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ABSTRACT 

The solution of an n-dimensional stochastic differential equation driven by Gaussian white noises is a Markov vector. In 
this way, the transition joint probability density function (JPDF) of this vector is given by a deterministic parabolic par- 
tial differential equation, the so-called Fokker-Planck-Kolmogorov (FPK) equation. There exist few exact solutions of 
this equation so that the analyst must resort to approximate or numerical procedures. The finite element method (FE) is 
among the latter, and is reviewed in this paper. Suitable computer codes are written for the two fundamental versions of 
the FE method, the Bubnov-Galerkin and the Petrov-Galerkin method. In order to reduce the computational effort, 
which is to reduce the number of nodal points, the following refinements to the method are proposed: 1) exponential 
(Gaussian) weighting functions different from the shape functions are tested; 2) quadratic and cubic splines are used to 
interpolate the nodal values that are known in a limited number of points. In the applications, the transient state is stud-
ied for first order systems only, while for second order systems, the steady-state JPDF is determined, and it is compared 
with exact solutions or with simulative solutions: a very good agreement is found. 
 
Keywords: Stochastic Differential Equations; Markov Vectors; Fokker-Planck-Kolmogorov Equation; Finite Element 

Numeric Solution; Modified Hermite Weighting Functions; Spline Interpolation 

1. Introduction 

It is widely recognized that many types of agencies act- 
ing on engineering structures and equipments have ran- 
dom characteristics. This is the case of earthquakes, wind 
load, wave load, electric current in a circuit, and so on. 
Thus, these agencies are to be described by means of the 
theory of stochastic processes. Moreover, in some cases, 
the structural properties themselves are uncertain, and 
must be considered as stochastic processes, which gives 
raise to a multiplicative or parametric excitation. In this 
way, the differential equations that govern the response 
become stochastic differential equations. 

If the differential equations that govern the response 
are nonlinear or the excitation is parametric or both, the 
random response analysis is not an easy task, and mathe- 
matically exact solutions for the statistical characteriza- 
tion are not available in many cases. However, if the ex- 
citations are Gaussian white noise (WN) random proc- 
esses, the system response is a vector Markov process, 
too: see [1-3]. 

If the initial state of a Markov process is known, then 

the joint probability density function (JPDF) of the states 
characterizes completely the stochastic process. The 
JPDF is the solution of a parabolic partial differential 
equation (PDE), the so-called Fokker-Planck-Kolmo- 
gorov (FPK) equation. This equation depends on time 
and on the actual values of the system states. However, if 
the system is damped and stable, a stationary state exists, 
which is characterized by the stationary JPDF p(x), 
which does not depend on time. The FPK equation loses 
the dependence on time, and is called reduced FPK equa- 
tion. A wide treatment of it can be found in [3,4]. 

The severe limitations of the FPK equation approach 
resides in that exact analytical solutions are available in a 
restricted number of cases, and mostly in the steady state. 
In the transient state, analytical solutions were obtained 
for scalar systems only: the reader is referred to [4]. 
Along the years, much theoretical work has been done in 
order to solve the reduced FPK equation: [5-27]. Not- 
withstanding the considerable progress in this matter, 
two serious flaws remain: 1) in the case of multiplicative 
excitations, for the FPK equation to be solvable, restric- 
tive relationships among the system parameters and the  
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spectral densities of the excitations must be satisfied, and 
such requirements are rarely encountered in practical 
cases; 2) in several cases, no analytical solutions have 
been found, among the case of oscillators with a generic 
nonlinear damping mechanism.  

For these reasons, the sixties numerical schemes of 
solution have been developed parallelly to the theoretical 
studies. These methods are: weighted residual method, 
eigenfunction expansion, finite differences, variational 
principles, and finite element (FE) method.  

In the weighted residual method [28-33], the functional 
form of the JPDF is chosen a priori: a mixture of Gaus- 
sian functions or the exponential of a polynomial in the 
state variables is the most usual choice in both unknown 
coefficients’ appearance. The approximate form of the 
JPDF cannot satisfy the FPK equation exactly so that a 
residual error arises. It is imposed that the projection of 
this into a set of weighting functions vanishes. In this 
way, a system of equations in the unknown coefficients 
is obtained, and it must be solved. Muscolino, Ricciardi 
and Vasta’s method [29] is notable as it gives raise to an 
expression of the JPDF in which the coefficients are lin- 
ear functions of the response statistical moments. 

In the eigenfunction expansion method [34-38], the 
non-stationary JPDF of the system states is expressed as 
a truncated series of orthogonal functions, which are 
functions that form a complete orthonormal basis in a 
Hilbert space [39]. If the eigenfunctions of the FPK 
equation were available in all cases, this representation 
would be exact, but in general they are not known, and 
their computation even in an approximate numerical 
form is often cumbersome. Thus, the different authors 
adopt different strategies: in [35,38], the orthogonal func- 
tions are chosen a priori, and in order to determine the 
coefficients of the series, the weighted residual method is 
used. In [34,36,37], a perturbative approach is used. 

Roberts use the finite difference method [40] to solve 
the FPK equation for the one-dimensional PDF of the 
energy envelope. In other words, there is only a spatial 
variable beyond the time variable, which is a limitation. 

In [41], two types of variational approaches are pre- 
sented, both of which are aimed at finding approximate 
values of the non-zero eigenvalues of the FPK operator 
(the first eigenvalue is zero, and it corresponds to the 
steady state PDF). The former one constructs an approxi- 
mate Hermitian operator, and the other is based on a 
perturbation expansion. The applications are confined to 
the steady state. In [42], the variational approach gives 
raise to an iterative procedure. The applications regard 
the transient state of scalar systems.  

The approximate solution of PDE’s by means of the 
finite element method (FE) is a classic topics in numeric 
mathematics (e.g. see [43]). Probably, Bergman and 

Heinrich [44-46] were the first who applied this method 
in the field of stochastic dynamics. In the above cited 
references, they did not analyze the FPK equation but the 
Pontriagin-Vitt equation in the moments of the first pas- 
sage time of a level x  from the displacement X of a 
second order oscillator (as regards the Pontriagin-Vitt 
equation see [3], Chap. 8); however, the principles are 
the same. Then, the FE method was applied to the FPK 
equation: [47-54]. Differently from the weighted residual 
method in which the transition JPDF of the state vector 
has the same approximate form in the whole state space, 
in the FE method, the state space is discretized into ele- 
ments inside which the JPDF varies according to the 
shape or trial functions that have been selected previ- 
ously, and depending on the nodal values (see later). In 
[47-54], linear shape functions are used, which insure C0 
continuity only. Vice versa, as the FPK equation Equa- 
tions (6) and (7) contains second derivatives, it would 
require C1 continuity. The problem is overcomed by 
combining the FE method with the weighted residual 
method: the residual error is made orthogonal to a weight 
function in such a way that the coefficients of a linear 
system in the nodal values are computed. Fundamentally, 
there are two versions of the FE method for solving the 
FPK equation: the Bubnov-Galerkin and the Petrov- 
Galerkin method. In the former, the weighting functions 
are equal to the trial functions. Vice versa, in the latter, 
weighting and trial functions are different, in general the 
weighting functions being non linear. This version is be- 
lieved more suitable for convective problems [44,45,49, 
52]. However, in the steady state, that is when solving 
the reduced FPK equation, there is no diffusion of pro- 
bability. With the exception of [49,52,53] in the above 
mentioned references, the applications regard the steady 
state because of the charge for computation. Some improve- 
ments of the method were proposed: in [51], an adaptive 
grid generation is used; in [53], a multi-scale FE method 
is fitted to the present problem; in [54], the solution is 
improved by means of a local hp-refinement of the mesh. 

The present paper is organized as follows: Sec. 2 is 
devoted to the FPK equation. Sec. 3 treats the FE method 
for solving the FPK equation: first, its theoretical deriva- 
tion is reviewed, and some topics are discussed. In detail, 
it is shown that: 1) to interpolate the nodal, values with 
splines of degree higher than those of the shape functions 
may improve the solution substantially; 2) in some cases 
the use of weighting functions different from the shape 
functions yields a notable computing time saving. The 
last two sections are devoted to the applications and con- 
clusions respectively. In order to contain the computing 
time, the transient state is studied for first order systems 
only, while for second order systems the steady-state 
JPDF is determined. 
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2. The Fokker-Planck-Kolmogorov Equation 

Let   g X t  an arbitrary function of a stochastic proc- 
ess X(t), which at its turn is solution to the stochastic 
differential equation  

          0d , , d 0X t a X t t b X t t B X t X   , (1) 

where B(t) is a unit Wiener process,  is the 
drift term, and  is the diffusion term. As the 
latter depends on X(t), that is the excitation is multiplica- 
tive, it is intended that  includes the so-called 
Wong-Zakai-Stratonovich corrective term [55,56], which 
reads as  

  ,a X t t 




  ,b X t t

a X   ,t t

           ,1
, * , ,

2

b X t T
a X t t a X t t b X t t

X


 


, 

(2) 

where  is the originary drift term before 
correction. 

 * ,a X t t 

Now, we apply Itô’s differential rule [57-59] to the 
first derivative of the stochastic expectation of g: 

 
2 2

2

d

d 2

g b g
E g E a

t x x

  
    

 .        (3) 

Expressing the expectations with respect the condi- 
tional PDF  0 0, ,p x t x t   of X, we obtain 

 

 

0 0

2 2

0 02

d
, , d

d

, , d
2

gp x t x t x
t

g b g
a p x t x

x x









  
    



 t x
 (4) 

Integrating Equation (4) by parts, and taking into ac- 
count that the PDF p and its first derivative tend to zero 
as x tends to infinity; we obtain 

 

     
2

2
2

d

1
, ,

2

p
g x x

t

a x t p b x t p g x x
x x












             



 d


. (5) 

As g(x) is quite arbitrary, it may be assumed   1g x  , 
which yields: 

   
2

2
2

1
,

2

f
a x t p b x t p

t x
,

x

            
. (6) 

Equation (6) is the Fokker-Planck-Kolmogorov equa- 
tion (or forward Kolmogorov equation) in the unknown 
transition JPDF of the scalar process X(t). It is a parabolic 
PDE, which must satisfy suitable initial and boundary 
conditions. If the initial state is deterministic, then 
  0 0 0 0, ,p x t x t x x   , where     is Dirac delta. At 

infinite boundaries  0 0 0

Now, Equation (1) be replaced by the analogous vector 
equation 

, ,p x t x t

, d

 must be zero.  

       d ,t X t t X t t X a G B , where X, 

and a are n  1 vectors, G is an n  m matrix, and B is an 
m  1 vector of Wiener processes with covariance matrix 
. It can be demostrated that the FPK equation for the 
JPDF  0 0, ,p t tx x  of X(t), given  0 0t X x , is 

   
2

, ,i i
i i

b
x x


 

x x

ijb

1

2 j
j

p
a t p t p

t x

          
. (7) 

In Equation (7) the summation rule with respect to re-  

peated indexes is implicitly adopted, and t

ij
   G G . 

Equation (7) has an important physical interpretation. 
Define 

 1

2j jC a p
jk

k

b p

x


  


.           (8). 

Then, Equation (7) is rewritten as  

 
0

j

j

Cp

t x


 

 
.                (9) 

Equation (9) has the same form as the continuity equa- 
tion of fluid mechanics. In this way, Cj is the j-th com- 
ponent of the vector of the probability current, so that 
Equation (9) expresses the conservation of the probabil-
ity. From that it is deducted that the Cj's must be zero at 
the boundaries of the existence domain, which in most 
cases is infinite; hence, at the boundaries the JPDF p is 
zero. So, it is demonstrated that the FPK equation de- 
scribes a convection problem. 

Now, for the clarity’s sake some solutions of the re- 
duced (steady-state) FPK equation are given. The motion 
equation of a second order oscillator with nonlinear re- 
storing force is 

       2πX t X t F X KW t    ,       (10) 

where W(t) is a unit strength Gaussian white noise. It is 
assumed that F(x) is a conservative force, which is it is 
the derivative of a potential function U(x) as 

   d

d

U x
F x

x
 .             (11) 

Equation (10) is equivalent to the following two first 
order Itô’s stochastic differential equations in the phase 
space: 

     
1 2

2 2 1

d d

d d π d

x x t

2x x t F x t K B t




      
, (12) 

where 1x X  and 2x X 

1 2

. The FPK equation govern- 
ing the stationary JPDF x xp  is 

    
2

2
2 12

1 22

π 0
pxp

K x F x p
x xx


        

, (13) 

where 
1 2x x , and the current values of the variables 

have been denoted with lower case letters. The solution 
p p
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to Equation (13) is [5] 

    
 

2

1 2

π 2

1 2, , e

x
U x

K

X X XX
p x x p x x C

      
    



   , (14) 

where C is a normalization constant. 
In [5], the FPK equation is solved too for an N-degree- 

of-freedom (2N states) system, whose motion equation 
have the form 

   

   

1

2π 1,2, ,

i i i
i i

i i

U
X t X t

M X

K W t i N

 
 



 

 


, (15) 

where no summation has to be performed with respect to 
the index i; the white noises Wi(t) are uncorrelated. The 
JPDF of the variables ,i ix x  is [5] 

 

 

1 1

2

1
1

, , , , ,

exp , ,
π π 2

N N

N
i i

N
i i i i

p x x x x

ix
C U x x

K M K

 


  
      

  


  


 



. (16) 

In Equation (5) the equipartition of the energy among 
the degree of freedoms is notable.  

Liu [8] considers a class of N-degree-of-freedom 
nonlinear discrete dynamic systems, whose equations of 
motions are 

 
   

1 2 1 2

1 2 1 2

1 , , , ; , , ,

1 , , , ; , , ,

i i i i i n n

i i i i n n i

X c X F x x x x x x

k X R x x x x x x W t





 
    

     

   


, (17) 

where , i i i i1, 2, ,i N  , , ,c k 

 

 are constant parame- 
ters, and the Gaussian white noise processes Wi are char- 
acterized by   S t t  1 2 1 2i j ij ij  with 

ij

E W t W t  
 = Kronecker’s delta. The coefficients of Equation (8) 
are: 

 
 

1 1 2 1 2

1 2 1 2

1. 1

1 , , , ; , , ,

1 , , , ; , , ,

0

i i

i i i i i n n

i i i i n n

ii ij i i ii

a x

a c X F x x x x x x

k X R x x x x x x

b b b S






 



    
   

  


    

   
. (18) 

He gives the following solutions. 
I-Under the hypothesis:  

 the Cj'si are the same for all the degree of freedom; 
 the matrix ijb    is not singular so that the inverse 

matrix Δexists; the following relationships hold  

 

2

2

ij
i i

i j i

ij
i i

i j i

b
a

y y

b
a

y y







          
            

 

 








,    (19) 

where  if , ky y x   , 1, 2, , N   
, 1, 2,N N

, and 
 if ,y y  kx  , N

the probability flux is null around the existence domain.  
In this case. the steady state PDF is given by  

 

 
21

1 2

0 0

, ,

exp 2 d
Nyy

ij
ki ki i k

j

p y y

b
C a

y
y

             
 




,   (20) 

where the summation with respect to the indexes j and k 
is implicit. Equation (20) may or may not result in a 
closed form depending on whether the integral is analiti-
cally evaluable. 

II-The addenda j

j

C

x




 in Equation (9) are singularly  

zero according to the relationships 

     0 1, 2, , 2j j j j j
j

p
L g y p h y i N

y

 
   

  
 ,  (21) 

where Lj are first order differential operators, while gj 
and hj are nonlinear functions. Then, the JPDF is 

   
 

2

1 2
1 0

, , , exp d
iyN

i i
N i i

i i

g u
p y y y C u

h u

 
  

  
  .   (22) 

In [13] by applying the principle of detailed balance, 
the steady state JPDF’s of some notable oscillators are 
found. The first of them is 

         2πX t h X t F X KW t     ,   (23) 

where  h   is a generic function of the mechanical 
energy of the oscillator, that is 

  2

0

1
d

2

x

x F u u    .          (24) 

The steady-state JPDF is 

    
0

1
, exp d

π
p x x C h u u

K

     .     (25) 

Consider the oscillator with parametric excitation  

           2
2 0 11 3X t h W t X t W t W t             , 

(26) 

where  h   is a function of the mechanical energy , 
and the processes W1, W2, W3 are uncorrelated Gaussian 
white noises with power spectral densities 1 2, ,K K  and 

3K , respectively. The steady-state JPDF is 

  , exp ,p x x C x x   ,          (27) 

where  ,x x   is given by the equation 

   
 

2

4 2 2
0 1 2 3

π,

π

h K xx x

x K x K x K




    
  


 

.   (28) 
2      ;  
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A more general case of FPK equation for an oscillator 
with parametric excitation of white noises is solved in 
[15] by applying the concept of generalized stationary 
potential. It is 

              , ,i iX t h X t X t f X t X t W t    , (29) 

where the summation rule with respect to a repeated in- 
dex is valid,  are nonlinear functions, 
and the white noises Wi are characterized by the correla- 
tion ij

    ,if X t X t

  2πi jW t K


   E W t       . The steady-state 

PDF has the form of Equation (27) with 

    0, lnx x
y

 
   


 ,      (30) 

where  is the generalized stationary potential, 
21 2y x  , and  a function of the mechanic energy. 

Equation (30) is valid under the condition 

       

       0

0, π , ,

,
π , e

yy
ij i j y

y

j x
ij i

y y

h x x xK f x x f x x

f x x D x
k f x x

x






 
 


 

  
  

   







  

 , (31) 

where , ,x y yy    are the derivatives of  with respect 
to x, y, and to y twice, respectively; 0  is the derivative 
of  with respect to , that is the generic value of .  

At this stage the functions D(x) and 0() are still un- 
known: they can be identified by applying Equation (31); 
see the examples in [15]. It is notable that Equation (31) 
is a very restrictive relation between the system non- 
linearity and the excitation parameters, which is rarely 
met in practice. 

Zhu found the exact stationary solution of the FPK 
equation pertaining to several classes of nonlinear dy- 
namic systems [18,20,26,27]. First, we recall the case of 
the following nonlinear stochastic system: 

 
   

   

yy x
y

y y

i i

H H
X t aX H f H

H H

bg H W t

 
  




  
 .      (32) 

In Equation (32) a and b are constants, 2 2,y x   
each subscript x or y means partial derivative, 

 , H H x y  is the first integral of the oscillator 
0x yx H H  , while f and gi are nonlinear functions of 

H. The steady state JPDF of X and X  has the general 
form y . If the ratio  ,p x x  H H  2

yy yH H  is 
constant or depends only on H, the function (H) can be 
determined giving raise to 

     
1

2
0

, exp
H

y ij i jp x x CH K g g F u u
     d 


, (33) 

where the Kij's define the correlations among the white 

noises, that is     2i j ijE W t W t K        , and  

  
 

   

2

2 2

yy yyy

y ij i j

a f u H HH
F u

 

H b K g u g u
   .       (34) 

Another class of dynamic systems for which the asso- 
ciated FPK equation has been extensively studed is that 
of stochastically excited and dissipated Hamiltonian sys- 
tems with n-degree-of-freedom [17,19,20,26,27]: 

 

 

ˆ

ˆ ˆ

i
i

i ij ik
i j

H
Q

P

H H
P c f W

P P





 
   

 




k t




,        (35) 

where Qi and Pi are generalized displacements and mo- 
menta, respetively;  is a twice differenti- 
able Hamiltonian;  are differentiable 
functions; 

ˆ ˆ ,H H Q P
 ,ij ijc c Q P

 ,Q P
, n

ik ikf f
, 1, 2,

 are twice differentiable func- 
tions; i j   ; 1,2, ,k m  ; and Wk are Gaus- 
sian white noises with correlation functions 

    2k l klE W t W t D       . 

In the second of Equations (35) the excitations are 
multiplicative: hence, for transforming them into Itô type 
stochastic differential equations, they are to be modified 
by means of the Wong-Zakai-Stratonovich corrective 
terms [55,56]. The transformed equations in incremental 
form are 

 

d d

d d

i
i

i ij
i j

H
Q t

P

H H
P m t f

Q P





  
       

dik kB

,     (36) 

where in general ˆH H  and . ij ij

The FPK equation associated with Equation (36) is  
m c

 
21

0
2

ij
i i i i i j

ij
i j

H H
p p m

q p p q p p

b p
p p

         
                  


 

 

H
p
 ,   (37) 

where    T2 , ,ij ik klij
b f   FDF F D D . The 

steady-state PDF solution to Equation (37) has the form  

   , expp C  q p ,            (38) 

where the vectors q and p contain the generalized dis- 
placements and momenta, respectively. If the conserva- 
tive Hamiltonian system ,i i i iq H p p H q        is 
non-integrable, that is its first integral is the Hamiltonian 
itself [60], the function  depends on H only, and it is  
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obtained by solving a system of first-order linear or- 
dinary differential equations. If there are n indepen- 
dent integrals of motion 1 2, , , nH H H H  ,  depends 
on these, and it is the solution of n first order PDE’s. 
For both cases the reader is referred to [20] for the de- 
tails.  

3. Finite Element Method Formulation 

3.1. General Formulation 

In the finite element (FE) procedure the state space is 
discretized into a number of finite regions: the finite 
element mesh consists of a grid of points at which the 
JPDF p(z,t) is to be computed. It must be emphasized 
that in general the JPDF p exists in an infinite hyperdo- 
main. If the FE procedure is applied to an infinite domain, 
three different approaches are possible: 1) the inner re- 
gion of the domain is divided into finite elements, while 
the outer region is discarded since the quantity to be 
computed is assumed negligible therein; 2) the inner re- 
gion of the domain is divided into finite elements, while 
the outer region is modelled by infinite elements that 
extend to infinity; 3) the outer region is modelled using 
boundary elements or series solution. The first approach 
is used herein as the probability density functions decay 
to small or very small values, when the variables are lar- 
ger than a few standard deviations. An estimate of the 
standard deviations of the response variables is obtained 
easily by applying the equivalent linearization method 
[61]. 

Inside an element s (Figure 1) the JPDF p(z,t) is ap- 
proximated by p(els), which is given by  

         
1

,
noN

s
k k kel sp t p t N  z z .    (39) 

In Equation (39) Nno are the nodes of the element, 
where the JPDF assumes the nodal values  s

kp . Clearly, 
inside an element the JPDF varies according to the shape 
functions Nk(z). The nodal values of contiguous elements 
must be equal. 

If linear shape functions are selected, the values of the 
JPDF at the nodes are the only as unknowns. On the 
other hand, linear shape functions yield C0 continuity, 
while C1 continuity is required as the FPK equation is of 
second order. This problem is overcome by considering a 
weak solution of it. Define the operators 

   
2

1 2

1

2i i
i i

L a L b
z z z

          j
j

z z .  (40) 

For any weighting function (z) it must be 

   2 1d d
p

L p L p
t

  
  


 

  

 

Figure 1. Four-node rectangular finite element. 
 
in which the dependence on z has been omitted, and  
denotes the domain of existence of p(z,t). Integrating the 
right-hand-side of Equation (41) by parts, and accounting 
for the fact that  as 0p  z , we obtain the weak 
form of the FPK equation as 

 
1

d d
2i ij

i i

p p
a p b

t z z
d

jz

 
  

  
 

     


z z z . (42) 

Equation (42) is obtainable also with a variational 
formulation [48]. 

If Equation (39) is inserted in (42), and the integration 
over the domain  is replaced by the sum of the integrals 
over each element, we obtain the matrix system 

    t tCp Kp 0 ,         (43) 

in which p(t) is an Nno   column vector containing the 
nodal values, and 0 is an Nno   column vector whose 
components are zero. 

The various entries of the Nno  Nno matrices C, K de-
pend on the choice that has been made for the weighting 
functions (z). Bergman and Heinrich [45], Langtangen 
[48], Köylüoglu and collaborators [50] use weighting 
functions different from the shape functions, while the 
other authors use weighting functions equal to the shape 
functions. This choice, which is referred as Bubnov- 
Galerkin FE method, gives 

 
 1

d d
2

m ijm
m iE E

i i j

N bN N
k a N

z z z

 
 

   z z
  , (44) 

 , (45)  d , 1, ,m mE
c N N m N  z    no

where  is a generic element of the local “stiffness” 
matrix, m  is an element of the local matrix multiply-
ing 

mk
c

 sp , and E denotes that the integration is performed 
over the element. Transformation of each element matrix 
into global coordinates and summation over the elements 
allows the construction of the matrices C and K. 

If the shape and weighting functions are chosen to be 
different, Equations (44,45) are replaced by, respectively 

 
 1

d d
2

m ijm
m iE E

i i j

bN
k a N

z z z

  
 

   z z
  ,       (46) 

dz z z ,   (41)  dm E
c N  m z  .          (47) 
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3.2. Refinements of the Method 

Computer codes have been written and implemented to 
solve both the transient and the reduced FPK equations 
(in this case Equation (43) reduces to Kp = 0): because of 
brevity’s sake the features of these codes are not ex- 
pounded. It is only recalled that Equation (43) is solved 
by adopting a forward finite difference scheme. When 
the shape and weighting functions are equal, in the case 
of a rectangular element (Figure 1) the functions in local 
coordinates ,   are 

 

       
     
   


  

       

1 1

2 2

3 3

4 4

, , 1 4 1 1

, ) , 1 4 1 1

, , 1 4 1 1

, , 1 4 1 1

N

N

N

N

      

      

      

      

   

   

   

   

. (48) 

This choice has the undoubted advantage of making 
the solutions of the integrals faster (obviously, the inte- 
grals are numerically evaluated). 

If i  is different from Ni are, the problem of choosing 
the weighting must be i  solved. No theoretical rules 
exist for doing it. Thus, the choice was based on empiri- 
cal considerations, but keeping into account that each 
weighting function must be 1 in the corresponding node 
and zero on the sides not converging in it. The final i ’s 
are: 

 ,(49) 

       

       

       

       

2 22 2
1 1

2 22 2
2 2

2 22 2
3 3

2 22 2
4 4

, , exp 1 1

, , exp 1 1

, , exp 1 1

, , exp 1 1

N a b

N a b

N a b

N a b

      

      

      

      

      
     
     
     









in which the constants a, b depend on the transformation 
from global to local coordinates, and are assumed differ- 
ently in the different cases. Thus, the i ’s are multiplied 
by Gaussian like functions that cause them to decay fast 
from the nodes. 

Computing the JPDF of the state variables is not the 
final stage of the analysis of a random dynamic system. 
In fact, one needs to obtain the response statistics such as 
marginal densities, statistical moments, and mean up- 
crossing rate (MUR) functions. The former can be di- 
rectly obtained as geometrical sections of the hypersur- 
face having p(z,t) as equation. However, the other quan- 
tities require integration: of the marginal PDF as regards 
the response moments, and of the JPDF of X, X  as 
regards the MUR function. 

In many cases, accepting or rejecting a JPDF or a PDF 
obtained by means of the FE method is decided by a vis- 
ual inspection. On the contrary, a sound quantitative cri- 
terion of acceptance must be based on the errors that the 

computed statistics have with respect to the exact or 
simulative ones. In this paper, an improvement of the 
method is proposed in order to compute better estimates 
of the statistics without increasing the number of nodes. 
The nodal values are interpolated by both quadratic and 
cubic splines, the former choice bringing to the well 
known Cavalieri-Simpson’s rule of integration. 

4. Applications 

The present section is devoted to the presentation of the 
results that are obtained applying the FE method to the 
solution of the FPK equations of different stochastic dif- 
ferential equations. In order to limit the computing time, 
the transient state is analyzed only for two scalar systems. 
In fact, the solution of the complete Equation (43) is 
much more time consuming as it requires a multi-fold 
discretization in the state coordinate and in time. On the 
contrary, the solution of the steady-state equation Kp = 0 
can be easily performed even on a normal personal 
computer. Two-state systems are analyzed in this case. 
The results of the Bubnov-Galerkin version of the FE 
method are compared with those of the Petrov-Galerkin 
one, which is indicated as WRM. In computing the sta- 
istical moments, the effets of the spline interpolation of 
the nodal values are highlited.  

4.1. Scalar Systems 

The feasibility of the FE computer code that has been 
implemented is firstly tested by determining the time 
evolution of the PDF of the solution X of two scalar sys- 
tems excited by a stationary Gaussian white noise. It has 
been chosen the Langevin equation with linear or 
nonlinear drift term. In the first case the PDF of X is 
Gaussian. The equation of motion are 

  2πX aX KW t           (50) 

  3 2πX aX bX KW t    .       (51) 

in the two cases, respectively. The steady-state PDF of X 
in Equation (51) is 

  
2 41

exp
π 2 4X

x x
p x C a b

K

        
   

,    (52) 

in which C is a normalization constant. 
The analyses have been accomplished with the fol- 

lowing values of the parameters:  in 
Equation (50); 

1, 0.5a K 
1, 0.1, 1 πa b K     in Equation (51) 

in such a way that the PDF (52) is bimodal. In both cases 
the initial conditions are random, that is  ,0Xp x  is a 
Gaussian PDF with zero mean and standard deviation 

. Since the two systems are scalar, only 32 fi- 
nite elements suffice to get a good agreement among 
numerical and theoretical results, but the computations 

2 0.5X 
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are repeated every 0.01 s, that is t  0.01. 
The time evolutions of  ,Xp x t  are in Figures 2 and 

3 for Equations (50) and (51), respectively. It is not sur- 
prising that the PDF of X depicted in Figure 2 converges 
very fast to the steady-state one as this is Gaussian like 
the initial one. However, the convergence is fast as in the 
case of the nonlinear Langevin equation even if the initial 
and the final PDF are quite different. 
 

p

 
x
 

t = 0 s 

p

  
x
 

t = 0.5 s 

p 

 
x
 

t = 3.0 s 

Figure 2. Time evolution of the PDF p(x) of X in Equation 
(50), random initial condition: stars FE solution, line stea- 
dy-state Gaussian PDF. 
 

 

 

Figure 3. Time evolution of the PDF p(x) of X in Equation 
(51), random initial condition: stars FE solution, line stea- 
dy-state exact PDF. 

4.2. Duffing Oscillator 

The second case that has been examined regards a Duff- 
ing oscillator excited by a Gaussian white noise. The go- 
verning equation of motion is  

 
       

 

2 3
0 0 02

2π

X t X t X t X

KW t

        



  t
 (53) 

where  and  are constant parameters, and W(t) is a unit 
strength Gaussian white noise. In this case, the steady- 
state JPDF is known to be [5] 

  
2 4 2

2
0, exp

π 2 4 2

x x x
p x x C

K

   
          

    

 , (54) 

in which 0 02   , and C is a normalization constant, 
whose expression is 

    1 12 2
0 1 4 0π exp 8 8

K
C K 


  

   
 

, (55) 

where  2 3
0 0 0π 2K    and  1 4K   is the modified 

Bessel function of order 1/4. It is recalled that, when both 
 and  are positive, the PDF of X is unimodal and 
Gaussian like, while for    the PDF is bimodal. An 
analytical solution is known also for the MUR function: 

 

 
 

  120 0
012

1 4 0

4
2

2
0

π
exp 8

8

1
exp

42

X x
K

x
x

  
 










 

 
  
  

    
  

. (56) 

The computations have been performed for 

0 0.10 rad s  , 0 0.20  ,  = 1 or 1,  = 0.1, K = 
0.4/; 600 elements have been used for   1, while 400 
or 900 for  = +1. The statistics of X are illustrated in 
Figures 4 and 5 for  = 1 and 1, respectively. In both 
cases, the agreement is good with the exception of the 
MUR function of the case  = 1, which shows a dis- 
crepancy near the peak. A visual inspection is not able to 
discriminate among the different approaches and degrees 
of approximation. Thus, the response statistical moments 
are to be considered.  

The response statistics are listed in Tables 1 and 2 for 
 = 1 and   1, respectively. The errors are very limited 
as regards the statistical moments of both X and X . The 
largest value of the MUR function  X x  has a larger 
error, which is more pronounced in the case  = 1. Us- 
ing weighting functions different from the shape func-
tions (WRM) yields good results; in the case  = 1 it re- 
quires a smaller number of elements, 400 against 900. 

The constants a, b in Equation (49) are taken equal to 
half the lengths of the element sides. 

The values of the PDF in the tails have been con- 
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trolled. As regards pX(x), it is worth 6.194E04, 2.354E 
07, 2.577E13 for x = 3.0  3.3 X , 4.0  4.4 X , 
5.0  5.5 X  , respectively, for  = 1. The FE method 
yields 1.929E04, 7.596E08, and 2.635E14 in the 
three cases, respectively. Even if the errors are notable, 
on the other hand they are smaller than those caused by 
the equivalent linearization method. The estimates ob- 
tained for  = 1 are analogous. 
 

x

 

 x

 

pX 

 

x

 

X 

  

Figure 4. Steady-state statistics of X for Duffing oscillator 
with  = 1: top rendering of the two-dimensional JPDF of 

X X,


; middle marginal PDF of X; bottom MUR function 

X x . 

4.3. Oscillator with Parametric Excitation 

Now, consider the dynamic system 

 , (57) 
     

       

2
0 0

2
0 1 2

2 1

1

X t X t X t

W t X t F X W t

  



   
     

 

in which W1(t) and W2(t) are Gaussian uncorrelated white 
noises with power spectral densities K1 and K2, respec 

 

x  x

 

pX 

 x 

X 

 

x

 

Figure 5. Steady-state statistics of X for Duffing oscillator 
with  = 1: top rendering of the two-dimensional JPDF of 

X X, ; middle marginal PDF of X; bottom MUR function 

 X x  (rhombs exact values, stars FE solution). 
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tively. The oscillator of Equation (57), which has the 
parametric excitation W1(t), belongs to the class of gen- 
eralized stationary potential [14] if the condition    

4
0 1 2K K  is fulfilled. The steady-state JPDF has the 

form (27) with 

     2 2 20 0
0 0

1

2 1
,

π 2

x
dx x x x f

K

       u u



. (58) 

It is notable that  ,x x   does not depend on the in- 
 

Table 1. Response moments for X of Equation (53),  = 1. 

 (1) (2) (3) (4) 

2E X    400 0.806231 0.806231 0.817561

 900 0.812513 0.812513  

 400* 0.813330 0.813330  

4E X    400 1.760082 1.759952 1.824386

 900 1.795570 1.795544  

 400* 1.790557 1.790427  

2E X  
  400 0.985652 0.985652 1.000 

 900 0.996163 0.996163  

 400* 0.995807 0.995807  

4E X  
  400 2.882954 2.882833 3.000 

 900 2.947204 2.947183  

 400* 3.015625 2.942821  

max X(x) 400 0.168447 0.168433 0.168507

 900 0.168476 0.168473  

 400* 0.168517 -  

(1) number of elements. (2) Quadratic spline. (3) Cubic spline. (4) Exact 
value. * WRM. 

 
Table 2. Response moments of X in Equation (53),  = 1. 

 (1) (2) (3) 

2E X    8.685545 8.68555 8.713629 

 8.67606* 8.67607*  

4E X    96.3825 96.38228 97.13629 

 96.3920* 96.39178*  

2E X  
  0.996163 0.996163 1.000 

 1.00645* 1.00645*  

4E X  
  2.947204 2.94282 3.000 

 3.01563* 3.01551*  

max X(x) 0.101775 0.101767 0.118085 

 0.101702* -  

(1) Quadratic spline. (2) Cubic spline. (3) Exact value. *WRM. Results 
obtained with 600 elements. 

tensity of the parametric excitation W1(t). 
The computations have been performed for the fol- 

lowing set of parameters:  2 3
1 1 cm sK  , 

 2 3
2 10 cm sK  ,  0 2π rad s ,   0 0.02,   
     2

0 10 sin 2πF X   X . In the Bubnov-Galerkin 
approach, meshes with 400 and 900 elements have been 
tested. In the Petrov-Galerkin approach, the elements 
over one quarter of the integration domain are 400, and 
the constants a, b of Equation (49) are both 0.150.  

The exact stationary PDF of X and those obtained by 
using the FE method are compared in the top plot of 
Figure 6. Again, both methods and all levels of discreti- 
zation give good results so that they cannot be discrimi- 
nated by a visual inspection. It is not possible to distin- 
guish the PDF of the Bubnov-Galerkin approach from 
that obtained with different weighting and shape func-
tions. The bottom plot compares the MUR functions 

 X x . In this case, an analytical expression does not 
exist: the results labeled as exact are obtained inserting 
the exact JPDF in the Rice’s formula, then the integral is 
numerical evaluated. The same procedure is used to ob-
tain  X x  from the FE results. The agreement is quite 
satisfactory. 

The mean square values of X and X  are in Table 3.  
 

pX

 

 x

 

X 

 x

 

Figure 6. Steady-state statistics of X in Equation (57): top 
marginal PDF of X; bottom MUR function  X x  (stars 

exact values, circles, crosses and triangles FE solutions). 
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Table 3. Response moments of X in Equation (57). 

 (1) (2) (3) 

2E X    3.123129 3.123132 3.252787 

 3.128027* 3.127946*  

2E X  
  124.3301 124.3301 124.9997 

 125.2834* 125.2834*  

max X(x) 1.0244 - 1.0199 

 1.0244* -  

(1) Simpson's rule of integration. (2) Cubic spline. (3) Exact value. *WRM. 

 
There are reported only the values obtained by means of 
900 elements in the Bubnov’s approach and 400 in the 
Petrov’s one. It is evident that the errors are small in any 
case. However, Petrov’s procedure allows a non negligi- 
ble computing time saving. 

4.4. Oscillator with Cubic Damping and Stiffness 

Consider the following oscillator 
 

         3 2 3
0X t X t X t X t X           

   t  , (59) 

where 0 02 ,    1, 1   , and ,  are nonlinear 
parameters. The FPK equation associated with this oscil- 
lator does not admit an analytical solution. Thus, the fi- 
nite element estimates have been compared with those 
obtained by means of Monte Carlo simulation. Sets with 
60,000 samples of motion histories have been simulated. 
The parameters take the following values: 0 2π,   

0.02,   1.    
Because of space limitations only the marginal PDF’s 

of X for  = 1 are shown in Figure 7, and only for 800 
elements over one quarter of the domain with shape 
functions different from weighting functions. A perfect 
agreement between the two curves can be noted. This is 
confirmed by the statistical moments: 

  by simula- 
tion, and   
by means of the FE method. However, the former re- 
quires more than 9 hours of elaboration on a workstation 
with quadcore processor, while the latter few minutes. 

2 0.102583,E X   
2E X   

4 0.0252177E X   
0.101999, 4 0.02E X    49447

5. Conclusions 

This paper aims at giving a contribution to some ques- 
tions regarding the FE method for solving the FPK equa- 
tio n, which remains unanswered or partially answered. 
Firstly, the existence domain of a JPDF p(z,t) is generally 
infinite, while the FE solution is restricted to a limited 
domain. This fact has two shortcomings: 1) the former is 
the necessity of having a good estimate of the response 
standard deviations in order to give the integration do-  

 

Figure 7. Steady-state PDF of X in Equation (59): blue line 
WRM FE estimate, black line monte carlo simulation). 
 
main appropriate dimensions; 2) no precise information 
is obtained on the values of the JPDF in its tails, which 
are very important in structural reliability. An enlarge- 
ment of the domain of integration causes a notable in- 
crease of the computations in many cases. According to 
Langley [47], a combination of finite elements with 
boundary elements or infinite elements does not seem to 
be effective in the case of the FPK equation. 

A second question is in some way related to the former: 
spurious oscillations of the PDF values and meaningless 
regions of negative values are possible, particularly in the 
tails, when the mesh is too coarse or badly defined. Fi- 
nally, the application of the FE method to problems with 
more than 3 dimensions is an open question because of 
computer storage and speed requirements. 

Computer programs have been written and imple- 
mented for both formulations of the FE method: the 
Bubnov-Galerkin method, which uses equal weighting 
and shape functions, and the Petrov-Galerkin method in 
which these functions are different.  

Examining the results that have obtained for different 
stochastic systems with additive or both additive and 
multiplicative excitations, the following conclusions can 
be drawn: 1) The FE method is very feasible for solving 
the reduced FPK equation when the response states are 
few, say not more than three or four. If there are more 
states, programming is more cumbersome, and the com- 
puting times are unavoidably longer, not competitive 
with Monte Carlo simulation. 2) The steady-state statis- 
tical moments of the response are computed with small 
errors and a reasonable charge for computations. For two 
states, this is lesser than that required by a Monte Carlo 
simulation, and larger than that required by a moment 
equation approach. The FE method has the advantage 
that no closure schemes are required for computing the 
moments differently from the moment equation approach. 
3) If one wants to limit the charge for computations, the 
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integration domain must be kept into 4 - 5 standard 
deviations of the variables. In this way, it is not possible 
to get reliable values in the tails of the JPDF, in which 
negative values can be encountered. 4) The use of 
weighting functions different from shape functions has 
given encouraging results so that further study in this 
direction seems to be promising. 5) The FE method is 
proved to be feasible even for transient responses, but in 
this case the computing time increases dramatically as 
the equations are to be solved in every time instant. 


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