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ABSTRACT 
An HIV model was considered. The parameters of the model are estimated by adjoint dada assimilation method. The 
results showed the method is valid. This method has potential application to a wide variety of models in biomathemat-
ics. 
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1. Introduction 
One of the worst diseases in the world is AIDS (Ac-
quired Immunity Deficiency Syndrome). It is caused by 
the human immunodeficiency virus (HIV). There has 
been much interest recently in mathematical models of 
HIV. During the last decade, many scholars have done a 
great of work about HIV model ([1-6]). We consider a 
model which presented by Henry et al. ([1]), which de- 
scribes the interaction of HIV and the immune system of 
the body. In this model, the variables are uninfected CD4 
+ T-cells, infected such cells and free virus, whose densi- 
ties at time t are denoted respectively by ( )x t , ( )y t  
and ( )v t . These quantity satisfy 
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with initial values (0) 0x > , (0) 0y ≥  and (0) 0v > . 
Here s, µ , β , α , c and γ  are model parameters 
which interpreted as follows: 

s: is the rate of production of CD4 + T-cells 
µ : is their per capita death rate 
β : is the rate of infection of CD4 + T-cells by virus 
α : is the per capita rate of disappearance of infected 

cells 
c: is the rate of production of virus by infected cells 
γ : is the death rate of virus particles. 
It’s impossible to get the above model’s analytic solu-

tions due to its strong nonlinearity. Thus we computed its 
solutions using Runge-Kutta methods of order 4. This 

was done with initial Thus we computed its solutions us- 
ing Runge-Kutta methods of order 4. This was done with 
initial (0) 200x = , (0) 0y =  and (0) 1v = , and typical 
parameters values 0.272s = , 0.00136µ = , β = 
0.00027, 0.33α = , 50c =  and 2γ = . The time series 
of uninfected CD4+T-cells and infected CD4 + T-cells 
are listed in Figures 1 and 2, respectively. The peak val-
ues exist round 20 days. The phase portraits are shown in 
Figure 3 for a time period of 200 days and it can be seen 
that the orbits are quite close. 

These model parameters are chosen to be consistent 
with those in the model, whose values may not be very 
well known. There has recently been considerable inter-
est in the inverse problem of determining such values by 
incorporating measured data into the numerical model. 
The adjoint assimilation method involves minimizing a 
certain cost function which consists basically of a norm 
of the difference between the computed and the observed 
values of the measured variables. The purpose of the  

 

 
Figure 1. The time series of uninfected CD4 + T-cell. *Corresponding author. 
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Figure 2. The time series of infected CD4 + T-cell. 

 

 
Figure 3. The phase portraits. 

 
present paper is to estimate the model parameters (μ, α, λ) 
by constructing the adjoint model. The basis of the me-
thod is to minimize the cost function which is equal to a 
norm of difference between the computed and the ob-
served data. An algorithm is obtained, via so-called ad-
joint equation, for construction of the gradient of the 
function with respect to the parameters. 

In Section 2 we describe the adjoint assimilation me-
thod. A detailed discussion of the numerical tests results 
is given in Section 3. Section 4 summarizes the results 
and conclusions. 

2. The Adjoint Numerical Model 
For parameter estimation and data assimilation, differ-
ences between predicted and measured values of these 
variables must be quantified by a single misfit number, 
the objective function. A lot of options are available for 
choosing the misfit function. In this study, we choose the 
classical least-squares approach. However, the results 
from above governing equations are not good as with the 

observed values. The error between observed and model 
calculated can be defined as 

2 2 2
1 2 30

1 ( ( ) ( ) ( ) )
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Where ox , oy  and ov  present observation of x, y and 
v, respectively. 1w , 2w  and 3w  are weight coeffi-
cients and [0, ]T  stands for assimilation window. 

In order to get the adjoint Equations of (1), we intro-
duce the adjoint control variables and Lagrange function: 

0
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where X, Y and V are adjoint variables. Lx , Ly , and 
Lv  are the left hand part of Equations (1). It is easy to 
get the following adjoint equations: 
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Now the parameters µ , α  and γ  are unknown, 
which need to estimate by the adjoint assimilation me-
thod. The numerical scheme of the adjoint Equation (4) 
are the same as Equation (1), however it needs to inte-
grate backward, and its initial conditions are set to zeros, 
that is 

( ) 0, ( ) 0, ( ) 0X t Y T V T= = =         (5) 

The gradients can be easily obtained through Equation 
(3), which are 
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For the sake of convenience, we denotes 
'( , , )P µ α γ=                (7) 

( , , )J
J J JP
µ α γ
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            (8) 

Having determined the gradients which respect to the 
unknown parameters, we can perform the minimization 
by the descend method, the modified parameters are 

pa pa gdλ⇐ − ×            (9) 

where λ  is the optimal step. 
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3. Numerical Tests 
In real applications, the model must be calibrated against 
experimental data. In this numerical study, however, a 
twin experiment is carried out: a reference solution is 
generated with the model itself using the parameters the 
same as in Section I. 

In this part, we design 3 numerical tests, 2 tests with 
random error in the synthetic data, which denoted TX1 
with no errors, TX2 with 1% errors, TX3 with 3% errors, 
respectively. Only the infected CD4 + T-cells observed 
data are valid, that is 1 3 0w w= = . The first guess of 
them are 1.0E−3, 0.2 and 1.5, respectively. The observed 
dada are plotted in Figure 4. The numerical results listed 
in Table 1. The cost function descent curve showed in 
Figure 5. 

4. Summary and Discussion 
Adjoint data assimilation method is employed to estimate 
the parameters of a kind of HIV model. The parameters 
estimated are μ, α and γ. The method is based on an op-
timal control approach where by a cost function measur-
ing the discrepancies between numerical computed and 
measured is minimized, subject to constrains consisting 
of equations of the model. The numerical scheme used is 
the forth order Runge-Kutta method. In order to test the 
validity of this method, we have designed several expe-
riments. The results showed the method is valid. The 
research results are useful to understand the HIV model 
and helpful to establish a robust and effective HIV con-
trol and prediction. 

 

 
Figure 4. The observed data. 

 
Table 1. Estimated parameters values. 

 TX1 TX2 TX3 
μ 1.371E−3 1.412E−3 1.501E−3 
α 0.328 0.343 0.352 
γ 1.996 2.051 2.132 

 
Figure 5. The cost function descent curve. 
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