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Abstract 
This paper is concerned with the in-plane elastic stability of arches subjected to a radial concen- 
trated load. The equilibrium equation for pin-ended circular arches is established by using energy 
method, and it is proved that the axial force is nearly a constant along the circumference of the 
circular arches. Based on force method, the equation for the primary eigen function is derived and 
solved, and the approximate analytical solution of critical instability load is obtained. Numerical 
examples are given and discussed. 
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1. Introduction 
The circular arch structure is widely used in engineering practice, such as roadway supporting of mine engi- 
neering, highway/railroad bridge and architectural structure, and in-plane elastic stability of arches is one of the 
most important problems. The classical methods for predicting in-plane buckling loads consider bifurcation from 
a prebuckling equilibrium path to an orthogonal buckling path, closed from solutions for the classical buckling load 
for pin-ended and fixed circular arches subjected to a radial load uniformly distributed around the arch axis are 
given in several publications [1]-[4]. The energy method is widely used to investigate the instability of shallow 
circular arches subjected to central point loading, to obtain the corresponding approximate closed form solutions 
[5]. An exact analysis method for shallow circular arches was used to obtain analytical solutions [6], but limited 
to fixed ended arches and the solutions for buckling mode were very complicated. A virtual work formulation 
was used to establish the nonlinear equilibrium conditions and to derive the buckling equilibrium equations for 
shallow arches, and the approximate analytical solutions were obtained [7] [8]. However, most theoretical stu- 
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dies and the approximate analytical solutions were confined to radial loading uniformly distributed around the 
arch axis and central point loading. For loading, numerical methods such as finite element methods were often 
used for the prebuckling linear elastic analysis [9] [10], and the eigenvalue formulation [11] [12] and the nonli- 
near formulation [13] were used to determine the buckling loads. The transient analysis method was used to de- 
termine the buckling loads [14]. Closed form solutions for in-plane elastic buckling of a circular arch subjected 
to loads are not available and the present paper is devoted to that problem. 

In this paper, the in-plane elastic stability of pin-ended circular arches subjected to a concentrated load is ana- 
lyzed. The virtual work procedure [7] [8] [14] [15] and a force method [16] are used to derive the eigenvalue 
equation for pin-ended circular arches and to obtain the analytical solutions for engineering applications. 

2. Differential Equilibrium Equations of Hinge-Ended Arch 
As Figure 1 shows, the O is centre of the circular arch ACB with a radius of R, A and B are the two hinge-ended 
points, C is the top points of the arch, α is the semi-angle of the arch, P is a radial concentrated load, θ is the an- 
gle from C to the concentrated load point. 

Before buckling occur, the axial strain at any point of the arch can be expressed [1] as 

( )1 d 1
dm

w v w v
R R

ε
ϕ

  ′= − = − 
 

.                             (1) 

the axial force can be expressed as 

( )m
EAN EA w v
R

ε ′= = − .                           (2) 

and the moment can be expressed as 
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                      Figure 1. Hinge-ended arch subjected to a concentrated load.        
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and the external work 

0W Pv= .                                            (5) 

then we get total potential energy 

( ) ( )22
2

03 2 d
2

R w vEIU W v v Pv
R r

α

α
ϕ

−

 ′ −
′′ Π = − = + + −

 
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∫ .                         (6) 

For the in-plane elastic arches subjected to a pair of concentrated loads, based on the principle of minimum 
potential energy, then furnishes 
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Integrating Equation (7) by parts leads to 
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wherein, 0vδ  is the corresponding virtual radial displacement at the loading point, wδ  and vδ  are the cor- 
responding virtual displacements. 

Because ( )2

EI v v
R

′′− + , ( )EA w v
R

′ −  are continuous at ϕ θ= ± , and ( )2 0EI v v
R

′′− + = , 0v = , 0w = , 

0w vδ δ= =  at ϕ α= ± , so we can simplify Equation (8) as 
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from Equation (9), the basic differential equilibrium equations can be obtained as 
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and the force boundary conditions can be obtained as 

( ) ( )3 0EI v v v v P
R θ θ− +

 ′′′ ′ ′′′ ′+ − + − =  .                           (11) 

From the first equation of (10), it follows that 

constantm
N
EA

ε = − = .                                  (12) 

where N  is the axial force in the arch, which means that the axial force N  is nearly constant along the cir- 
cumference of the arch. 

3. Buckling of Hinge-Ended Arch Prepare 
The primary structure system is shown in Figure 2, as the first degree statically indeterminate structure of a 
Pin-ended arch, with notations the same as Figure 1. Assume that the horizontal force H  at the hinge joint is 
the primary unknown, the release of a redundant restraint introduces a compatibility condition for displacement 
of the primary system. In the original structure system, the deflection/displacement at hinge joint B  is zero, 
therefore, the basic equation in the force method [16] can be expressed as 

11 1 0PHδ + ∆ = .                                          (13) 

where 11δ  represents a coefficient of proportionality, which is equal to the displacement in H  direction at the 
hinge joint when the primary structure system were subjected to the unit force 1H =  alone. And 1P∆  re- 
presents the displacement at the hinge joint B , corresponding to H , due to the external load P , when the 
primary system is subjected to the load P . 

The primary structure system can be treated as a curved beam, if the flexural deformation is (in a certain con- 
dition) dominant. Therefore, the coefficient 11δ  and the constant term 1P∆  can be obtained from 
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where EI  is the bending rigidity of the curved beam arch and ds  is the infinitesimal element (differential) of 
the arch length. 1M  is the moment at any cross section of the primary system due to 1H = . 1N  is the axial 
force at any cross section of the primary system due to 1H = . PM  is the moment at any cross section of the 
primary system due to the external load P .  

For the primary system, the vertical reaction force due to 1H =  is zero, so 1M  and 1N  at cross section ϕ  are 
 

 
Figure 2. Simply support curve system of hinge-ended arch subjected to a 
certain concentrated load.                                             
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and PM  at cross section φ  due to the external loads P  also can be obtained as 
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11δ  and 1P∆  can be obtained from Equation (14) based on Equation (15) and Equation (16) 
3

1 2P
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∆ = ∆ .                                      (17) 
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The primary unknown H  can be obtained from Equation (13), by using Equation (17) and Equation (18) 
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From the vertical equilibrium of the original structure system, the vertical reaction force V  can be obtained 
as 

( )
( )

sin
2 sin
PV

α θ
α
+

= .                                      (20) 

The constant circumferential force N  can be obtained by using the primary unknown H  and the vertical 
reaction forces V  

cos sinN H Vα α= + .                                   (21) 
substitute Equation (19) and Equation (20) into Equation (21), we have  
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The differential equation for the deflection of the arch based on the relative radial displacement w  while lo- 
cal buckling occurring can be expressed as 

2 2

2

d
d

v MRv
EIϕ

+ = − .                                     (23) 

where M  is the moment at any point of the local buckling position while local in-plane buckling occurring, 
just as in the Euler compression bar. The compression force is approximately equal to N  and M  can be ap- 
proximately represented as M Nv=  [17] [18]. Equation (23) can then be expressed as 
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2 2

2

d 0, 1
d

v NRk v k
EIϕ
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The corresponding boundary conditions are 
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, 0
, 0

v
v

ϕ α
ϕ α

= − =
 = =

.                                   (25) 

The general solution of the ordinary differential Equation (24) is 
sin cosv A k B kϕ ϕ= + .                                 (26) 

where A  and B  are constant coefficients. 
From the BCs Equation (25), we have 

sin cos 0
sin cos 0
A k B k

A k B k
α α

α α
− + =

 + =
.                               (27) 

When the corresponding constant coefficients satisfy { } { }T, 0A B = , the solution 0v =  is the trivial solu- 
tion, which represents the state of no loading and no deflection. The instability condition is that the non-trivial 
constants { }T,A B  exist, as the solution of Equation (27), namely, { } { }T, 0A B ≠ . That means that the corres- 
ponding matrix determinant of { }T,A B  in Equation (27) is equal to 0, or 
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We will have 2 π, 1, 2,3,k n nα = = ⋅⋅⋅ , namely,  
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2
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The approximate axial force N  can be expressed as 
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By substituting Equation (30) into Equation (22), the n-th order critical load crP  is obtained as 
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The dimensionless critical load crP  is defined as following 
2
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cr
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P
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= .                               (32) 

By substituting Equation (31) into Equation (32), this will leads to the dimensionless critical load as 
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where modified slenderness λ  is given by R
r
αλ = . 

4. The Critical Instability Load and Numerical Results 
From Equation (33), we find that the modified slenderness and included angle of an arch play important roles in 
the buckling. [3] shows the variation of the first four order dimensionless buckling load crP  for pin-ended 
arches subjected to concentrated load at the crown with the included angle when 50λ = . It can be observed 
from Figure 3, the dimensionless critical load of circular arch subjected to concentrated load at crown decreases 
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with an increase of the included angle α . 
Figure 4 depicts the variation of the first four order dimensionless buckling load crP  for pin-ended arch with 

the loading angle θ  when 50λ =  and π 3α = . It can be seen from Figure 4, the dimensionless buckling 
load increases with loading angle θ  increase from crown to arch feet. 

Figure 5 shows the variation of the first order dimensionless buckling load crP  for different included angles 
pin-ended arch subjected to concentrated load at the crown with the modified slenderness λ . It can be observed 
that the dimensionless critical load decreases with the increase of modified slenderness λ . Obviously, for given 
the radius R  and half-angle α  of the circular arches, dimensionless critical loads mainly depend on the cha-
racteristic parameter r  of cross section. 

Example 1: A steel arch structure 
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Figure 3. Different order dimensionless critical load crP  
curve against included angle.                             

 

 

Figure 4. Different order dimensionless critical load crP  
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Arch structures are widely used in the engineering practice, especially in a coal mine roadway support. In this 
paper, a steel arch structure of roadway support in a certain coal mine is discussed, half included angle of arch is

π 4α = , the radius of arch is 2.1425 mR = , moment inertia is 8 4612 10  mI −= × , Young’s modulus of elas- 
ticity is 112.1 10E = ×  and Poisson ratio is 0.3µ = . 

In order to compare the analytic solutions with numerical results, eigenvalue buckling analysis of the finite 
element software ANSYS is used to predict the critical loads. Table 1 lists the first three order critical loads of 
eigenvalue buckling analysis and the first four order critical loads of theoretical analysis with different loading 
angles. Figure 6 shows that different order critical loads vary with different loading positions. It can be ob- 
served that, the second order critical load of theoretical analysis corresponds to the lowest critical load of eigen- 
value buckling analysis, and each order results agree very well, which verifies the reasonableness of theory 
analysis. Table 2 shows the relative error of critical loads of theoretical analysis. It also can be seen that the re- 
sults of theoretical analysis and eigenvalue analysis agree with each other very well. 

When n = 1, π 2 2, sin 2 cos 2 .k n v A Bα α α= = = +  From the boundary conditions π 4, 0vϕ = = , namely
sin π 2 cos π 2 0A B+ = , the integral constants can be determined, and the radial displacement can be obtained 

 

 

Figure 5. Dimensionless critical load crP  curve of different 
included angles against modified slenderness.                  
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Figure 6. Different order critical loads vary with loading lo-
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0 20 40 60 80
0

8

16

24

32

 crP

θ = 0

 

 

 α=π/6
 α=π/4
 α=π/3

λ



Y. J. Xu et al. 
 

 
580 

Table 1. Different order critical loads (kN).                                                                    

θ (˚) 
1st order 2nd order 3rd order 4th order 

Theory Theory Numerical Theory Numerical Theory Numerical 

0 845.0 4225.1 4482.4 9858.6 9980.0 17745.6 17977.0 

5 857.7 4288.5 4542.9 10006.6 10162.0 18012.0 18213.0 

10 898.0 4490.2 4737.8 10477.7 10713.0 18859.1 19036.0 

15 973.0 4865.1 5111.9 11352.0 11668.0 20433.6 20711.0 

20 1097.9 5489.5 5758.2 12808.8 13167.0 23056.0 23552.0 

25 1305.3 6526.5 6869.0 15228.5 15603.0 27411.9 28122.0 

30 1673.2 8366.0 8896.4 19520.7 19970.0 35137.2 36067.0 

35 2436.3 12183.5 13197.0 28428.1 29263.0 51170.7 52817.0 

40 4762.2 23814.6 26549.0 55551.2 58347.0 100078.5 105660.0 

 
Table 2. Relative error of theoretical and numerical results (%).                                                     

θ (˚) 2nd 3rd 4th 

0 5.74 1.22 1.29 

5 5.60 1.53 1.10 

10 5.23 2.20 0.93 

15 4.83 2.71 1.34 

20 4.67 2.72 2.11 

25 4.99 2.40 2.53 

30 5.96 2.25 2.58 

35 7.68 2.85 3.12 

40 10.30 4.79 5.28 

 
as cos 2v B ϕ= , the corresponding buckling mode is shown in Figure 7(a). Similarly, when n = 2, the radial 
displacement is sin 4v A ϕ= , and corresponding buckling mode is shown in Figure 7(b). When n = 3, the radi- 
al displacement is cos 6v B ϕ= , and corresponding buckling mode is shown in Figure 7(c). When n = 4, the 
radial displacement is cos 6v B ϕ= , and corresponding buckling mode is shown in Figure 7(d). The buckling 
modes of numerical results obtained by eigenvalue buckling analysis are shown in Figure 8. The lowest order 
buckling mode corresponds to anitsymmetric buckling form with two semi waves, and the third order buckling 
mode corresponds to symmetric buckling form with three semi waves, and so on. For the third-order symmetric 
buckling mode, there are two deformations: (a) vault sink and two sides crush to rock; (b) vault uplift and two 
sides crush to the roadway. Both possibly occur in practice. It also can be seen that the lowest-order buckling 
mode of eigenvalue buckling analysis corresponds to the second order buckling mode.  

Traditionally, two buckling analysis techniques are available in ANSYS for predicting the buckling load and 
buckling mode shape of a structure, nonlinear buckling analysis and eigenvalue (or linear) buckling analysis. 
The eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal linear elastic structure. 
This method corresponds to the textbook approach of elastic buckling analysis. The nonlinear buckling analysis 
employs a nonlinear static analysis with gradually increasing loads to seek the load level at which the structure 
becomes unstable. If not inflicting any initial defects on the ideal perfect structure, geometry nonlinear analysis 
couldn’t predict the critical load accurately. Generally in engineering, the method of imposing certain initial de-  
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(a)                                                  (b) 

   
(c)                                                  (d) 

Figure 7. Buckling modes of theoretical analysis. (a) 1n = , 1st order mode; (b) 2n = , 2nd order mode; (c) 3n = , 3rd order 
mode; (d) 4n = , 4th order mode.                                                                                
 

  
(a)                                                  (b) 

  
(c)                                                  (d) 

Figure 8. Buckling modes of eigenvalue buckling analysis by ANSYS. (a) 2nd order mode; (b) 3rd order mode; (c) 3rd order 
mode; (d) 4th order mode.                                                                                     
 
fects is adopted to approximate the actual critical load of structures, but this method will change the geometrical 
model. In addition to the above two numerical methods, we put forward a transient analysis method for buckling 
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analysis [19], and the dynamic response of the loading process and inertial iterative process could be regarded as 
a kind of tiny disturbance.  

Table 3 shows second order buckling critical load of several different analysis methods. Here, we impose 5‰ 
maximum displacement of eigenvalue buckling analysis as initial imperfection in geometrical nonlinear analysis. 
Figure 9 shows critical loads by different methods vary with different loading positions. 

5. Conclusions 
The following conclusions can be drawn: 
1) This paper gives a theoretical analysis of the local instability of circular arches subjected to a concentrated 

load.  
2) The virtual work method is used to derive the equilibrium equation for pin-ended circular arches, and it is 

shown that the axial force is nearly constant along the circumference of the circular arches subjected to a 
concentrated load. 
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Figure 9. Second-order critical loads of different methods vary with loading 
location.                                                          

 
Table 3. Second-order critical loads of different methods (kN).                                                   

θ (˚) Theory Eigenvalue Transient Nonlinear 
(Imperfection) Nonlinear 

0 4225.1 4482.4 4221 4130.98 4844.52 

5 4288.5 4542.9 3102.72 3087.43 3102.9 

10 4490.2 4737.8 2805.12 2801.46 2805.33 

15 4865.1 5111.9 2773.92 2772.19 2774.4 

20 5489.5 5758.2 2995.92 2994.05 2996.01 

25 6526.5 6869.0 3616.08 3606.86 3616.1 

30 8366.0 8896.4 5160.6 5132.29 5160.85 

35 12183.5 13197.0 9781.2 9681.77 9782.44 

40 23814.6 26549.0 12463.2 12208.8 12467.2 
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3) Based on force methods, the primary eigenfunction equation is derived and solved, and the approximate 
analytical solutions of critical instability loads are obtained. The buckling load increases with loading angle 
increasing from crown to arch feet and the critical load decreases with increasing of modified slenderness. 

4) For a practical steel arch structure of the roadway support in a certain coal mine in the south of China, the 
theory predictions results agree very well with the eigenvalue buckling analysis results of ANSYS. 

5) The analytical solutions and numerical results prove that the method and approximate theoretical analysis 
formula in this paper are practical and feasible, and can be used directly in engineering practices in the eval- 
uation of the critical loads of arches. 
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