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ABSTRACT 
Most existing reconstruction algorithms for photoacoustic imaging (PAI) assume that transducers used to receive ultra- 
sound signals have infinite bandwidth. When transducers with finite bandwidth are used, this assumption may result in 
reduction of the imaging contrast and distortions of reconstructed images. In this paper, we propose a novel method to 
compensate the finite bandwidth effect in PAI by using an optimal filter in the Fourier domain. Simulation results 
demonstrate that the use of this method can improve the contrast of the reconstructed images with finite-bandwidth ul- 
trasound transducers. 
 
Keywords: Photoacoustic Tomography; Finite Bandwidth Effect; Optimal Filter 

1. Introduction 
Photoacoustic imaging (PAI) is a promising medical im- 
aging modality that has great potential for a wide range 
of clinical imaging applications [1,2]. PAI is a hybrid 
imaging method that combines the high contrast of opti- 
cal imaging and the high spatial resolution of ultrasonic 
imaging. Due to its noninvasive nature, it is a technique 
which is harmless for the human body [2]. 

In PAI, pulsed laser energy is delivered to an object 
and the thermoacoustic effect will result in the generation 
of the ultrasound wave. Ultrasound signals are then de- 
tected by the scanning ultrasound transducers. With these 
received signals, an image reconstruction algorithm is 
used to reconstruct the image of an object’s optical ab- 
sorption distribution.  

A variety of research has been done on the field of 
image reconstruction algorithms [3-10]. Most of these 
algorithms are based on the assumption that infinite- 
bandwidth transducers are employed to receive ultra- 
sound signals. Without incorporating characteristics of 
ultrasound transducers in the imaging reconstruction 
model, the resolution and the contrast of reconstructed 
images will be significantly degraded. Several imaging 
models have been established to incorporate physical 
characteristics of ultrasound transducers [11,12]. How- 
ever, none of them takes the finite bandwidth effect of 
ultrasound transducers into account. 

In this paper, we propose a novel image reconstruction 
algorithm that incorporates the finite bandwidth charac- 
teristics of ultrasound transducers. An optimal filter is 
designed to deconvolve the transducer’s impulse re- 
sponse of the finite bandwidth at each imaging point. 
Through the numerical simulation, the proposed algo- 
rithm is compared to those reconstruction algorithms 
assuming finite-bandwidth ultrasound transducers. 

2. Theory and Method 
2.1. Basic Principles of PAI 
In this study, we intend to solve the problem with 2D 
circular-scanning PAI mode. In this mode, a short pulse 
is used to illuminate the imaging object from the top, and 
an ultrasound transducer is circularly scanned around the 
object to record the ultrasound data. The relation between 
the optical absorption distribution and the generated ul- 
trasonic waves can be deduced as [3]: 
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where c is the speed of sound, β  is the volume thermal 
expansion coefficient and Cp is the specific heat. A(r) is 
the unknown absorption distribution and I(t) is the illu- 
mination function. A solution to this equation can be 
obtained by the use of Green’s function. In the case of 
illumination with a short pulse, p(r, t) can be deduced as: 
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Equation (2) represents an idealized imaging model for  
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PAI. The image reconstruction problem is to determine 
an estimate of A(r) from the knowledge of p(r, t). A va- 
riety of image reconstruction algorithms [3-10] has been 
developed for the inversion of (2). However, those algo- 
rithms neglect the response characteristics of the trans- 
ducer. Therefore they may produce significant image 
blurring and low contrast in the reconstructed images. 

2.2. Finite Bandwidth Effect of a Transducer 

Most of PAI reconstruction algorithms are based on the 
assumption that the bandwidth of ultrasonic transducers 
which are employed to receive signals is infinite. How- 
ever, actual ultrasound transducers are all with the finite 
bandwidth. The finite bandwidth effect of transducers 
can be expressed as a convolution of received signals and 
an impulse response. The actual projection data can be 
expressed as: 

0 0( , ) ( , ) ( , )idealp r t p r t h r t= ∗ ,          (3) 

where the pideal(r0,t) is the idealized projection data based 
on the assumption that the transducers have the infinite 
bandwidth, p(r0,t) is the actual projection data obtained 
by the transducers, h(r0,t) is the impulse response of the 
transducer related to its bandwidth, * denotes a one-di- 
mensional temporal convolution. 

Figure 1 compares ultrasonic signals obtained by an 
idealized transducer and a finite-bandwidth transducer. 
Ultrasonic signals are excited by a point optical absorber. 
Figure 1 illustrated that the finite-bandwidth effect may 
cause the reduction of the signal density and the convo- 
lutional noise. These are major reasons of image blurring 
and low contrast in reconstructed images if image recon- 
struction algorithms fail to take the finite-bandwidth ef- 
fect into account. 
 

 
Figure 1. A comparison between ultrasound signals obtained 
by an idealized transducer and a finite-bandwidth trans- 
ducer. 

2.3. Compensating for the Finite Bandwidth 
Effect 

Based on (3), the purpose of compensation for the finite 
bandwidth effect is to obtain the pideal(r0,t). As the re- 
ceived signals are non-stationary signals, we use the 
short time Fourier transform (STFT) to transform the 
data into the Fourier domain. Here we take the additive 
noise into account. Equation (3) is transformed as: 

0 0( , ) ( , ) ( , )idealP r P r H r eω ω ω= ⋅ +         (4) 

where e is the additive noise, H(r, ω)is the bandwidth of 
the transducer, P(r0, ω) and Pideal(r0, ω)is the Fourier 
spectrum of the actual projection data and the idealized 
data. 

An optimal filter T can be derived to obtain received 
signals where the finite bandwidth effect is compensated. 

0 0( , ) ( , )idealP r T P rω ω= ⋅             (5) 

In this study, this optimal filter T is designed to mi- 
nimize the error between P(r0, ω) and Pideal(r0, ω). At the 
same time, the optimal filter should have good robustness 
against the additive noise. We can easily get the band- 
width characteristics of a transducer from its data sheet 
or from the physical meansurement experiment. In the 
Fourier domain, its distribution function is Gaussian. The 
optimal filter T can be found: 

21/ (1 / )T φ= + ∆ ,               (6) 

where ϕ  is a parameter determine the noise suppres-
sion effect and ∆  a Gaussian kernel function which can 
be expressed as: 
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Here μ is the mean of the function, σ is the variance of 
the function. Both of those parameters can be obtained 
from the bandwidth characteristics of the transducer. 

Once we obtained the actual projection data, we can 
reconstruct the image with the compensated data. 

3. Results and Discussion 
Simulations are performed to evaluate the efficacy of this 
method on the improvement of resolution and contrast of 
the reconstructed image. The comparison are made 
among this method and those reconstruction algorithms 
assuming finite-bandwidth ultrasound transducers. All 
simulations are done using the K-wave toolbox [13,14] 
of MATLAB. 

In this simulation, three optical absorbers with differ- 
ent radius and optical absorption density are located in 
the test image. Its original optical energy distribution is 
showed in Figure 2. We set the radius of scanning circle 
as 250 pixels and assume the speed of sound consistent  
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Figure 2. The original optical energy distribution of the si-
mulation image. 
 
as 1500 m/s. The simulated transducer has a center fre- 
quency of 5 MHz with 80% bandwidth. 180 scanning 
angels in 360-degree full view are used to obtain the 
projection data. 

3.1. Results from Noiseless Simulation Data 
The computer-simulated noiseless data are used to eva- 
luate the efficacy of this method. The image recon- 
structed without compensation is shown in Figure 3(a) 
while the image reconstructed by using this method is 
shown in Figure 3(b). 

As expected, the simulation results show that the im- 
age reconstructed with compensated data has improved 
the contrast compared with the image reconstructed 
without compensation. Figure 3(a) contains negative 
values and is shown in a different gray scale from that 
employed in Figure 3(b). The profiles along the radial 
directions are shown in Figure 4 in order to compare the 
detail qualities of reconstructed images clearly. In Figure 
4, the solid and dashed lines represent pixel profiles of 
the reconstructed image without compensation and after 
compensation respectively. It clearly shows that the con- 
trast of the reconstructed image after compensation is 
better than that without compensation. 

The peak signal-to-noise ratios (PSNRs) of recon- 
structed images are adopted with the original image as 
the standard in order to provide the numeric quantifica- 
tion of results. PSNR is defined as: 
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where f is the pixel-value of the reconstructed image and 
r is the pixel-value of the original image. The size of the 
image is x yN N . 

The PSNR value of the reconstructed image with 
compensation is 50.18 while that without compensation 
is 17.33. This result demonstrates that the reconstructed 
image after compensation is closer to the original image. 

 
(a) 

 
(b) 

Figure 3. Images reconstructed from the noiseless data (a) 
without compensation (b) after compensation. 
 

 
Figure 4. The radial pixel profiles of Figure 3. 

3.2. Results from Noisy Simulation Data 
We simulate the noisy data by adding the white noise to 
received signals. This simulation is performed to eva-
luate the robustness of this method against the additive 
noise. The image with the background noise is shown in 
Figure 5. The image reconstructed without compensation 
is shown in Figure 6(a) while the image reconstructed by 
using this method is shown in Figure 6(b). 

The result clearly shows that this method can also im- 
prove the contrast of the reconstructed image with the  
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Figure 5. The simulation image with the background noise. 

 

 
(a) 

 
(b) 

Figure 6. The images reconstructed from the noisy data (a) 
without compensation (b)after compensation. 
 
noisy data. This seems to be a robust algorithm. The pro- 
files along the radial directions are shown in Figure 7. In 
Figure 7, the solid and dashed lines represent the pixel 
profiles of the reconstructed image without compensation 
and after compensation respectively. It clearly shows that 
the contrast of the reconstructed image after compensa- 
tion is better than that without compensation. It is also 
seen that the density of the noise is weaker than that 
without compensation. Through this simulation, the re- 
sult shows that this method can reconstruct images with  

 
Figure 7. The radical pixel profiles of Figure 6. 

 
lower noise levels, meanwhile the algorithm is robust.  

4. Conclusion 
In this paper, we propose a method to compensate the 
finite bandwidth effect of the ultrasound transducer. It is 
seen from simulation studies that the proposed method 
has good robustness and can effectively improve the im- 
age contrast for PAI with finite-bandwidth transducers. 
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