software and/or hardware. This means that even
people such as callers are regarded as sub-systems in order for them to be integrated into the overall Sys-
tem-of-Systems. The order of the following UPPAAL automata corresponds to the order of the parties men-
tioned in the previous section. It should be mentioned again at this point that sub-systems that only provide ser-
vices, but do not require any more themselves, manage without modelled environments.

The caller is shown with his scope for action as an UPPAAL automaton in Figure 10. The caller is able to
make an emergency call with the edge callEmergency and offers to communicate information regarding the type
of emergency via provideData (emergencyType). Accordingly, this automaton only expects the environment to
accept his emergency call and later ask about the type of emergency service required.

The control centre is not only the centre of the entire System-of-Systems, but also provides and requires most
of the services in this scenario. Accordingly, the UPPAAL automaton, shown in Figure 11, is much more com-
plex. The control centre can use the edges emergencyCall and getEmergencyData to receive a person’s call and
find out about the type of operation that is needed. The control centre can then use the edges with the suffix Re-
sources, such as getFireHQResources or getPoliceResources, to enquire about available resources for the organi-

Figure 10. The caller and the corresponding environment as an UPPAAL automaton.

Figure 11. The control centre and the corresponding environment as an UPPAAL automaton.

T. Warnecke

638

sation concerned in order to alert the organisation (edges with the prefix call). However, this is only possible if
headquarters still has vehicles available. If this is no longer the case, external forces will be called via the edge
callExternals. The control centre can also save operational data at any time via the edge saveData in the ar-
chive.

The modelled environment of the control centre is therefore able to provide the number of vehicles for the
three organisations and accept alerts from the control centre. Furthermore, the environment transmits incidental
types of operation to the control centre and it serves as a database for the operational data.

In this scenario, both the archive and the external forces are very limited in terms of their functionality, as
they can either only save data or be alerted. As shown in Figure 12, this leads to very simple automata that have
no expected environment because they do not require services from other components.

The descriptions of the fire service, the hospital and the police suggest that the functionality of these three or-
ganisations is very similar. Accordingly, the UPPAAL automata in Figure 13 also resemble one another very

Figure 12. The archive and external forces as UPPAAL automata (no environment needed).

Figure 13. The headquarters and the corresponding environments as an UPPAAL automaton.

T. Warnecke

639

closely. First of all, each headquarters is able to transmit the current state of their own resources using the edge
reportRessources. Furthermore, each of these facilities is able to use the edge acceptEmergencyCall (emer-
gencyType) to accept an emergency call and to identify the operational type via the parameter. Finally, they can
all send their respective vehicles for reported deployments (all edges with the prefix send).

Since the three organisations only require their vehicles to fulfil their duties, only these vehicles are consid-
ered in the environments. To put it more precisely, these vehicles simulate the reception of the deployment
command.

Like the headquarters, the five vehicles also display very similar functions and have therefore been summa-
rised in Figure 14. First, each of the vehicles is able to use the edge moveOut to leave their associated head-
quarters to travel to an assignment. Secondly, every vehicle is able to provide some kind of service at the loca-
tion of the incident.

The assistance provided by the vehicle crews is modelled as individual edges with conditions. For example,
after arriving at the incident, the crew of the fire engine must first rescue any people at risk (this happens via the
edge rescuePeople). Afterwards they are able to extinguish the fire with the edge extinguishFire. It is also possi-
ble to provide assistance services more than once in the same operation. The vehicles do not maintain commu-
nication with other components and therefore do not require a modelled environment.

UPPAAL does not have more complex data types such as strings. Therefore it is necessary to encode more
complex information, such as the type of operation in this scenario. In this case, the coding is kept very simple
and can be understood as a type of operational code. This type of coding is also used by real operational services
to ensure that the delay which occurs at the beginning of an operation is kept short. For example, the fire service
often uses alarm levels or keywords, defined in the alarm and response procedure to let fire fighters know that
the fire relates to a dustbin or a hazardous goods accident. Accordingly, they can make preparations on the way
to their vehicles and only receive further information about the fire from headquarters once they are on their way.
In this scenario, the following coding has been chosen:

0—False alarm
1—Bank robbery
2—House fire and
3—Medical emergency.

Figure 14. The vehicles and the corresponding environment as an UPPAAL automaton.

T. Warnecke

640

These figures apply to the entire model as an abstraction over a reported emergency. This means that the
caller transmits this figure to the control centre and the control centre then decides which operational services
need to be alerted.

9.5. Integration of the Components
After UPPAAL automata have been modelled of the individual components and their environments, they are
connected to a single System-of-Systems with the connection tool developed in this study. A possible intercon-
nection which is obvious based on the given scenario is shown in Figure 15. As already mentioned in the pre-
vious chapters, the unused components (the environments) are on the left of the diagram. On the workspace are
the modelled components which stand in for the twelve automata.

The user has also already connected suitable interfaces with one another. Some interfaces of the vehicle
components, such as rescuePeople (from the fire engine) or checkIdentities (from the patrol car), have not been
connected deliberately, because first there are no suitable remote stations in other components and secondly
these interfaces only offer services at the incident. However, it would easily be possible to model civilians, ve-
hicles and buildings as components which would then avail themselves of these services.

9.6. Verification of the Sub-Systems and the Integrated System-of-Systems
As already mentioned the properties of certain sub-systems should also be verified in this emergency scenario.
Due to the fact that operational centres only send vehicles but cannot get them back again, it is clear that these
centres will no longer have any after a certain period and can therefore handle only a certain maximum number
of deployments at the same time. The number of possible deployments of course depends only on how many

Figure 15. With ICT linked components.

T. Warnecke

641

vehicles of a certain type are available to the organisations. To use a simple example, the vehicles are split as
follows:
• Police: Two police vans and six patrol cars
• Fire service: Four fire engines
• Hospital: Four ambulances and four emergency cars

As a reminder, the operational types and the required vehicles are listed again below (see section 9.2). In a
bank robbery, three patrol cars and one police van are required. A medical emergency requires one ambulance
and an emergency car. A major fire is fought with the help of two ambulances, two emergency cars, two fire en-
gines and two patrol cars.

If the sub-systems, i.e. the operational centres of the three organisations, are regarded in isolation from one
another, it is easy to recalculate the maximum number of emergencies that can be dealt with at the same time.
The police might be able to attend a maximum of three emergencies as shown in Equation (5), if these emergen-
cies were only fires, as in this case three batches of two patrol cars (i.e. six vehicles altogether) could be sent
before the organisation is not able to deal with any more emergencies. If the emergencies were only bank rob-
beries, all police vehicles would have to be deployed. The maximum number of emergencies would still only be
two. Equation (6) describes that the same applies to the hospital which can handle no more than four emergen-
cies, if there are only medical emergencies because during this type of operation the fewest number of vehicles
are needed. The fire service can only be called out to deal with fires. As fires always require two fire engines,
the fire service can only extinguish two fires at the same time as described by Equation (7).

To check these calculations, a variable named active has been introduced into the models of the three organi-
sations, recording the number of active deployments. The maximum number of deployments can be found with
the help of the UPPAAL verifier. If the following specifications (E<> in UPPAAL is the same as EF in TCTL)
are applied to the respective sub-systems, these will be verified as correct.

. 3E PoliceHQ active<> ≥ (5)

. 4E Hospital active<> ≥ (6)

. 2 0E FireHQ active<> ≥ < (7)

If the lower values for these active deployments in the specifications were increased by only one, these would
be verified as incorrect. Therefore, the mental calculation made at the outset has been confirmed by the model
checker. The question that arises at this point is whether the three specifications made are still correct if the
sub-systems are interconnected. This interconnection has already been carried out in the previous section. The
constraints are now required and they therefore also have to be combined. As already explained in chapter 7, a
combination of sub-models also results in the combination of the Equations (5), (6) and (7) for this sub-model.
In this case, the constraints are combined as follows:

. 3 . 2 . 4E PoliceHQ active E FireHQ active E Hospital active<> ≥ <> ≥ <> ≥ (8)

(). 3 . 2 . 4E PoliceHQ active FireHQ active Hospital active⇒ <> ≥ ≥ ≥ (9)

()(). . . 9E PoliceHQ active FireHQ active Hospital active⇒ <> + + ≥ (10)

Equation (10) describes the constraint that was newly constructed in this way is checked with the System-of-
Systems using the UPPAAL verifier. This establishes that the constraint is no longer valid, although the indi-
vidual constraints were valid for the sub-systems. The reason for the failure lies in the fact that the sub-systems
now have to help each other to create the deployments and this was previously not necessary. The crucial point
at which the SoS fails is in the type of operation we know as fire, as a fire involves a number of organisations.
The police and fire service are already able to operate the most deployments as sub-systems if the deployment
relates to a fire. However, this is not the case for the hospital which reaches the maximum number of deploy-
ments only with medical emergencies. If the hospital now has to help out with fires dealt with by the fire service
and police, each fire would require twice as many vehicles as medical emergencies. This inevitably leads to a
reduction in the maximum number of vehicles available for deployment.

10. Conclusions and Discussion
This study has presented a new modelling technique based on networked time-based automata and shown how

T. Warnecke

642

sub-systems can be modelled in isolation from the rest of the SoS using this technique. Sub-systems were there-
fore divided into software components and their expected environments. This approach has made it possible to
check the constraints required for these components in terms of their accuracy without having available the re-
maining parts of the SoS. The study then showed how the sub-systems are integrated into a SoS. The subsequent
verification of the newly constructed SoS showed, however, that although a constraint in a sub-system is correct,
this does not apply to the same constraint if it is tested in the complete SoS.

Since this problem is generally very difficult to predict, this study has developed a tool which helps the de-
veloper to connect a lot of modelled sub-systems into a SoS. The aforementioned networked automata are used
as a basis for the sub-systems and the resulting SoS. The interconnected SoS can then formally be verified again
and the problem described can be identified and repaired very quickly.

The tool developed in this study already enables the interconnection of formally defined sub-systems into a
SoS and therefore constitutes a first step towards a general formalization of these sub-systems. The easier identi-
fication of unexpected behaviour which is made possible by this methodology is an important step in making the
SoS altogether more secure and reliable.

However, some facets of this type of system have deliberately been omitted, and these require further research.
On the one hand, only those SoS have been considered where all sub-systems are already known at the time of
development. It would be important to know at this point what happens to the validity of the constraints when
components that already exist leave the system or new components enter the system, which would also mean
that connections between these would change dynamically.

The autonomy of the sub-systems is another factor to which this study has only paid minor attention. The
sub-systems were only able to fulfil their functionality if they were connected to the rest of the system. However,
if they were separated from the rest of the system, these sub-systems were no longer able to carry out their tasks.
However, if the parts of a SoS are regarded as autonomous, the SoS would still continue to fulfil its functionality
despite its separation from the rest of the system, albeit to a reduced extent. The question that arises here is
whether decoupled sub-systems can make a contribution with reduced functionality to preserve the constraints
of a SoS in spite of all this.

Acknowledgements
We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Clausthal
University of Technology.

References
[1] Szyperski, C. (2002) Component Software: Beyond Object-Oriented Programming. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston.
[2] Larsen, K.G., Pettersson, P. and Yi, W. (1997) Uppaal in a Nutshell. International Journal on Software Tools for

Technology Transfer, 1, 134-152. http://dx.doi.org/10.1007/s100090050010
[3] Clarke, E.M. and Emerson, E.A. (1982) Design and Synthesis of Synchronization Skeletons Using Branching Time

Temporal Logic. In: Kozen, D., Ed., Logics of Programs, Springer Berlin Heidelberg, 52-71.
http://dx.doi.org/10.1007/bfb0025774

[4] Kripke, S.A. (1963) Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16, 83-94.
[5] Owicki, S. and Lamport, L. (1982) Proving Liveness Properties of Concurrent Programs. ACM Transactions on Pro-

gramming Languages and Systems, 4, 455-495. http://dx.doi.org/10.1145/357172.357178
[6] Kuhn, S.J. (1980) Modal Logic: An Introduction. xii, 295. In: Chellas, B.F., Ed, Dialogue: Canadian Philosophical

Review/Revue Canadienne de Philosophie, Vol. 21, Cambridge University Press, New York, 545-549.
[7] Emerson, E.A. and Halpern, J.Y. (1986) “Sometimes” and “Not Never” Revisited: On Branching versus Linear Time

Temporal Logic. Journal of the ACM, 33, 151-178. http://dx.doi.org/10.1145/4904.4999
[8] Clarke, E.M. (2008) The Birth of Model Checking. In: Grumberg, O. and Veith, H., Eds., 25 Years of Model Checking,

Springer Berlin Heidelberg, 1-26. http://dx.doi.org/10.1007/978-3-540-69850-0_1
[9] Clarke, E.M., Klieber, W., Nováček, M. and Zuliani, P. (2012) Model Checking and the State Explosion Problem. In:

Meyer, B. and Nordio, M., Eds., Tools for Practical Software Verification, Springer Berlin Heidelberg, 1-30.
http://dx.doi.org/10.1007/978-3-642-35746-6_1

[10] McMillan, K.L. (1993) Symbolic Model Checking. Symbolic Model Checking. Springer, 25-60.

http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/bfb0025774
http://dx.doi.org/10.1145/357172.357178
http://dx.doi.org/10.1145/4904.4999
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-642-35746-6_1

T. Warnecke

643

http://dx.doi.org/10.1007/978-1-4615-3190-6_3
[11] Godefroid, P. and Wolper, P. (1992) Using Partial Orders for the Efficient Verification of Deadlock Freedom and

Safety Properties. In: Larsen K.G. and Skou, A., Eds., Computer Aided Verification, Springer Berlin Heidelberg, 332-
342. http://dx.doi.org/10.1007/3-540-55179-4_32

[12] Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2000) Counterexample-Guided Abstraction Refinement. In:
Emerson, E.A. and Sistla, A.P., Eds., Computer Aided Verification, Springer Berlin Heidelberg, 154-169.
http://dx.doi.org/10.1007/10722167_15

[13] Uppsala University, Aalborg University UPPAAL. www.uppaal.org

http://dx.doi.org/10.1007/978-1-4615-3190-6_3
http://dx.doi.org/10.1007/3-540-55179-4_32
http://dx.doi.org/10.1007/10722167_15
http://www.uppaal.org/

	A Study on Configuration and Integration of Sub-Systems to System-of-Systems with Rule Verification
	Abstract
	Keywords
	1. Introduction
	2. Component-Based Development of System-of-Systems
	3. Introduction to Formal Verification of Software Systems
	3.1. Model Checking
	3.2. Model Checking with UPPAAL

	4. Introduction to the Example System
	5. Modelling Components and Expected Environments
	6. Verification of Single Software Components and Their Expected Environments
	7. System-of-Systems Integration
	8. Tool Support
	9. Case Study
	9.1. Scenario
	9.2. Parties Involved in the Scenario
	9.3. Types of Operations in the Scenario
	9.4. Modelling of the Sub-Systems
	9.5. Integration of the Components
	9.6. Verification of the Sub-Systems and the Integrated System-of-Systems

	10. Conclusions and Discussion
	Acknowledgements
	References

