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Abstract 
In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). 
By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimiza-
tion and we establish a steep descent method to solve it. We prove the stability and the equili-
brium state of the neural network to be a solution of the AVE. The numerical tests show the effi-
cient of the proposed algorithm. 
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1. Introduction 
Consider the following absolute value problem [1]-[3]: 

0Ax x− =                                         (1) 

where , ,n nA R x b R×∈ ∈ , x  is absolute value of x, it is a subclass of absolute value equations Ax B x b− =  
which is proposed by Rohn [4], and it is a NP-hard problem [1]. 

The AVE has closed relation with some important problems, for example, the linear programming, Quadratic 
programming problem and the bimatrix game problem. The above problems can be transformed into the linear 
complementarity problem, and the linear complementarity problem can be transformed into the absolute value 
equations. Due to its simple and special structure and application value, the research on absolute value equation 
has drawn attention of many researchers. Mangasarian [5] pointed out the relationship between backpack feasi-
bility problem and the AVE. The problem of AVE has been studied deeply by Yamashita and Fukushima [6], 
and the results of the research on the problem of AVE are applied to the problem of location selection, good re-
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sults are obtained. The numerical solution methods of AVE, such as Newton method, quasi-Newton method, are 
reachable in [7]-[12]. 

In this paper, we present a smooth approximation function which is based on neural network method to solve 
the AVE. By using a smooth approximation function of x , we turn it into a differentiable unconstrained 
optimization problem. Furthermore, we obtain the approximate solution of the original problem based on our 
established unconstrained optimization problem and the neural network model. Compared with the Newton method, 
the neural network model needs less requirement for the hardware of compute and the iterative process is real-time. 

2. The Smoothing Reformulating of AVE 
The absolute value Equation (1) is equivalent to the nonlinear equations: 

( ) 0xΘ =                                          (2) 

where ( )x Ax x bΘ = − − . Since it is a non smooth function, we construct a smooth function to approximate it. 
Definition 1.1 Smoothing approximation function, given a function : n nR RΘ = → , smoothing function 

( ): 0n nR Rµ µΘ = → >  is called smoothing approximation function, if for any nx R∈ , there exists 0κ >  so 
that 

( ) ( ) , 0µ κµ µΘ −Θ ≤ ∀ >   

where κ  is not dependent on the x. 
In this paper, we use the aggregate function [13] to give a smooth approximation of the absolute value 

equation: 
Let ( )x xφ = , so every component of the absolute value function can be recorded as 

( ) { }max , , 1, 2, ,i i i ix x x x i nφ = = − =   

For any ( )ixφ , the definition of smoothing function is as follows 

( ) ln exp exp , 1,2, ,i i
i

x xx i nµφ µ
µ µ

    
= + − =    

    


 
So the function of absolute value x  is obtained as follows 

( ) ( ) ( ) ( )( )1 2, , , nx x x xµ µ µ µφ φ φ φ
Τ

=   

Thus the absolute value equation is transformed into the following smooth equations 

( ) 0xµΘ =                                        (3) 

where ( ) ( )x Ax x bµ µφΘ = − −  
We define the function as follows 

( ) ( ) 21
2

x xµ µΨ = Θ  

where ( )xµΨ  is the smoothing approximation of ( ) ( ) 21
2

x xΨ = Θ , ( )xµΨ  is said as the energy function  

of the neural network. Thus, the approximate solution of the absolute value equation is transformed to the global 
optimal solution of the optimization problem ( )min xµΨ  

3. Neural Network Model for Absolute Value Equation 
Consider the following unconstrained optimization problem 

( ) ( ) 21
2

x xµ µΨ = Θ                                    (4) 

the gradient can be calculated by the following formula: 

( ) ( ) ( )x x xµ µ µ
Τ

′ ∇Ψ = Θ Θ   
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where ( )
exp exp

diag , 1,2, ,
exp exp

i i

i i

x x

x i n
x xµ
µ µ

φ

µ µ

    
− −    

    ′ = =
    

+ −    
    

  

now, we can give a neural network model for solving the absolute value equation, which is based on the steepest 
descent neural network model for (4). 

( ) ( )d
, 0

d
x t

x
t µτ τ= − ∇Ψ >                                 (5) 

where τ  is a parameter 1τ >  represents that one can use a larger step size in the simulation, specific details 
can be referred to [14]-[16]. To simplify our analysis, we let 1τ =  throughout this paper. A block diagram 
(Figure 1) of the neural network is shown as follows. 

4. Analysis of Stability and Existence  
Next, we recall some materials about first order differential equations (ODE) [17]: 

( ) ( )( ) ( )0 0,x t H x t x t x R′ = = ∈                              (6) 

where H  is a n nR R→  mapping. We also introduce three kinds of stability that will be discussed later. 
Definition 3.1 A point ( )* *x x t=  is called an equilibrium point or a steady state of the dynamic system (6)  

if ( ) 0H x∗ =  If the reisaneighborhood * nRΩ ∈  of *x  such that ( ) 0H x∗ =  a ( ) { }* *0, \H x x x≠ ∀ ∈Ω ,  

then *x  is called an isolated equilibrium point. 
Lemma 3.1 Assume that : n nH R R→  is a continuous mapping. Then, for any 0 0t ≥  and 0

nx R∈ , there 
exists a local solution ( )x t  for (6) with [ ]0 ,t t τ∈  for some 0tτ > . If, in addition, H is locally Lipschitz con-
tinuous at 0x , then the solution is unique. 

Definition 3.2 (Asymptotic stability). An isolated equilibrium point *x  is said to be asymptotically stable if  
in addition to being Lyapunov stable, it has the property that ( ) *x t x→  as t →∞  for all ( ) *

0x t x δ− <  

Definition 3.3 (Lyapunov stability). Stability in the sense of Lyapunov Let ( )x t  be a solution for (6). An 
isolated equilibrium point *x  is Lyapunov stable if for any ( )0 0x t x=  and any 0ε >  there exists a 0δ >   
such that ( ) *x t x ε− <  for all 0t t≥  and ( ) *

0x t x δ− <  

Definition 3.4 (Lyapunov function). Let nRΩ⊆  be an open neighborhood of x . A continuously differen-
tiable function : n nW R R→  is said to be a Lyapunov function at the state x  over the set Ω  for Equation (6) 
if 

 

 
Figure 1. The block diagram of neural network (5).                           
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( ) ( ) { }
( ) ( )( ) ( )( )T

0, 0, \ .
d

0, .
d

W x W x x x
W t

W x t H x t x
t

= > ∀ ∈Ω



= ∇ ≤ ∀ ∈Ω

 

Lemma 3.2 a) An isolated equilibrium point x  is Lyapunov stable if there exists a Lyapunov function over 
some neighborhood *Ω  of *x  

b) An isolated equilibrium point x  is asymptotically stable if there is a Lyapunov function over some  

neighborhood *Ω  of *x  such that 
( )( )d

0
d

W x t
t

<  for all { }* *\x x∈Ω  

Lemma 3.3 [11] For any 0µ > , 1 1A− < , if ( ) 0xµ∇Ψ =  then ( ) 0xΨ = . 

Theorem 3.1 ( )xµΨ  is Lyapunov function over some neighborhood *Ω  of *x  
Proof. Let *x  be the solution of the absolute value equation. 

1) The function ( )xµΨ  is obtained by our smooth approximation. So ( )xµΨ  is continuous with respect to  
x . Obviously ( )xµΨ  have continuous partial derivatives at all components of the x . 

2) Since ( ) 0xµΘ = , then ( ) ( ) 21 0
2

x xµ µΨ = Θ =  

3) If *x x≠  then ( ) ( ) 21 0
2

x xµ µΨ = Θ >  is always holds 

So, by the Definition 3.4 we know that ( )xµΨ  is Lyapunov function over some neighborhood *Ω  of *x  
Theorem 3.2 Each solution of the absolute value equation is the equilibrium point of the neural network (5).  

Conversely, if 1 1A− < , the equilibrium point of the neural network (5) is the solution of the absolute value 
equation. 

Proof. Assume that *x  is the solution of the absolute value equation, since ( ) ( ) 21 0
2

x xµ µΨ = Θ ≥ , for any  
nx R∈  we have ( )* 0xΨ =  if and only if *x  is the solution of the absolute value equation. 

Obviously, we got ( )* 0 xµ∇Ψ = , so *x  is the equilibrium point of the neural network (5). On the other  

hand if 1 1A− <  and ( ) 0xµ∇Ψ = , then we get ( ) 0xµΨ = . So, the equilibrium point of the neural network 
(5) is the solution of the absolute value equation. 

Next, we can prove that *x  is not only Lyapunov stable and asymptotically stable. 
Theorem 3.3. Let the *x  be the isolated equilibrium of the neural network. *x  is the Lyapunov stability 

and asymptotic stability for neural networks. 
Proof. Since *x  is the isolated equilibrium of the neural network, *x  the solution of the absolute value eq- 

uation is known by the Theorem 3.2. Therefore, ( )* 0xµΨ = . In addition, Since x is the isolated equilibrium  

point, so ( )* 0xµ∇Ψ =  and ( ) { }* *0, \x x xµ∇Ψ ≠ ∀ ∈Ω  are hold over the neighborhood *Ω  of *x . By  

Theorem 3.1 we know that ( )xµΨ  is Lyapunov function over some neighborhood *Ω  of *x , so by Lemma 
3.2 the isolated equilibrium *x  is Lyapunov stable. Because *x  is isolated, it is not difficult to compute: 

( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( )( )
d d

0
d d

x t x t
x t x t x t x t

t t
µ

µ µ µ µτ τ
Τ ΤΨ

= ∇Ψ =∇Ψ − ∇Ψ = − Ψ ≤  

Consequently, we have 
( )( ) { }*d

0, \
d

x t
x x

t
µ ∗Ψ

< ∀ ∈Ω . By Lemma 3.2, *x  is asymptotic stability. 

5. Numerical Experiment 
In this section we give some smooth of numerical tests of neural network algorithm, due to the complementarity 
problem can be transformed to absolute value equations, we consider the linear complementarity problem which 
is equivalent to the absolute value equations as test cases. 

For a given matrix M  and vector q , The linear complementarity problem ( ),LCP M q  is to find a vector 
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nx R∈  to satisfy ( )0, 0, 0x Mx q x Mx qΤ≥ + ≥ + = . 
From the Theorem 2 in the literature [11], if 1 is not the eigenvalues of the matrix M , then ( ),LCP M q  is 

equivalent to the following absolute value equation: 

( )( ) ( )( )( )1 1M I M I x x M I M I I q− −+ − − = + − −  

where ( )x M I z q= − +  and z  is the solution of the absolute value equation. 
Example 1 [11]. Consider the following linear complementary problem: 

1 4 1 0 5
0 1 0 1 5

,
1 0 0 0 1

0 1 0 0 1

M q

− −   
   −   = =
   −
   

−   
 

Since1 is not included in the eigenvalues of M , then the linear complementary problem can be transformed 
into the following absolute value equation and they are equivalent: Ax x b− =  

where ( )( ) 1

1 8 2 8
0 1 0 2
2 8 1 8
0 2 0 1

A M I M I −

− − 
 − − = + − =
 − −
 
 

 

( )( )( )1

24
8
22
10

b M I M I I q−

− 
 
 = + − − =
 
 
− 

 
We can find that ( )1 1 8 4x∗ = − − − −  is a solution of the absolute equation. 
By using the neural network model, the initial point is generated by x0 = rand (n,1), and the program is per-

formed under the environment of MATLAB7.11.0. The following two figures (Figure 2 and Figure 3) describe 
how the approximate solution of example 1 and the energy function varies with time. 

 

 
Figure 2. Transient behavior of x(t) of example 1.                                               
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Figure 3. Transient behavior of energy function of example 1.                                               

 
Since ( )x M I z q= − + , then we can capture the solution of the linear complementary problem ( ),LCP M q , 

the solution is ( )1 1 8 4z∗ = . 
Example 2 [11]. Consider the following linear complementary problem: 

2 1 1 1 8
1 2 0 1 6

,
1 0 1 2 4
1 1 2 0 3

M q

−   
   −   = =
   −
   
− − −   

 
Through calculation, we can get one eigenvalue of M  is 1. By literature [11], we can find that if 1 is the ei-

genvalue of matrix M , then the M  and q  of the linear complementary problem need to be multiplied by a 
positive constant λ  and makes 1 not the eigenvalue of M  (and the solution of the linear complementary pro- 
blem keeps invariant). Then we can transform linear complementary problem into absolute value equation by 
applied Theorem 2 and Theorem 3 in literature [11]. 

Set 3λ = , then we can find that 1 is not included in the eigenvalues of AM . And ( ),LCP M q  and 
( ),LCP M qλ λ  have the common optimal solution, while z can be transformed into the absolute value equation 

by applying the Theorem 2. Then, we have 

6 3 3 3 24
3 6 0 3 18

,
3 0 3 6 12
3 3 6 0 9

M q

−   
   −   = =
   −
   
− − −   

 

And the absolute value equation is Ax x b− = , where: 

2.0330 0.3626 0.2637 0.4286 11.2418
0.3626 1.4890 0.0989 0.2143 0.8407

,
0.2637 0.0989 1.1099 0.4286 2.9341
0.4286 0.2143 0.4286 0.9286 0.6429

A b

− − −   
   − − − −   = =
   − − −
   
−   

 
Thus, we can get one solution of the absolute value equation whcih is ( )2.5 0.5 10.5 2.5x∗ = − − − , then 
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the following two figures (Figure 4 and Figure 5) describe how the approximate solution of example 2 and the 
energy function varies with time 

Since ( )x M I z q= − + , then we can capture the solution of the linear complementary problem LCP(M,q), 
the solution is ( )2.5 2.5 0 2.5z∗ = . 

Example 3. Consider the following linear complementary problem: 
 

 
Figure 4. Transient behavior of x(t) of example 2.                                               

 

 
Figure 5. Transient behavior of energy function of example 2.                                               
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1 2 2 2 1
0 1 2 2 1

,
0 0 1 2 1
0 0 0 1 1

M q

−   
   −   = =
   −
   

−   
 

Through calculation we can get one eigenvalue of M  is 1. And the same as example 2, set 3λ = , then, we 
can find that: 

3 6 6 6 3
0 3 6 6 3

,
0 0 3 6 3
0 0 0 3 3

M q

−   
   −   = =
   −
   

−   
 

And the absolute value equation is: Ax x b− = , where: 

2 3 6 12 24
0 2 3 6 12

,
0 0 2 3 6
0 0 0 2 3

A b

− −   
   − −   = =
   −
   

−   

 

Thus, we can get the solution of the absolute value equation which is ( )3 3 3 1x∗ = − , then the following 
two figures (Figure 6 and Figure 7) describe how the approximate solution of example 3 and the energy func-
tion varies with time 

Since ( )x M I z q= − + , then we can capture the solution of the linear complementary problem LCP(M,q), 
the solution is z* = (2.5 2.5 0 2.5). 

6. Conclusion 
This paper adopted the aggregate function method to tackle the absolute value equation with smooth processing, 
and then turned the absolute value equation into a differentiable unconstrained optimization problem. In order to 
obtain the approximate solution of the original problem we use the proposed neural network model to solve the  

 

 
Figure 6. Transient behavior of x(t) of example 3.                                 
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Figure 7. Transient behavior of energy function of example 3.                                  

 
unconstrained optimization problem. At the same time, we propose one neural network which is based on dif-
ferent energy function. Through the transformation between linear complementary problem and absolute value 
equation, it can be used to solve the linear complementary problem, too. For the traditional energy function 
based on the NCP function, we can avoid a lot of matrix calculation. Numerical examples show that the algo-
rithm is very effective for solving this kind of absolute value equation, and the accuracy of solution can be con-
trolled by the parameters completely. In view of the fact that it is relatively difficult to solve the absolute value 
equation, the proposed method in this paper can be used to solve the absolute value problem effectively. 
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