
Engineering, 2013, 5, 57-61 
http://dx.doi.org/10.4236/eng.2013.510B012 Published Online October 2013 (http://www.scirp.org/journal/eng) 

Copyright © 2013 SciRes.                                                                                 ENG 

Information Transfer Index-A Promising Measure of the 
Corticomusclar Interaction* 

Ping Xie1, Peipei Ma1, Xiaoling Chen1, Xiaoli Li1, Yuping Su2 
1Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China 

2Department of Rehabilitation, Qinhuangdao People’s Hospital, Qinhuangdao, China 
Email: pingx@ysu.edu.cn, 416954151@qq.com 

 
Received October 2012 

ABSTRACT 
It is generally believed that a major cause of motor dysfunction is the impairment in neural network that controls 
movement. But little is known about the underlying mechanisms of the impairment in cortical control or in the neural 
connections between cortex and muscle that lead to the loss of motor ability. So understanding the functional connec- 
tion between motor cortex and effector muscle is of utmost importance. Previous study mostly relied on cross-correla- 
tion, coherence functions or model based approaches such as Granger causality or dynamic causal modeling. In this 
work the information transfer index (ITI) was introduced to describe the information flows between motor cortex and 
muscle. Based on the information entropy the ITI can detect both linear and nonlinear interaction between two signals 
and thus represent a very comprehensive way to define the causality strength. The applicability of ITI is investigated 
based on simulations and electroencephalogram (EEG), surface electromyography (sEMG) recordings in a simple mo-
tor task. 
 
Keywords: Information Theory; Information Transfer Index; Corticomuscular Interaction 

1. Introduction 
The relationship and interdependence between simulta- 
neously recorded neurophysiological signals, give in- 
sights into the function of the systems that produce them. 
Since Conway discovered that oscillations at beta band 
(15 - 30 HZ) in the magnetoencephalogram (MEG) in 
humans are coherent with the surface electromyogram 
(sEMG) in 1995 [1]. Many researches have been done 
focusing on the functional relationship between neurons 
in the sensorimotor cortex and motor units in the effector 
muscle. To assess the interdependence between EEG and 
EMG, cross-correlation or coherence functions have been 
extensively used which can provide information on the 
linear correlation between two signals [2]. Coherence has 
been highly successful as a methodology for assessing 
functional coupling in neurosciences. Previous study has 
shown that increased corticomuscular coherence can im- 
prove motor performance during steady-state motor out- 
put [3] indicating that coherence may promote effective 
corticomuscular interaction. Studies have also revealed 
changes in coherence in some pathological conditions, 
such as stroke [4]. The methods give useful information 
in the study of corticomuscular interaction, but it has the  

intrinsic limitation that they are linear methods, although 
neural connectivity may be nonlinear. Thus linear me- 
thods are insufficient for the study of complex neurophy- 
siological data. Furthermore, they cannot give the direc- 
tion of information flow. To better understand the un- 
derlying mechanism and functional relevance of the sen- 
sorimotor neural network, it is important to know the 
direction of the information flow between EEG and 
EMG [5]. In view of detecting coupling direction, di- 
rected coherence was proposed based on Granger causal- 
ity methods [6]. But this is also a linear method. A po- 
tential new method should be nonlinear naturally leading  
to the application of information theoretic techniques. 
Information theoretic tools, such as entropy, address the 
issue of linearity and so far have numerous applications 
in neuroscience. First attempts to measure the relation- 
ship between two random variables were based on mu- 
tual information (MI), which can be interpreted as the 
amount of uncertainty about one signal that can be re- 
duced by observation of another. MI is based on proba- 
bility distributions and is sensitive to second and all 
higher order correlations. But conventional MI can not 
account for the direction of information flow, because it 
is a symmetric measure. Seung-Hyun Jin addressed this 
issue by defining the time-delayed mutual information 
(TDMI), which adds a time delay in one of the variables 
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[7]. Still it is based on static probability distribution thus 
didn’t accounting for system dynamics. Transfer entropy 
was proposed by Thomas Schreiber which is on the basis  
of transition (dynamic) probabilities computation [8]. 
Many researches have found it a model-free measure of 
effective connectivity for the neurosciences [9]. Goure- 
vitch used transfer entropy to detect the information flow 
between auditory cortical neurons [10]. The main advan- 
tage of this measure is that it is nonlinear and dynamic; 
furthermore it has directional sense to define information 
transfer. 

The author has proposed the concept of information 
transfer index (ITI) based on joint complexity entropy for 
studies on mechanical fault diagnosis [11]. Taking ad- 
vantages of transition (dynamic) probabilities in describ- 
ing dynamic information interaction process, modifica- 
tion is made to the original definition of ITI. In this paper 
the modified ITI based on transition probabilities has 
been introduced and used to describe the information 
transfer of different coupling models and experimental 
data. 

2. Method 
2.1. Calculation of Information Transfer Index 
Let X and Y be two signals recorded from two associated 
systems, the original ITI is defined as: 
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where ( )cH X , ( )cH Y  are the complexity entropy of 
signal X and Y, ( ),cH X Y  is their joint complexity 
entropy. This calculation can describe the amount of in- 
formation in X that shared by Y. Though it isn’t ac- 
counting for system dynamics and it cannot discriminate 
against common history and input signals. Taking ad- 
vantages of transition probabilities, the new definition is 
based on the concept that if the future of a signal Y is 
better predicted with the observation of the past and 
present of a signal X, then it is believed that there is in- 
formation transmitted from X to Y. To quantify the in- 
fluence of X on the system Y, the modified ITI is calcu- 
lated as: 

( ) ( )
( )+

| | ,
[0,1]

|

n m n
t u t t u t t

x y n
t u t

H y y H y x y
ITI

H y y
+ +

→

−
= ∈   (2) 

where ( )| n
t u tH y y+  is the entropy of the process Y con- 

ditional on its past. The ITI indicates the directed infor- 
mation interactions by measuring the uncertainty reduc- 
tion via conditional entropy. It quantifies how much the 
past of a process X influence the transition probabilities 
of another process Y. We are interested in the deviation 
from the following generalized Markov condition. 

( ) ( )| | ,n m n
t u t t u t tH y y H y x y+ +=          (3) 

where ( )1, ,m
t t t mx x x − +=  , ( )1, ,m

t t t my y y − +=  . When 
the transition probabilities or dynamics of Y are inde- 
pendent of the past of X, (3) is fully satisfied, and we 
infer an absence of directed interaction from X to Y. Oth- 
er way there is information flow from X to Y. ITI natu- 
rally incorporates directional and dynamical information, 
because it is inherently asymmetric and based on transi- 
tion probabilities. 

Sensible causality hypotheses are formulated in terms 
of the underlying systems rather than on the signals being 
actually measured. To overcome this problem recon- 
structing the full state space of a dynamical system from 
the observed signals is needed. In this work, we use de- 
lay-coordinates to create a set of vectors in a higher di- 
mensional space according to (4) to map our scalar time 
series into trajectories in a state space of high dimension. 

( ) ( ) ( ) ( )( )( ), , 2 ,..., 1dx x t x t x t x t dt τ τ τ= − − − −   (4) 

2.2. Parameter Selection 
This procedure depends on two parameters, the dimen- 
sion d and the delay τ of the embedding. The two para- 
meters considerably affect the outcome of the ITI esti- 
mates. For instance, a low value of d can not sufficiently 
unfold the state space of a system. On the other hand, a 
too large dimensionality may lower the estimation accu- 
racy and significantly enlarges the computing time. A 
popular option is to take the delay embedding τ as the 
auto-correlation decay time of the signal. To determine 
the embedding dimension, the Cao criterion offers an 
algorithm based on false neighbors computation [12].  

3. Simulation and EEG Experiment 
3.1. Simulation Data 
To test the ability of ITI to detect the direction of infor- 
mation flow and identify the relationship between two 
time series. We used four different models, i.e. indepen- 
dent, linear, quadratic and threshold models. 

1) The first test case we used two independent time se- 
ries X and Y generated by the following processes. 
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where the coefficients ia  and ib  are drawn from a 
normalized Gaussian distribution, tu  and tv  are inde- 
pendent Gaussian noise of unit variance. 

2) The second test case consisted in simulating a li- 
near causal interaction between the two systems. We 
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added to the internal dynamics of Y a term related to the 
past dynamics of X and γ  
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3) The third test case consisted in generating two qu- 
adratically coupled processes. 
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4) The last pair of time series is mediated by the thre- 
shold function reflecting the effective connectivity of 
special relevance in neuroscience applications. 
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3.2. EEG Experiment 
Our experiments were preformed on 12 volunteers (mean 
age 22 years ± 3 years). During the experiments the sub- 
ject performed knee flexion and extension. Scalp EEG 
and sEMG were recorded. Bipolar sEMG was recorded 
from quadriceps femoris and gastrocnemius (Figure 1). 
Recording diameter of each electrode was 8 mm and 
center-to-center interelectrode distance was 2 cm. A ref- 
erence electrode was placed on the skin overlying the 
tibial tuberosity. The EMG signals were amplified (1000); 
band-pass filtered (1 Hz - 500 Hz). Scalp EEG signals 
referenced to the common linked electrodes at the ear- 
lobes were recorded simultaneously during the task and 
were amplified (1000); band-pass filtered (0.3 Hz - 75 
Hz). 

We cut the trials into 10 s segments and manually dis- 
carded the segments trials contaminated with eye-blinks 
and sensor jumps. Signals from C3 and C4, which 
represents the sensorimotor cortex were selected for fur- 
ther investigation. Then functional relationship between 
motor cortex and muscle was analyzed from EEG, sEMG 
electrode pairs using the algorithm to compute informa-  

tion transfer index as described above. 

4. Result 
4.1. Simulation Studies 

1) Detection of information interactions for different 
coupling models (Figure 2). ITI correctly detected effec- 
tive connectivity (X→Y) for all three simulated coupling 
types (linear, threshold, quadratic) 30 trials were used to 
compute statistics. No false positives, i.e. significant re- 
sults for the direction Y→X, were observed. For these 
analysis we used a coupling constant γ  of 0.5 a delay 
time u of 20 samples prediction time u of 21 samples. 

2) ITI calculated as a function of coupling strength. 
The statistical evaluation shows that the ITI calculated 
via a range of coupling strength γ  from 0 - 1 reliably 
reflect the different coupling strength (Figure 3) for all 
three investigated coupling models (linear, threshold, 
quadratic). For these analyses, we used a delay time u of 
20 samples prediction time u of 21 samples. 

3) Detection of interaction delay. 30 trials from the 
quadratically coupled model, the coupling strength γ  
was chosen as 0.5, the interaction delay δ was set to 25 
samples and prediction time u was scanned from 1 to 50 
samples (Figure 4). 
 

 
Figure 1. EEG recorded together with EMG during the 
task. 

 

 
Figure 2. Averaged ITI calculated from different test models. Coupling strength γ = 0.5; delay time δ = 20; prediction time u 
= 21. 
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Figure 3. Averaged ITI calculated as a function of coupling strength from the three different coupling models. Coupling 
strength was set from 0 to1. 
 

 

Figure 4. ITI calculated as a function of prediction time 
from a quadratically coupled model, the coupling strength γ 
was chosen as 0.5, the interaction delay δ was set to 25 samples 
and prediction time was scanned u from 1 to 50 samples. 

4.2. ITI between EEG and EMG 
As expected, ITI during the movement was significantly 
higher than the non-moved period (Figure 5). Figure 6 
shows the ITIs calculated in different frequency bands 
(beta band and gamma band). The information is not 
only travels from cortex to muscle but also back from 
muscle to cortex. The descending flow is expected as the 
motor command and the other way contains the sensory 
feedback which may allow the cortex to measure the 
states of the limb. 

5. Conclusions 
In this study, we introduced the information transfer in- 
dex as a model-free and nonlinear method to detect in- 
formation flow between two time series. The ability to 
detect linear and nonlinear information flow was tested 
on simulated data generated from different models, that 
is, independent, linear, threshold and quadratic models. 
The result shows that our method reliably detects the 
causal relationship between two time series correctly. 
And the ITI shows the ability of reflecting the coupling 
delay and strength. In conclusion, information transfer 
index or ITI has promising features that should make it 
useful for studies on corticomusclar interaction.  

The next step of this work is to investigate information 
transmission mechanism in sensorimotor system in pa-  

 
Figure 5. A segment of simultaneously recorded EEG 
sEMG pair and ITI calculated between them. 
 

 
Figure 6. The upper graph presents the coherence between 
the EEG and sEMG, and the below are the ITIs calculated 
in different frequency. 
 
tients with various neurological disorders such as stroke, 
peripheral nerve injury. This method will be a helpful 
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addition in evaluating the integrity and functionality 
neural circuits. 
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