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Abstract 
We propose the new experimental method for investigating and approximating the organization 
and structure of movements with given accuracy. The composition of approximating trajectories 
illuminating the movement traits discloses the level of movement expertise in dancers and golf 
players. The method allows estimating the level of movement expertise, drawing the detailed 
structure of movements, and classifying movements into a given repertoire automatically. 
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1. Introduction 
The modern technologies of motion tracking provide researchers with a wealth of kinematic data on the full- 
body movements of humans, animals, and various robotic platforms. In order to explore the rich data, we have 
created computationally feasible algorithms for decomposing movements into independent spatio-temporal fea-
tures directly from the captured kinematic signal. The proposed approach is useful for understanding, interpret-
ing, and modelling complex movements in systems possessing many degrees of freedom, and provides a means 
for examining the overall structure of a movement. 

Movements of markers arranged on a dancer’s body include motion of the skeletal system, motility of skin 
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and tissues relative to the skeletal system, sliding of markers fixed on the clothing relative to the body, etc. In 
our work, we address questions concerning the interpretation of the captured kinematic data which remain far 
beyond the scope of usual biomechanical studies focusing on the time course of anatomical joint angles and 
searching for specific kinematic patterns within human motion: Which scale of movements are we interested in 
studying? Is it possible to filter out unsolicited scales of motion in a statistically consistent way? Is it possible to 
figure out the part of a recorded movement which is predefined by the goal and the style of a movement, inde-
pendently of the subject, and the part that represents the individual movement traits of the subject and is perhaps 
influenced by his emotional and physical states? In particular we discuss some simple mathematical methods 
that can be useful for analyzing a wealth of motion capture data. The aims of the study were to find the compu-
tationally simple algorithms for eliciting differences in the kinematic signals captured from dancers and golf 
players of different skill-levels, for finding the detailed structure of motion by analyzing recorded kinematic 
signals, and for automatic classification of movements from a given repertoire. 

In our work devoted to the kinematic analysis of complex full-body movements in classical ballet and a golf 
swing, we show that a movement tracked by a motion tracking system (MTS) can be understood in terms of a 
hierarchy of major and minor scales, in which the spatial and temporal components can be separated and studied 
independently. Based on our Spatio-Temporal Kinematic Decomposition (STKD) method, the major structure of 
a movement can be assessed. Specifically, the affinity between markers is identified by measuring the distance 
between them in the largest scale of kinematic signal, and by visualising the results via a dendrogram. This ap-
proach reveals the functional relationship between markers by their geometric proximity. The typical character 
of movement is featured by the few major scales, while the minor scales determine the individual movement 
traits and can uniquely disclose the individual level of movement expertise, uneven distribution of the fine motor 
skills, and the emotional character of an individual. The functional separation of scales can explain why we can 
perceive movements categorically (for example, as the highly stylized figures of classical ballet). 

The suggested algorithms have been tested on recorded movements from classical ballet and golf, and they 
allow us to estimate the level of movement expertise, draw the detailed structures of arbitrary complex move-
ments, and automatically classify them into a given repertoire. 

2. Methods and Participants 
To track movements, we used a MTS (Vicon Motion Systems, Inc.) based on 12 high-resolution cameras outfit-
ted with IR optical filters and rings of LED strobe lights streaming data at 200 fps; the cameras detected the 
3-dimensional spatial positions of passive retro-reflective spherical body markers with millimeter accuracy. 
Markers were attached to key anatomical locations according to the standard Vicon full-body marker placement 
protocol (Plug-in Gait) (see Figure 1). 

In our study of figures in classical ballet, we have chosen the movement sequences that are considered basic 
movement vocabulary of classical dance, and are part of the daily routine of professional dancers as well as of 
the common training session of amateur ballet dancers: petit pas sauté (a small jump on both feet), petit pas jeté 
(a small jump from one foot to the other), petit pas assemblé (a small jump from one foot to both feet), petit pas 
echappé (a small jump on both feet to an open position), pas jeté (a jump from one foot to the other) and pirou-
ette en dehors (a sequence of turns on one leg in the direction of the non-supporting leg). These movements 
were chosen because of their high degree of familiarity among professional and amateur dancers, and because of 
their ubiquity even in beginners’ classes. Participants were 22 young dancers (18 girls and 4 boys aged 13 - 17 
years, which reflects a typical gender ratio for ballet amateurs of this age) studying at the Dance Department of 
the Essen-Werden Gymnasium which aims at young people of school ages aspiring to a career in professional 
ballet, and two professional ballet dancers (1 man, 1 woman) from the Staatsballett Berlin and Aalto Ballet 
Theater Essen. All participants performed repeated trials for each of the six figures of classical ballet which had 
been consequently recorded in several motion capture sessions and translated on to the digital models of move-
ments (in total, 557 recorded trials were analyzed). 

In our study of the movement kinematics of a golf swing in 9 participants (Mage = 32.3, SDage = 10.6, 6 male) 
of varying skill levels (0 to 50 years of golf experience). Specifically, movement kinematics of a golf swing 
were captured using a 3-dimensional motion tracking system (Vicon Motion Systems, Inc.) in which markers 
were placed on the anatomical landmarks of the body consistent with the standard Vicon full-body Plug-in Gait 
marker placement protocol. 
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Figure 1. Location of the passive retro-reflective spherical 
body markers arranged on the dancer’s body in relation to the 
human skeletal system. 

3. Scale Decomposition of Kinematic Data 
The MTS delivers positional data for N markers, across T time frames ( T N ) at the rate of 200 fps, in the 
form of a rectangular 3N × T matrix ( )1 1 1, , , , , ,N N Nx y z x y z=M  , in which the consequent triples of columns,  

( )T
1 , ,k kt ktTx x= x , ( )1

T
, ,

Tk kt kty y=y  , ( )1

T
, ,

Tk kt ktz z=z  , represent the Cartesian coordinates of the  

markers k = 1,···,N, at the sequent time frames 1, , Tt tτ =  . The T sign indicates transposition. The data matrix 
M is factorized using the singular value decomposition (SVD), 

3

1
,

N

s s s
s
σΤ Τ

=

= = ⊗∑M U V u vΣ                               (1) 

where the ⊗ sign stands for the outer product of vectors, U is a 3N × 3N unitary matrix with the columns us 
representing the left singular vectors of M, V is a T × 3N unitary matrix with the columns vs representing the 
right singular vectors of M, and Ʃ is a 3N × 3N diagonal matrix of ordered non-negative scale factors (singular 
values): 1 2 3 0Nσ σ σ> ≥ ≥ > . A number of smallest singular values can be equal to zero if the MTS suffers 
from optical occlusion. Moreover, a number of left and right singular vectors can belong to the same singular 
value if the matrix M enjoys an exact spatio-temporal symmetry. However, while processing the actual motion 
tracking data, we have never encountered multiple singular values. If all singular values of M are non-degenera- 
te and non-zero, then the factorization (1) is unique, up to simultaneous multiplication of the left and right ei-
genvectors by the same unit phase factor. The left singular vectors form an orthonormal basis for the spatial ar-
rangement of markers, ( ) 3 ,, Ns s s sR

δ′ ′=u u , with respect to the inner product in 3NR . The right singular vectors 
are orthonormal with respect to the inner product in TR , ( ) ,, TRτ τ τ τδ′ ′=v v , forming a basis for the temporal 
sequences of kinematic data. With the use of (1), the kinematic signal M is decomposed into a weighted, ordered 
sum of separable matrices s s sσ Τ⊗u v  in which the information about the spatial arrangement of markers corre-
sponding to the singular value σs is represented by the vector us separately from the vector vs, giving an account 
of the temporal evolution. For each non-degenerate singular value, the separable matrix s s sσ Τ⊗u v  is a 
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rank-one 3N × T matrix describing a one-dimensional mapping of spatial locations of markers to the sequent 
time frames that correspond to the synchronous motion of all markers (although with variable velocity) along 
straight lines. Namely, the trajectories of markers specified by the consequent triples of columns 

( ) ( ) ( ) ( ) ( )( ), , ,, ,s s s s
k k k kτ τ ττ =r x y z  of the matrix s s sσ Τ⊗u v  can be described mathematically using a single spatial di-

mension. Let us denote with ( )s
kρ  the unit vector, tracing the direction of the linear motion of the kth marker at 

the scale σk, 

( ) ( ) ( )( )
( ) ( ) 1 1

1
,   for any , ,

1
k ks

k T
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t t
τ τ

τ
τ τ −

+ −
= =

+ −

r r
r r

ρ  

and the amplitude function of the linear motion common for all markers by 

( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( )1
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Then, the trajectory ( )k τr  of the kth marker recoded by the MTS can be represented by the ordered sum of 
linear trajectories, 

( ) ( ) ( )
3

1
1

,     , , .
N

s
k k s T

s
t tτ γ τ τ

=

= ⋅ =∑r ρ                             (2) 

The SVD of trajectories into linear components given by (2) is obvious for the motion of a single marker (see 
Figure 2) along a planar elliptic trajectory segment. In such a simple case, the components ( )1ρ  and ( )1ρ  are 
nothing but the major and minor axes of the ellipse. It is clear that the amplitude functions for the bigger and 
smaller scales of motion are ( ) ( )1 1sinγ τ ω τ= −  and ( ) ( )2 2sinγ τ ω τ= − , respectively. 

Application of SVD in data analysis is similar to the well-known principal component analysis and Fourier 
analysis [1]. By setting the small singular values to zero, we obtain the minimal set of independent spatio-tem- 
poral features, ordered according to the scales of motion, which then approximate the original data with a  

maximal precision. Namely, for l < 3N, the 3N × T matrix ( )

1
s s s

s
σ Τ

=

= ⊗∑M u v


  renders the best least square  

approximation to M of the rank—ℓ, with an error smaller than the first neglected eigenvalue σℓ + 1. By neglecting  
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Figure 2. The scale decomposition of a plane elliptic trajectory segment. 
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the scales σs > ℓ in (1) and consequent recombination of the kinematic signal, we can filter out unsolicited scales 
of motion (e.g., small scale movements of markers fixed on the clothing instead of the skin, movements of skin 
and tissues relative to the skeletal system, etc.) Despite certain computational similarity, the method of SVD 
differs essentially from the latent variable models, such as factor analysis, which use regression modeling tech-
niques to test hypotheses producing error terms. The decomposition (1) does not involve any statistical hy-
potheses, being a purely descriptive technique. 

4. Assessing Complexity of Trajectories 
The decomposition of a movement into a number of linear constituents (2) allows for assessing its complexity. 
Namely, each 3N × T principal matrix s s sσ Τ⊗u v  describing the movement scale sσ  subsumes a portion of 
recorded movements, 

1 2 3

.s
s

N

p
σ

σ σ σ
=

+ + +

                              (3) 

In case of a synchronous linear motion of all markers, 1 1p = , while 0sp = , for all 1s > . In general, the 
value of sp  depends upon the number of mounted markers, the exact anatomical positions of markers, as well 
as on individual features of subject’s anatomy. Nevertheless, if the motion capture session is conducted in a 
fixed laboratory setting, and the experimenters regard uniform principles for placing markers on subject’s body, 
then the major scales of the rank-value distribution function for sp  allow easy comparison of different move-
ments. An alternative way of presenting the decrease of singular values is to make a plot of the cumulative dis-
tribution function for sp , 

( )
1

s

l
l

P s p
=

= ∑                                   (4) 

which ascertains a portion of a movement contained in the best least square approximation of the recorded data 
by a matrix of rank s. Such a plot has the advantage that it reduces the noise in the tail of the rank-value distribu-
tion for sp  and can reveal the level of subject’s expertise in performing the movement. Skewness of the rank- 
value distributions for the sp  values can be characterized by the entropy-like spectral parameter, which we call 
the entropy of trajectories, 

3

traj
31

0 log 1.
N

s s
Ns

H p p
=

≤ = − ≤∑                            (5) 

It equals zero for a linear movement, but takes value 1 when temporal and spatial dependence in the move-
ment cannot be separated, i.e. when all singular values are equal. The parameter trajH  can be used as a quanti-
tative measure of the degree of diversity of the set of linear trajectories required to approximate recorded 
movements with a maximal precision. Due to the base of logarithm depending on the number of used markers, 
the entropy of trajectories can be compared for kinematic signals attested with the different numbers of markers. 

5. Analyzing Movement Structures 
Scale decomposition of tracked movements can be used as a base for the functional alignment of markers. Spa-
tio-temporal relationships between different body parts in evolving movements can be visualized by a dendro-
gram representing the relative distance between markers on the largest scale of movement through the horizontal 
branch length. In accordance with (2), a motion can be understood in terms of a hierarchy of scales evolving by 

( )sγ τ . The lowest level of this hierarchy corresponds to fast, low-scale movements of markers fixed on the 
clothing relative to the body, whereas the highest levels encode relatively slow, large-scale movements of the 
skeletal system. Although a detailed analysis of the functions ( )sγ τ  lies beyond the scope of the present paper, 
it is worth mentioning that they typically constitute strongly anharmonic oscillations, indicating that the rela-
tionship between force and displacement at each movement scale is strongly non-linear. 

Being primarily concerned with the movement on its largest scale, we note that its structure is determined in 
(2) by the spatial arrangement of vectors ( )1

kρ  in association with the markers 1, ,k N=  . For each marker,  
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the magnitude of the corresponding vector ( )1
kρ  can be considered as a relative measure of its mobility on the  

movement scale σs, since the total path of the k-marker is proportional to the corresponding magnitude,  
( ) ( )

1

1
Tt

k s
tτ
γ τ

=

⋅∑ρ . The degree of affinity between a pair of markers, k1 and k2, can be attested on the largest scale  

of the movement by means of the Euclidean distance between the related vectors, 

( ) ( ) ( )
1 2

1 1
1 2, .k kd k k = −ρ ρ                                (6) 

It is customary to reproduce the matrices of all-to-all distances in the form of a dendrogram by placing 
closely-related markers in the same mold. To preserve the structure (6) as much as possible, we use the standard 
neighbor-joining tree-generating algorithm [2]. We search the matrix (6) for the closest markers, and then con-
nect them into a block. Once the markers are connected, they are removed from the distance matrix and replaced 
by the block connecting them. The neighbor-joining algorithm continues until all N markers are connected in a 
tree, and each branch acquires a length, with length being interpreted as the estimated number of substitutions 
required to resolve the block. The functional contingency between blocks of markers on the largest scale of the 
movement is disclosed by their geometric proximity in the resulting dendrogram. In spite of all participants 
sharing roughly the same anatomy and performing the same movements, the structures of calculated dendro-
grams can be substantially different in terms of individual movement features and level of movement. 

6. Analysis of Body Shape Changes in Movements 
Proper alignment of postures and turnout of the legs (outward rotation from the hip joints) are vital for both ex-
cellent performance and aesthetic perception of ballet figures. Well-composed movements, in which the relative 
positions of certain body parts hold for a while along the main trajectories, can be ascertained from the analysis 
of relative kinematics of markers placed on the dancer’s body. In order to track changes in body shape of a 
dancer during the performance of ballet steps, we have used the Procrustes analysis [3] which is customary in 
shape matching and shape recognition, as it allows consequent subtraction of all Euclidean transformations 
(translations, scaling, and rotations) preserving the relative spatial configuration of markers. 

We move the origin of the frame of reference into the instantaneous geometrical center τr  of the trunk cal-
culated with respect to the trunk markers at each time frame 1, , Tt tτ =  . After a simple transformation remov-
ing the translational and scaling components of the movement, 

,k
k k

k

τ

τ τ

τ

τ

τ

−
→ =

−

r r
r q

r r
                                 (7) 

any displacement of a marker in physical space is represented by a pure rotation connecting the points on the 
surface of a unit sphere centered at τr  Given the instantaneous positions of all markers at two consequent time  

steps, { }
1

N

k kττ =
=Q q  and { }11 1

N

k kττ ++ =
=Q q  we rotate 1τ +Q  around the origin seeking for the optimal return  

rotation τR  that minimizes the least square distance, 1 .τ τ τ+ −Q R Q  The inverse rotation matrix T
τR  repre-

sents the averaged movement of the whole of markers during the specific interval of time between frames. The 
final transformation, 

1
1

1
ˆ , ,

n

n

t

t t n T
t

t t tτ
τ =

= ⋅ < ≤∏Q Q R                             (8) 

removes those averaged movements from the kinematic signal, consequently for all time frames up to ntτ = . 
While the relative positions of markers persist, the transformations defined above do away with the kinematic 
signal completely. Therefore, the changes in the dancer’s body shape registered at the marker k , at the time 
frame τ  can be evaluated by the shape difference vector, 

, , 1 ,ˆ ˆk k kτ τ τ+= −V q q                                  (9) 

where ,ˆk τq  is the transformed kinematic signal. 
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7. Assessing Complexity of Body Shape Changes 
To assess the complexity of changes in body shape, we implement the method of biorthogonal decomposition 
(BOD) [4], as each entry of the matrix ,k τV  constitutes a vector, so that the standard SVD method cannot be 
used. We decompose the Hermitian, non-negative definite correlation operators, 

( ) ( )
1

1

1

, , , , , ,
1

, , , ,
T

N T

tN

k k k k k k
k t

C Kτ τ τ τ τ τ
τ

−

−′ ′ ′ ′
= =

= =∑ ∑V V V V
 

                   (10) 

into a set of proper orthogonal spatial eigenmodes sϕ  and proper orthogonal temporal eigenmodes sψ  which 
share the same eigenvalues 0sε ≥ , 

, ,s s s s s sϕ ε ϕ ψ ε ψ= =C K                               (11) 

eigenvalues sε  are common to sϕ  and sψ  due to the symmetry property of the correlation operators (10) [4]. 
Each spatial eigenmode sϕ  is associated with an instantaneous coherent structure which has a temporal evolu-
tion directly given by the corresponding temporal eigenmode sψ . The global entropy of the signal characteriz-
ing its degree of disorder is defined starting from the eigenvalues 1 2 0Nε ε ε> ≥ ≥ ≥ , 

shape
1 1

0 log 1, .
N N

s s
s

Ns s
H E

E E
ε ε

ε
= =

≤ = − ≤ =∑ ∑                       (12) 

We call this spectral parameter the entropy of shape. When changes in shape evolve coherently being simul-
taneously registered in all markers, shape 0.H =  In the opposite case, if the changes appear chaotically, 

shape 1.H =  The entropy of shape (12) can be compared for different kinematic signals captured from different 
motions performed by a subject, as well as from the motion performed by different participants. We have to 
emphasize that the entropy of shape (12) measuring complexity of the kinematic signal, after subtracting shape 
preserving Euclidean transformations, is essentially distinct from the entropy of trajectories defined in (5) as a 
measure of diversity of a set of linear trajectories required for a reliable approximation of recorded movements. 

8. Results and Discussion 
8.1. The Composition of Approximating Linear Trajectories Features the Movement Traits 

and Discloses the Level of Movement Expertise in Participants 
Ranked singular values of the data matrices describing trajectories of markers decrease very fast for all tracked 
movements, which indicates that the recorded kinematic signals are characterized by a strong hierarchy of scales. 
The most kinematic information about a movement is held by just a few major scales. In Figure 3, we have pre-
sented the sequent recombination of tracked movements for a pirouette en dehors performed by an expert. On 
the largest scale aggregating 59% of the recorded data, the movements of markers in the pirouette are approxi-
mated by straight lines (see Figure 3(a)). Figure 3(b) shows the best approximation of the captured movements 
by 2-dimensional plane curves (encompassing 68% of the kinematic data). In Figure 3(c), the movements of 
markers are approximated by space curves described by the three major movement scales representing together 
75% of the data. Eventually, in Figure 3(d), we have presented the complete set of trajectories recorded during 
the performance. 

It is worth mentioning that in general the decrease of ranked singular values for the motion data tracked in 
experts was more gradual than in novices. In Figure 4, we have presented the logarithmic plot opposing the av-
eraged cumulative distributions ( )P s  for the pirouette en dehors performed by students (shown by the dashed 
line) and by experts (shown by the continuous line). The averaged cumulative distribution of sp  for the data 
collected from the pirouettes performed by students always dominates indicating that fewer movement scales are 
required to reproduce the same portion of tracked data in students than in experts. Usually, trajectories recorded 
during the trials performed by students were simpler than those observed in experts, as being approximated by 
lower rank matrices, with the same degree of accuracy. Consequently, the entropy of trajectories calculated on 
the data recorded in experts was typically higher than on the data recorded in students. We do not observe any 
clear gender difference in kinematic signals recorded from the ballet steps. Despite an individual character of 
variations in the tails of rank-value distributions for sp , the fiber of a movement is featured by the few major  
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Figure 3. The sequent recombination of tracked movements (d) for a pirouette en dehors exe- 
cuted with 5 rotations by an expert. The pie-charts show the portions of the data matrix ap-
proximated by (a) the rank-one matrix, straight lines; (b) the rank-two matrix, plane curves; (c) 
the rank-three matrix, space curves. 
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Figure 4. The logarithmic plot opposing the averaged cumulative distribu-
tions ( )P s  calculated for the pirouette en dehors performed by students 
(shown by the dashed line) and by experts (shown by the continuous line). 

 
scales that appear utterly alike across all participants (whether experts or students) and all trials (whether suc-
cessful or not) of the movement. In Figure 5, we juxtapose the values of ln sp−  for five major movement 
scales in the data recorded from the successful trials of petit pas échappé and pirouette en dehors. Both move-
ments show a sufficiently high degree of complexity. In both movements, coordination is important to facilitate 
the goal of the main functional phase, a jump in the petit pas échappé, and a turn in the pirouette en dehors. 
There are, however, crucial differences in the biomechanical structure between the two movements that make 
them worthy of comparison. The systematic differences in the values of entropy of trajectories calculated for the 
data recorded from different ballet figures attest to substantial disparity in the related rank-value distributions of 

sp . 

8.2. Movement Structures in pirouette en dehors and a Golf Swing 
In Figure 6 and Figure 7, we have shown the neighbor-joining dendrograms representing the functional align-
ment of markers in the pirouette en dehors performed by a professional ballet dancer and a novice, respectively. 
To visualize spatio-temporal relationships between markers on the major scale of recorded movements, we have 
used the TreeView software, which is freely available on the internet [5]. The pirouette en dehors, a controlled 
turn away from the supporting leg, is one of the most difficult of all ballet steps that can be executed with single 
or multiple rotations. The proper turning technique includes a periodic, rapid rotation of the head that serves to 
fix the dancer’s gaze on a single spot, helping her to maintain control over the body (known as spotting). This 
rotational movement requires highly-defined coordination and constant adjustment of the body axis in order to 
be performed with the required stability and accuracy [6]. The rhythmic structure of the pirouette en dehors is 
described by [7] as four measures in two-four time, the first two measures containing the preparation, and the 
second two measures containing the turn and conclusion. According to this approach, the pirouette en dehors 
consists of two parts, the preparation and the actual turning movement. Both of these parts can be dissected 
again; the preparation can be broken down into two rhythmically-separated sections, whereas the turn segment 
consists of the actual turning movement and the opening to the front that concludes the turn. The dendrogram 
shown in Figure 6 discloses the functional structure of the pirouette en dehors on the left leg, executed by an 
expert. On the largest scale of the movement, the pirouette starts (at the upper right corner of the dendrogram) 
with the function of body alignment by arranging legs in the proper position: the right foot is placed in front of 
the left foot, both turned outward. The right foot slides to the side (tendu, or dégagé), which concludes the body 
alignment phase. The spring tension is built up for the turn during the tension build-up phase, as the right foot  
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Figure 5. The values of ln sp−  for five major movement scales in the data 
recoded from the successful trials of petit pas échappé and pirouette en dehors. 
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Figure 6. Functional alignment of markers in pirouette en dehors performed 
by a professional ballet dancer. The standard Vicon Plug-in Gait marker nota-
tions are used. 
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Figure 7. Functional alignment of markers in pirouette en dehors performed 
by a student. The standard Vicon Plug-in Gait marker notations are used. 

 
moves back and is placed behind the left one and the knees bend (plié). At the beginning of the turn phase, both 
legs push into the ground and the left (supporting) leg adopts point or demi-point position (on the toes or on the 
ball of the foot, respectively), while the right knee is bent and the right foot is pulled up to the knee of the sup-
porting leg. During the turn, the head is rapidly whipping around, which helps the dancer to maintain balance. 
Eventually, in the landing phase concluding the turn, the right foot is placed behind the left one, and the knees 
bend and stretch (plié). The arms open, and the arms and torso are used to cease rotation. It is important to men-
tion that each functional phase elicited from the dendrogram shown in Figure 6 can be ascribed directly to the 
functional phases of the pirouette en dehors as defined in [8] via the Basic Action Concepts (BACs), the key 
points within the functional structure of the movement which are stored in the long-term memory of a dancer. 

In contrast to the movement sequence executed by the professional dancer, the movement of a novice per-
former inappropriately starts simultaneously in both legs, and turning starts prematurely, while straightening the 
knees (see Figure 7). In the turning phase, the movements are allocated to the superior iliac spine. The head ap-
parently does not play a role until ceasing the movement. Instead, the vigorous hand movements play a major 
role in maintaining the body’s rotation, which is a common mistake among beginners. 

In Figure 8, we have presented the functional alignment of markers in a golf swing of an amateur (Figure 
8(a)) and an expert (Figure 8(b)). It is remarkable that while the dendrogram representing the golf swing per-
formed by the amateur reveals the central role of hands in the structure of movement, connecting the other parts 
of the body, the structure of movement in expert reveals the natural anatomical structure of human body. 

8.3. Analysis of Body Shape Changes in pirouette en dehors 
The results of Procrustes analysis applied to the kinematic data tracked from the pirouette en dehors executed by  
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(a)                                               (b) 

Figure 8. Functional alignment of markers in a golf swing of (a) an amateur, (b) an expert. The functional alignment of 
markers in experts preserves the natural anatomical structure of human body. 
 
a professional dancer is shown in Figure 9. The diagram represents the magnitude of the shape difference vector 
(3) calculated for each marker k  at the time frame τ  by subtraction of Euclidean transformations preserving 
the relative positions of markers. The magnitude ,kV τ  is sampled along the (horizontal) time axis with a time 
slice of 5 msec. The kinematic signal representing the shape changes in the pirouette en dehors has the form of 
two vertical bands exhibiting the onset and terminal phases of the movement, separated by the inertial phase, 
during which the relative positions of most of the markers, except for the head markers, remain unchanged in the 
chosen frame of reference. The synchronous shape change corresponds rather well to the blocks of markers 
matching the natural division of the skeletal system, as seen in Figure 9. The strong periodic signal from the 
four head markers spanning the whole inertial phase arises due to rapid rotation of the head while spotting. 

8.4. Automated Classification of Ballet Figures 
We have assessed the diversity of trajectories (by the entropy of trajectories trajH ) and complexity of shape 
changes (by the entropy of shape shapeH ) for 557 recorded trials of the six figures from the repertoire of classi-
cal ballet: petit pas sauté, petit pas jeté, petit pas assemblé, petit pas echappé, pas jeté, and pirouette en dehors, 
including the very complex pirouettes executed with 5 and 18 turns by professional ballet dancers. Each re-
corded trial, whether successful or not, has been taken into account, since a reliable motion classification method 
must be robust to individual variations in performance. The result of our analysis is presented in Figure 10 
where all recorded ballet steps are classified in accordance with the entropy of trajectories and the entropy of 
shape. On the one hand, it is important to mention that the entropy of trajectories alone is vulnerable by individ-
ual variations in performance, as seen in extreme variability of its values calculated over the pull of 2-turn pir-
ouettes performed by students. Moreover, the entropy of trajectories is obviously insensitive to recursion in 
movements: the pirouettes executed with different numbers of turns are characterized by the close values of the 
entropy of trajectories. 
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Figure 9. The magnitude of the shape difference vector ,k τV  calculated for 
each marker k at the time frame τ  by subtraction of Euclidean transforma-
tions preserving the relative positions of markers. 

 
On the other hand, the entropy of shape alone is incapable of differentiating movements that evolve essen-

tially from the same body shape changes, such as petit pas sauté, petit pas echappé, and petit pas jeté. 

9. Conclusion 
The STKD method presented in this paper allows for the segmentation of any recorded movement into a mini-
mal number of independent spatial-temporal features. This method has been found to effectively elicit the hier-
archically-organized key kinematic elements of a movement in different spatio-temporal scales. We have shown 
that a movement tracked by a motion tracking system can be understood in terms of a hierarchy of scales in 
which the spatial and temporal components are separated and can be studied singly. The typical character of in-
dividual movements from the classical ballet repertoire is featured by the few major scales, while minor scales 
determine the individual movement traits and can disclose the individual level of movement expertise. Such a 
functional separation of scales allows perceiving the movements categorically as the highly stylized figures of 
classical ballet. A choreographer translates the temporarily ordered sequences of ballet figures into a hierarchical 
structure of concepts transmuting dance into a kind of a sign language. In our work, we have proposed the quan-
titative measures for diversity and complexity of recorded human movements that can be used for the detailed  
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Figure 10. Based on the entropy of trajectories and the entropy of shape cal-
culated for 557 recorded movement trials, we have them properly classified 
into the figures from the classical ballet repertoire. 

 
analysis and comparison of kinematic signals captured from various movements performed by different partici-
pants. By bringing the important concept of entropy to the study of human movements, we have made a signifi-
cant step toward understanding of how humans can convey—perhaps deliberately, but rather unintentionally— 
messages rich in content by using their own body as physical transmission medium. Implications of these find-
ings are important for a number of movement related domains, including physical therapy, and sports training. 
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