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Abstract 
Dynamics is studied for one-dimensional single-lane traffic flow by means of an extended opti-
mal-velocity model with continuously varied bottleneck strength for nonlinear roads. Two phases 
exist in this model such as free flow and wide moving jam states in the systems having relatively 
small values of the bottleneck strength parameter. In addition to the two phases, locally congested 
phase appears as the strength becomes prominent. Jam formation occurs with the similar mecha- 
nism to the boomerang effect as well as the pinch one in it. Wide scattering of the flow-density re-
lation in fundamental diagram is found in the congested phase. 
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1. Introduction 
Study of phase transition behavior in vehicular dynamics is one of the interesting themes in traffic systems. 
Kerner has proposed the three-phase traffic theory in describing the nature of the dynamics [1]-[4]. The theory 
requires the existence of the three states such as free flow (FF), synchronized flow (SF), and wide moving jam 
(WMJ) phases. The WMJ phase has a moving jam running through various states including bottlenecks. On the 
other hand, the SF phase is for all congested states which are not belonging to the WMJ state. Jam formation 
mechanism in the theory is as follows. First the transition from FF to SF occurs and later the other transition 
from SF to WMJ occurs in highways: moving jams emerge through FF  SF  WMJ states [1]-[4]. Jams are 
not formed directly in the FF state. The “general pattern” has been well known as a typical type of jam forma-
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tion mechanism. When SF is formed at a bottleneck, self-compression occurs into a high density state. Then lo-
cal perturbation grows and forms narrow jams [1]. This self-compression has been called as the pinch effect. 
Narrow jams grow to a wide jam by merging mechanism with other jams. Here the narrow moving jams are 
classified as a state of the SF phase [2] [3]. A characteristic feature of the SF state is to have wide scattering be-
havior of flow q  and density d  on a two dimensional region of the fundamental diagram [1]-[6]. This be-
havior has been imaginarily depicted as an oblique and round triangle with tapering both sides on the diagram 
(see, for instance, Figure 4 in [1] and Figure 4.4 in [2]). For the FF state, it gives a simple curve on the diagram 
[1]-[4]. 

Recently, critical discussions to the theory have been expressed by Schönhof and Helbing [7] [8]. Kerner has 
divided the SF state into three types such as stationary and homogeneous states, homogeneous-in-speed states, 
and non-stationary and non-homogeneous states [5] [8]. Schönhof et al. have stated that such multifariousness 
undermines the concept of the SF state as a single phase [8]. The general pattern with pinch effect of vehicles, as 
a central concept of jam-formation mechanism in the theory, was pointed out to be not general: it is a specific 
state appearing on a section between on- and off-ramps. This indicates that it is a result of a particular freeway 
design [7] [8]. Although the theory has not recognized the occurrence of the transition from FF to WMJ phases, 
they have found that the transition actually occurs. It is attributed to the heterogeneity of traffic flow given by 
cars and trucks having different speeds: the boomerang effect has given trigger of WMJ [7] [8]. If two kinds of 
vehicles are considered such as cars and trucks, empirically observed flow-density relation with wide scattering 
in fundamental diagrams is reproduced [7]-[9]. The classification of congestion patterns in the theory has been 
claimed to be not well defined. The theory has used 13 different criteria in explaining the traffic states as three 
phases [8]. In order to explain the congestion states, Schönhof et al. classified them into several patterns such as 
moving localized cluster (MLC), oscillating congested traffic (OCT), pinned localized cluster (PLC), stop-and- 
go waves (SGW), and homogeneous congested traffic (HCT) [7]. 

As shown in the above place, Schönhof and Helbing questioned the three-phase traffic theory [7]. One of 
reasons of the indication may arise from the complexity of the SF phase. From their discussion [7] [8], we feel 
the following necessity. First we have to describe an image of the SF phase more simply and distinguish the SF 
phase from the WMJ phase. This may necessarily be investigated with the fundamental diagram which plays a 
role of phase map. Second it is important to clarify the jam formation mechanism and examine the relation to the 
congestion patterns. In this paper the simulation results will be reported for a microscopic model with the con-
tinuous bottleneck effect. The locally congested phase, which seems to be identical with the SF phase by Kerner, 
will be clearly recognized and separated from the WMJ phase in the fundamental diagram. Jam formation me- 
chanism will be clarified later. 

2. Model 
There have been various models proposed in simulating traffic dynamics in highways. The optimal-velocity (OV) 
model, proposed by Bando et al. [10]-[12], has been known as a car-following type model in microscopic scale. 
This model has been known to reproduce phase transition between freely flowing state and jamming one. In this 
paper the OV model is basically adopted. 

We find complex geometry in actual highways, for instance, such as horizontal curves, uphill gradients, 
downhill slopes, ramps, and other structures. Drivers should incessantly adjust their speed in responding to road 
shape. There has been negative correlation between actual operating speed of vehicles and road curvature at 
each measuring point on highways [13]. Sentou et al. have proposed a method to calculate the safe speed on 
curves in a test track. The speed profile has shown to vary with road curvature [14]. Thus the effect of continu-
ously varied road geometry is important to be considered. 

We introduce the effect of bottleneck strength into the OV model. First, in the original OV model, the equa-
tion of motion for each vehicle is given as [10]-[12] 

( )2 2d d d dx t V x x tα= ∆ −   ,                                 (1) 

where ( )V x∆  is the objective velocity which is a function of headway x∆ . As a realistic dynamical model, 
the following function has been proposed [10]-[12]: 

( ) ( ) ( )tanh 2 tanh 2V x x∆ = ∆ − + .                                (2) 
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Recently it was applied to the system with the effects of gravitational force on road or highway tollgates [15] 
[16]. 

Let us imagine vehicle movements, for instance, on horizontally curved roads. We have introduced the func-
tion ( )h x  into ( )V x∆  as 

( ) ( ) ( ) ( ),  tanh 2 tanh 2V x x h x x∆ = × ∆ − +   ,                        (3) 

where x  is the position of a vehicle on a road. The ( )h x  is defined as a function of road curvature. Here we 
consider the road whose curvature continuously changes. In the case of road shape expressed by ( )y f x= , the 
curvature ( )xρ  at position x  is defined as 

( ) ( )
3 222 2d d 1 d dx f x f xρ  = +  .                            (4) 

when road shape is continuously periodic like a sine curve, the road curvature is expressed by 

( ) ( ) ( )
3 22sin 2π 1 cos 2πx x L x Lρ  = − +                           (5) 

where L  is the road length of the system. Using Equation (5), we have introduced the extended OV function as 
[17] [18] 

( ) ( ) ( )( ) ( ) ( )
max

,  1 tanh 2 tanh 2V x x x x xβ ρ ρ∆ = − × ∆ − +                    (6) 

where β  is a bottleneck strength parameter as 0   1β≦ ≦  and ( )
max

1xρ =  is the maximum value of 
( )xρ . The absolute value is taken because the objective velocity is independent of curve direction in the case 

of the traffic dynamics on roads. The function ( ) ( ) ( )
max

1h x x xβ ρ ρ= −  shows a double-valley shape: it 
has the minimum value at positions 4x L=  and 3 4L  and the maximum value at 0, 2x L=  and L  [17]. 
This model may be applicable to the systems having vertical slopes whose gradient continuously varies as a 
function of road position: Equations (5) and (6) may be regarded as a road with a double-mountain shape verti-
cally changed. 

3. Fundamental Diagram 
We have simulated the time development of positions and velocities of vehicles with Equation (1). In this paper 
the function ( ),V x x∆  as Equation (6) with Equation (5) was used. The sensitivity constant α  in Equation (1) 
was set as 1α =  through all simulations. The road length was defined as 400L = . The periodic boundary 
condition (PBC) was adopted in the system. The density d  of the system is defined as d n L= , where n is 
the number of vehicles constructed in the system. We simulated vehicular movement in the system until 

10000t =  for a fixed density and for a fixed parameter β . The densities for each run were varied from 
( )0.125 50d n= =  to ( )1.0 400d n= =  having the density interval ( )0.0125 5d n∆ = ∆ = . The value of the 

parameter β was changed from 0.0β =  to 0.3β = . 
Figure 1 shows the fundamental diagram for the present model. Abscissa is for density d  and ordinate for 

flow q  which has been obtained from the product of the average velocity v and d of the system. Open triangles 
are for the system with 0β = , open circles for 0.1β = , filled triangles for 0.2β = , and filled circles for 

0.3β = . The average velocities were obtained from the time range between 5000t =  and 10000t = . The data 
for 0.85d =  with 0β =  and for 0.8625d =  with 0.1β =  were omitted from it because they involved 
transition process during the time period. 

As shown in Figure 1, flow q for 0β =  increases with increasing d in the initial region along the theoretical 
curve given as ( ) 1h x =  in Equation (3). It decreases abruptly at around ( )0.3625 145d n= =  and decreases 
linearly with d  in the region until ( )0.8375 335d n= = . It varies along the line again for   0.8625d ≧  ( )  345n ≧ . For 0.1β = , it increases with increasing d in the initial region along the theoretical curve given as 
( ) 0.955h x = . (This is the average value of ( )  for 0.1h x β = ). It drops down at ( )0.3125 125d n= = , and after 

that, it decreases linearly with increasing d until ( )0.85 340d n= = . 
The different behavior has been found for larger values of the parameter β . Flow q for 0.2β =  increases 

with increasing d  along the theoretical curve for ( ) 0.909h x =  in the initial region. It becomes constant for  
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Figure 1. Fundamental diagram as the relation between flow q  and density 
d  of the system. Open triangles are for the system with 0β = , open circles 
for 0.1β = , filled triangles for 0.2β = , and filled circles for 0.3β = .     

 
the density region between ( )0.275 110d n= =  and ( )0.425 170d n= = . It decreases linearly as density in-
creases for the region from ( )0.4375 175d n= =  to ( )0.8375 335d n= = . For the case of 0.3β = , flow q 
increases with d  in the initial region and becomes constant between ( )0.2625 105d n= =  and 0.5375d =  ( )215n = . At ( )0.55 220d n= = , it begins to deviate from the horizontal relation and after that it decreases 
linearly with increasing d  until ( )0.8 320d n= = . It varies along the theoretical curve with ( ) 0.864h x =  
again for ( )  0.8125   325d n≧ ≧ . 

In summary of this section, we observed the existence of two states in the fundamental diagram of the systems 
for relatively small values as 0β =  and 0.1β = . One of them is for the simply increasing relation from the 
origin in a lower density region of the diagram. This corresponds to the free flow state. Another state is for the 
oblique linear relation located on higher density region than it. As the value of the parameter β  increases, 
horizontal linear relation is added into the two relations: three states occur for the systems with 0.2β =  and 

0.3β = . We will examine the origin of the slope change between the horizontal and the oblique linear relations 
later.  

4. Congestion Behavior 
In order to know dynamic features of vehicles, we have obtained the time development of positions of all vehi-
cles constructed in the system. First we examined the case of 0.1β = . Figure 2(a) shows the result for the den-
sity ( )0.3125 125d n= =  with 0.1β = . This density corresponds to the just dropped point for open circles in 
Figure 1. Abscissa is for time t and ordinate for positions x  of vehicles. The time period depicted in the figure 
is between 5500t =  and 8500t = . The upper direction of ordinate corresponds to the downstream site of the 
system and the lower direction to the upstream one. The WMJ pattern appears in the figure. This pattern shows 
the jam propagation to the upstream direction with time. 

The other patterns have been found for different values of β  in the present model. Figure 2(b) shows the 
time development for ( )0.425 170d n= =  with 0.2β = . This density is located at the right end of the con-
stant flow region for 0.2β =  (filled triangles) in Figure 1. Narrow jams with finite lifetime are arranged regu-
larly in it. The downstream fronts of the jams are located at around 100x =  or 300x =  which almost coincide 
with the positions having the maximum bottleneck strength, i.e. having the minimum value of the function 
( )h x . 
We have examined the development at ( )0.4375 175d n= =  with the same value of 0.2β = . This density 

is located at the left end of the negative-sloped linear relation for filled triangles in Figure 1. The result is shown 
in Figure 2(c). In the figure moving jams spanning the system appear in the array of narrow jams. Thus the 
turning behavior at around 0.43d =  for filled triangles in Figure 1 is caused by the transition from the locally 
congested state to the widely jammed one penetrating through the system. 
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(e)                                                            (f) 

Figure 2. Time developments of positions of all vehicles in the system. (a) for 0.3125d =  and 0.1β = ; (b) for 
0.425d =  and 0.2β = ; (c) for 0.4375d =  and 0.2β = ; (d) for  0.3d =  and 0.3β = ; (e) for 0.45d =  and 0.3β = ; 

and (f) for 0.6375d =  and 0.3β = . Time range is between 5500t =  and 8500t =  for these figures.                 
 

Let us examine the case for 0.3β = . Figure 2(d) shows the time development for 0.3d =  and 0.3β = . 
This is within the constant region for filled circles in Figure 1. We find two horizontal jams which are immov-
able at fixed positions. These two jams have been formed independently each other in the system. The jam pat-
tern changes with increasing d  for the same coefficient β . Figure 2(e) shows the case for 0.45d =  which 
is within the constant region for the filled circles in Figure 1. The combination of different kinds of jams is 
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found in it. Narrow jams locally occur on upstream front of horizontally fixed jams. Another pattern has been 
found as density increases for the same parameter 0.3β = . Figure 2(f) shows the time development at 

0.6375d =  ( )255n = . This is in the negative-sloped region for filled circles in Figure 1. We find frequent 
WMJs running through the system from top to bottom of the figure. Time intervals between these jams are dif-
ferent one after another. 

From Figure 1 and Figure 2, we saw the following results. Locally congested phase, which is free from wide 
jams running through whole range of the system, gives the horizontal linear relation in the fundamental diagram. 
On the other hand, wide moving jam phase gives the oblique linear relation in it. 

5. Jam Formation Mechanism 

As shown in Figures 2(a)-(f) there have been various congestion patterns in the present model. In this section 
we examine jam formation process in detail. In clarifying the jamming mechanism, it is effective to refer to the 
three dimensional diagram of time development of local density of the system [18]. Figure 3(a) shows the 
variation of the density as a function of road position x  of the system for 0.3125d =  and 0.1β = . These 
values have been the same as Figure 2(a) in which moving jams have occurred. In this figure two bumps are 
found to propagate downstream (to the right side of abscissa) in the initial time region. The bumps change their 
propagating direction suddenly at a middle time range in the figure and proceeds upstream with time. This is the 
same type behavior as the boomerang effect [7] [8]. The direction change occurs near the road positions 

100x =  and 300x =  in the system. They correspond to the positions with the maximum bottleneck strength in 
the system. Thus the boomerang effect (or the similar mechanism to it) is caused by the bottleneck effect varied 
continuously in the system. The direct formation of moving jams from FF state without the pinch effect is possi-
ble for the present system. 

We have recognized the formation of regularly arranged narrow jams as shown in Figure 2(b). This pattern 
occurs with different mechanism from Figure 3(a). Figure 3(b) shows the time development for 0.35d =  and 

0.2β = . These values have given the same type jams as Figure 2(b). Curved slopes appear in the regions for 
100 ~ 200x =  and for 300 ~ 400x = . The density increases with decreasing x within each region: the density 

for upstream site is higher than that for downstream one within each region. Narrow jams begin to appear at 
around the positions 100x =  and 300x = . Local density increment, i.e. self-compression having the bottle-
neck effect at around these positions, becomes trigger for the marrow jam formation. 

We have observed another pattern concerning narrow jam formation. Figure 3(c) shows the time develop-
ment of local density for 0.45d =  and  0.3β = . These values are the same as Figure 2(e). There are 
smoothly sloped regions for 70 ~ 180x =  and for 270 ~ 380x = . On the just upstream front of the regions, 
we find density fluctuating areas for 0 ~ 70x =  and for 200 ~ 270x = . This is given by the self-compression 
of vehicles. These regions are located just at downstream fronts of the narrow jams occurred in the system near 

0x =  and  200x = . 
Kerner has suggested that the general pattern is the important concept as the jam formation mechanism on 

highways. The pattern is as follows [1]. Simultaneously with SF appearance in roads, self-compression occurs 
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Figure 3. Three dimensional projections of time developments of local density d  as a function of position x . (a) for 
0.3125d =  and 0.1β = , (b) for 0.35d = with 0.2β = , and (c) for 0.45d =  with 0.3β = .                        
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into a high density state. Then local perturbation grows and it forms narrow jams. The self-compressed state is 
called as the pinch effect. The wide jams are formed by merging and dissolution of the jams. Figure 3(c) shows 
the occurrence of the pinch effect accompanying self-compression with the local perturbation. 

We see the process of wide jam formation from the pinch region. Figure 4(a) shows the time development of 
vehicular positions for 0.5375d =  with 0.3β = . This density has been located at the right end of the constant 
flow region for filled circles in Figure 1. Vehicles with low velocity as 1.1v <  are depicted in it: vehicles with 

  1.1v ≧  are omitted from the figure. We find three areas exist in it. One of them is the black belts located on 
70 ~ 100x =  and on 270 ~ 300x = . They correspond to smooth slopes in Figure 3(c). The other is stripe belts 

located on 0 ~ 70x =  and on 200 ~ 270x = . They are for self-compressed perturbing areas in Figure 3(c). 
The last is for narrow jams located on the regions  140 ~ 200x =  and on 340 ~ 400x = . We do not have wide 
jams through the system from top to bottom in the figure. This has been the common feature within the constant 
flow region of the filled circles with 0.3β =  in Figure 1. 

Figure 4(b) shows the vehicle positions with the velocity 1.1v <  for 0.55d =  and 0.3β = . This is the 
onset density to deviate from the horizontal relation and is located at the left end of the oblique linear relation 
for filled circles in Figure 1. We can find not only narrow jams but also the wide jam spanning the system from 
top to bottom of this figure. The jam occurred on the position 400x =  at around 6800t =  proceeds in the 
system and goes over the bottleneck positions  300x =  and 100x = . It combines surrounding jams. This is the 
same process of wide jam formation as Kerner’s analysis as shown in Figure 6 and its caption in [1]. 

6. Wide Scattering of Flow-Density Relation 
Wide scattering of flow-density relation with time has been a characteristic feature of the SF state [1]-[5]. In this 
section we examine whether or not the scattering behavior occurs in the present model. First time development 
of local flow-density relation has been analyzed for the system with 0.5375d =  for 0.3β = . They are the 
same values as Figure 4(a). Here we define the local density as ( ) ( )d 1 jt x t= ∆  and the local flow as 
( ) ( ) ( )j jq t v t x t= ∆ , where ( )jx t∆  is the headway of vehicle j which is located just before the road position 
cx . The result is shown in Figure 5(a). This was obtained for 180cx =  from the time range between 2000t =  

and 10000t = . Small dots in it were obtained with time interval 0.25t∆ = . A line drown from the origin is for 
the theoretical flow as 0β = , which is depicted for location guidance in it. The q-d relation scatters widely in 
the two dimensional region of the diagram. The dots describe a round triangle shape with pointed end. Kerner 
has imaginarily illustrated the area of the SF state in the fundamental diagram [1] [2]. The area has been oblique 
and round triangle with tapering both sides (see, for instance, Figure 4 in [1] and Figure 4.4 in [2]). The shape of 
the dots observed in Figure 5(a) is somewhat similar to the Kerner’s illustration described in the references.  
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(a)                                                            (b) 

Figure 4. Time developments of positions x  of vehicles in the system. The vehicles whose velocity is less than 1.1 are de-
picted. (a) for 0.5375d =  as 0.3β =  and (b) for 0.55d =  as 0.3β = . Time range is between 5500t =  and 8500t =
for these figures.                                                                                        
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In actual measurement, the q-d relation on a fixed position on highways was evaluated as one minute interval 
[5] [6]. We should take account of the interval effect. We have averaged the local flow and the local density 
during a time period tp. Figure 5(b) shows the result for 0.5375, 0.3d β= = , and 180cx =  which are the 
same values as Figure 5(a). The time period pt  for the averaging has been chosen to be 50pt =  which al-
most corresponds to one minute in realistic highway. (The measured flow has been found to scatter at around the 
flow rate 1500 vehicles/h (i.e. 25 vehicles/min) as shown in Figure 2 in [5]. On the other hand, the tapering point 
on the left side in the q-d relation in Figure 5(a) is about 0.5q = ). Figure 5(b) includes 160 points as circles 
obtained from the simulation data between  2000t =  and 10000t = . Successive points in time are connected 
with lines in this figure. As location guidance, the same line as Figure 5(a) is drown from the origin. Circles in 
Figure 5(b) scatter widely on the two dimensional region from place to place in the fundamental diagram. This 
is almost the same behavior as empirical observation in highways [5]. Thus the wide scattering of the flow-den- 
sity relation occurs for the present model of a single-lane traffic. 

7. Discussion 
In this paper we have found various patterns of congested states as shown in Figures 2(a)-(f). Schönhof and 
Helbing have classified the states into five patterns such as MLC, OCT, PLC, SGW, and HCT [7] [8]. We dis-
cuss whether or not the classification is valid for the present model. The pattern MLC is a single moving jam 
with a localized width. The boomerang effect has been easily found in the MLC formation [7]. In this paper we 
found isolated and limited jams in width as shown in Figure 2(a). The same mechanism as the effect has been 
shown in Figure 3(a). Thus these figures give the MLC pattern. As for the OCT pattern, it accompanies regular 
oscillations of speed of vehicles. Narrow jams have been arranged with regular intervals as shown in Figure 11 
in [7]. The OCT has been triggered by a perturbation [7]. Figure 2(b) in the present paper shows the same shape 
as it. As shown in Figure 3(b) for the present system, self-compression of vehicles has yielded the jam ar-
rangement. This is consistent with the statement concerning the OCT pattern in [7]. Thus Figure 2(b) indicates 
the OCT. In the case of the PLC pattern, it is characterized by a local density increment at fixed positions. This 
has normally occurred at bottlenecks such as on-ramps or gradients. It has been stated that this pattern develops 
to other extended congestion states including the pinch effect [7]. Figure 9(a) in [7] has shown almost similar 
pattern to Figure 2(d). This indicates that the PLC occurs in this model. The SGW consists of a sequence of 
moving jams. The temporal and spatial intervals between two successive jams have been considerably changed. 
The PLC or perturbation sometimes becomes a trigger of the SGW [7] Figure 2(f) has shown the sequence of 
moving jams through the system. It gives almost the same jams as Figure 12 in [7]. Thus the SGW exists in the 
model. As for the HCT, it may be somewhat particular case. This pattern, for instance, has occurred after 
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Figure 5. (a) Variation of local flow-densityrelation at the position 180cx =  for the system with 0.5375d =  and  0.3β = . 
Abscissa is for density d  and ordinate for flow q  at the position. Small dots are depicted with time interval 0.25t = . (b) 
Variation of time-averaged local flow-density relation at the same position 180cx = . The values of d  and β are 

0.5375d =  and 0.3β = . Time average is taken over  50pt =  for both of density and flow. Succeeded points in time are 
connected with lines.                                                                                     
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serious accidents with lane closing [7]. It happens when highways suddenly have extremely strong bottlenecks 
or so. This pattern HCT has not been observed clearly in the present system. 

8. Concluding Remarks 
Vehicular dynamics has been simulated for one-dimensional single-lane traffic flow by means of the opti-
mal-velocity model with continuously varied bottleneck strength for nonlinear lanes. The strength is adjusted 
with the value of the parameter β  in the optimal-velocity function for the system. The model succeeds to re-
produce empirically observed congestion patterns such as moving localized cluster, oscillating congested traffic, 
pinned localized cluster, and stop-and-go waves. 

Two phases exist in the systems for relatively small values of the parameter as 0β =  or 0.1β = . They are 
free flow and wide moving jam phases. The wide moving jam phase is characterized by the oblique linear rela-
tion in the flow-density relation as the fundamental diagram. The similar mechanism to the boomerang effect is 
observed in the jam formation process. Three phases appear in the systems for lager values of the parameter as 

0.2β =  or 0.3β = . In addition to the free flow and the wide moving jam phases, locally congested phase be-
ing free from wide moving jams running through the system appears for the values of β . This phase, corre-
sponding with the synchronized flow state in the three-phase traffic theory, accompanies the horizontal linear 
relation in the diagram. The pinch effect as the general pattern in the three-phase traffic theory is observed in the 
system as the bottleneck strength becomes large. 

Locally defined flow-density relation without time average describes a round triangle shape with tapering ver-
tices. This is almost similar to the shape schematically illustrated by Kerner as the area of the SF state in the 
fundamental diagram. The present model succeeds to reproduce the widely scattering behavior in the time aver-
aged flow-density relation. This is identical with the fundamental diagrams actually observed in highways. 
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