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ABSTRACT 

Runge-Kutta scheme is one of the versatile numerical tools for the simulation of engineering systems. Despite its wide 
and acceptable engineering use, there is dearth of relevant literature bordering on visual impression possibility among 
different schemes coefficients which is the strong motivation for the present investigation of the third and fourth order 
schemes. The present study capitalise on results of tedious computation involving Taylor series expansion equivalent 
supplemented with Butcher assumptions and constraint equations of well-known works which captures the essential 
relationship between the coefficients. The simulation proceeds from random but valid specification of two out of the 
total coefficients possible per scheme. However the remaining coefficients are evaluated with application of appropriate 
function relationship. Eight and thirteen unknown coefficients were simulated respectively for third and fourth schemes 
over a total of five thousand cases each for relevant distribution statistics and scatter plots analysis for the purpose of 
scheme comparison and visual import. The respective three and four coefficients of the slope estimate for the third and 
fourth schemes have mix sign for large number of simulated cases. However, none of the two schemes have above three 
of these coefficients lesser than zero. The percentages of simulation results with two coefficients lesser than zero domi-
nate and are respectively 56.88 and 77.10 for third and fourth schemes. It was observed that both popular third and 
fourth schemes belong to none of the coefficients being zero classification with respective percentage of 0.72 and 3.28 
in total simulated cases. The comparisons of corresponding scatter plots are visually exciting. The overall difference 
between corresponding scatter plots and distribution results can be used to justify the accuracy of fourth scheme over its 
counterpart third scheme. 
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1. Introduction 

The versatility of Runge-Kutta scheme as a numerical 
tool in engineering (most especially nonlinear dynamics) 
is well acknowledged among researchers in this field. [1] 
has employed Runge-Kutta scheme in modelling Lorenz 
system. In the authors’ paper, the classical fourth-order 
Runge-Kutta was modified to obtain new methods which 
are of order five. These techniques were tested on the 
Lorenz system involving chaotic and nonchaotic charac-
teristics. The results obtained shows that Lorenz model is 
highly sensitive to the initial conditions of the system. 
The paper concluded that modified fifth-order Runge- 
Kutta method appears to be the best method to approxi-
mate Rayleigh-Benard convection. This is attributed to 
its high accuracy. [2] has also demonstrated the versatil-
ity of the Runge-Kutta scheme. In their paper, an em- 

bedded Runge-Kutta with orders 3 and 4 with the aim to 
deliver an estimation of the local error for adaptive step- 
size control purposes in the interaction picture method. 
The results of their study showed that the embedded 
Runge-Kutta method 4(3) with interaction picture pre-
serves the features of the RK4-IP method and provides a 
local error estimate at no significant cost. The outcome 
of their study is of immense advantage in step-size con-
trol in the interaction picture method. A recent developed 
Runge-Kutta scheme has been applied in non-slip rolling 
[3]. This method is referred to as Accelerated Runge- 
Kutta Methods (ARM). This method benefits from pre-
cise parameter selection technique that increases their 
order of accuracy for some problems. The paper showed 
that an efficient and effective Accelerated Runge-Kutta 
Method capable of modelling complex nonlinear me-
chanical systems has been developed. A parametric study  
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of nonlinear beam vibration resting on linear elastic 
foundation was carried out by [4]. A well known Duffing 
oscillator was analyzed numerically using Runge-Kutta 
scheme. The result of the study shows that the stretching 
potential energy was responsible for generating the cubic 
nonlinearity in the system dynamic. A low-dispersion 
and low-dissipation implicit Runge-Kutta has been in-
troduced by [5]. This new implicit Runge-Kutta scheme 
is of great advantage because high order accuracy is 
achieved with fewer stages when compared to the stan-
dard explicit Runge-Kutta schemes. This method has 
high application potentials in wall-bounded flows with 
solid boundaries in the computation as well as sound 
generation by reacting flows. Visual tools have in no 
small measure contributed immensely in exploring dy-
namics of nonlinear systems. [6] carried out a study on 
the visual effects of filtered chaotic signals. It was under-
stood from the paper that filtered chaotic signals is capa-
ble of exhibiting an increase in observed fractal dimen-
sion. The approach towards providing an interesting in-
sight into this dynamic is through the use of computer 
animation and three-dimensional ray-tracings. [7] in his 
paper reported how fuzzy dynamic system can illustrate 
chaotic phenomena and chaotic dynamics in comparison 
to other nonlinear systems. It is concluded from the paper 
that fuzzy chaotic dynamic model of a cubic map results 
in the same (visual effects) as bifurcation diagrams, and 
that it reveals stable equilibrium points, periodic-dou- 
bling and chaotic attractors. This study has extensively 
justified the numerous benefits of visual effects. The 
possibilities for describing sitting postural control using 
nonlinear method have been investigated by [8] during a 
long-term driving. The results obtained show that con-
trary to conventional analysis procedures, nonlinear mea- 
sures demonstrated the capability of identifying a thresh-
old behaviour describing the change in discomfort. The 
visual recurrence plots showed an outstanding change in 
the underlying dynamics after one hour of driving. [9] 
explained that the challenge of many other methods used 
for analyzing chaotic systems was that they depicts local 
nature and exhibited only limited information about a 
group of parameters. This challenge motivated these au-
thors in exploring visualization technique on the basis of 
Mandelbrot set methodology. This help immensely in 
giving the overall view of chaotic systems dynamic per-
formance in the parameter space. A periodic parametric 
perturbation has been designed for controlling and cha-
otification from a three-dimensional autonomous system 
[10]. Lyapunov exponents and bifurcation diagram were 
used as visual aids for explaining the abundant dynamic 
characteristics of a three-dimensional system. The au-
thors’ paper has shown that when there is a small para-
metric perturbation, highly unique dynamic system be-
haviour will be experienced. A 4-dimensional Chua sys-

tem has been characterized by [11] using Lyapunov ex-
ponent diagrams. With the introduction of a feedback 
controller into the system, both the largest and the second 
largest Lyapunov exponents were considered in Lya- 
punov exponent diagrams. [12] reported that in exploring 
the nonlinear dynamics of a periodically Driven Duffing 
resonator coupled to a Van der pol oscillator, bifurcation 
diagram was adopted as the visual aids. The behaviour of 
the coupled system as well as the dependence of the sys-
tem dynamics on the parameter have been studied using 
bifurcation analysis. [13] focused on simulation and vis- 
ualisation of chaotic systems. The study implemented 
fundamental algorithms from the field of chaotic system 
dynamics such as the reconstruction of the system tra- 
jectory in the appropriate embedding space, and the es- 
timation of Lyapunov exponents and the fractal dimen- 
sion. The bifurcation diagrams produced provides a sig- 
nificant visual effect for identifying chaotic regions in 
the parameter space.  

Although the available literature on the use of Runge- 
Kutta scheme for engineering applications is inexhausti-
ble; the dearth of relevant literature bordering on visual 
impression possibility among different schemes coeffi-
cients is a subject of concern. This strongly motivated the 
present study of the third and fourth order schemes. 

2. Methodology 

[14] refers, the numerical method of Runge-Kutta is de-
voted to solving ordinary differential equations of the 
general form given by Equation (1). However the step by 
step numerical solution of Equation (1) is given by Equa-
tion (2), with   being an incremental weighting func-
tion. The general form for    is given by Equation (3). 
According to Equation (3), the slope estimate of   is 
used to extrapolate from an old value  to a new value iy

1iy   over a step size h.  

d
,

d

y f x y
x
          (1) 

1i iy y h            (2) 

1 1 2 2 n nc K c K c K              (3) 

The functions 1K  to 4K  for the third and fourth or-
der Runge-Kutta schemes are given by Equations (4) to 
(7). However, the equivalent of Equation (2) for the third 
and fourth schemes is given respectively by (8) and (9). 

1 ,i i K f x y        (4) 

 2 2 2,i i 1 1K f x a h y b K         (5) 

 3 3 31 1 32,i i 2K f x a h y b K b K          (6) 

 4 4 41 1 42 2 43 3,i iK f x a h y b K b K b K           (7) 
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1 1 1 2 2 3i i 3y y h c K c K c K               (8) 

 1 1 1 2 2 3 3 4 4i iy y h c K c K c K c K              (9) 

[15] executed the tedious computation of the unknown 
constant coefficients in Equations (4) to (9) using the 
equivalent relationship with the corresponding coefficients 
in Taylor series expansion of the function  ,f x y  to 
the nth-order terms. The computation was aided by 
Butcher simplifying assumption implied by Equation 
(10).  

 
1

1 , 2,3,
s

i ij j j
i

c b c a j


   4    (10) 

As such the coefficients definitions for the third and 
fourth order schemes are (11) to (16) and (18) to (28) 
respectively subject to arbitrary choices of 20.0 1.0a   
and . 30.0 1.0a 

2.1. Third Order Scheme  
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31 3 32b a b                 (16) 

The constraint conditions for Equations (11) to (16) 
are detailed in Equation (17). 
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2.2. Fourth Order Scheme 
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The constraint conditions for Equations (18) to (28) 
are detailed in Equations (29) and (30). 

2 3 2 3 4

1
0,1, ; 0,1; ; 0

2
a a a a c          (29) 

  2 3 2 36 4 3a a a a 0          (30) 

2.3. Simulation Parameters 

The simulation parameters included arbitrarily selected 
random number generation seed value of 9876 which 
drives the random selection of 5000 distinct combination 
of 2 30.2 , 0.8a a  . The success criterion for a trial is 
that the absolute value of all the coefficients be less or 
equal to 5.0. 

3. Results and Discussions 

The simulation results were obtained using FORTRAN 
90 while the graphical package is Microsoft Excel 2003. 
The sample results for the third and fourth order Runge- 
Kutta scheme are shown in Tables 1 and 2. 

Tables 1 and 2 refers. It is observed that at least one of 
the coefficients ( 1c  to 3c ) require in Equation (8) is less 
than zero. Similarly, at least one of the coefficients ( 1  
to 4 ) require in Equation (9) is also less than zero. 
However Table 3 shows that none of the two schemes 
have above three of these coefficients lesser than zero. 
The percentage of simulation results with two coeffi-
cients lesser than zero are respectively 56.88 and 77.10 
for third and fourth order schemes. It is interesting to 
note that both popular third and fourth order Runge- 
Kutta schemes belong to none of the coefficients being 
zero classification. 

c
c

Figures 1 to 5 show dramatic visual differences be-
tween corresponding scatter plots with the exception only 
in Figure 2 in which the plots almost agreed perfectly. 
Figures 3 and 4 look visually identical. The visual ap-
pearance of Figures 6(a) to (c) resemble distorted saddle 
which is a manifestation of nonlinear dependence of b41, 
b42 and b43 on a2, a3 and a4 as independent variables  
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Table 1. Selected simulation results for the third order 
scheme. 

Coefficients 
S/N 

2a  3a  21b  31b 32b  1c  2c 3c

1 0.33 0.67 0.33 0.44 0.22 −1.25 0.01 2.23

2 0.78 0.53 0.78 0.13 0.40 −0.21 0.67 0.54

3 0.74 0.64 0.74 0.34 0.29 −0.06 0.29 0.77

4 0.48 0.76 0.48 0.38 0.37 −0.38 0.45 0.94

5 0.67 0.60 0.67 −1.33 1.93 −0.23 1.10 0.13

6 0.58 0.47 0.58 0.68 −0.20 −0.82 3.23 −1.42

7 0.31 0.61 0.31 0.44 0.17 −1.66 −0.54 3.20

8 0.62 0.49 0.62 0.99 −0.50 −0.64 2.18 −0.54

9 0.80 0.68 0.80 0.48 0.20 0.08 −0.12 1.03

10 0.36 0.75 0.36 0.43 0.31 −0.87 0.39 1.48

11 0.78 0.34 0.78 −0.11 0.45 −0.88 1.40 0.48

12 0.57 0.61 0.57 0.52 0.09 −0.43 −1.71 3.14

13 0.36 0.80 0.36 0.42 0.38 −0.73 0.52 1.21

14 0.66 0.58 0.66 2.58 −2.00 −0.31 1.44 −0.13

15 0.64 0.68 0.64 0.35 0.33 −0.15 0.37 0.78

16 0.41 0.74 0.41 0.42 0.32 −0.64 0.37 1.27

17 0.36 0.77 0.36 0.43 0.34 −0.83 0.45 1.38

18 0.50 0.56 0.50 0.49 0.07 −0.78 −3.08 4.86

19 0.21 0.66 0.21 0.44 0.21 −2.62 −0.09 3.70

20 0.21 0.74 0.21 0.45 0.29 −2.16 0.43 2.72

 
(see Equations (26)-(28)) while there is no corresponding 
figures for the third order scheme. Similarly Figures 7(b) 
and (c) look identical to each other while Figure 7(a) is a 
plane mirror image of Figure 7(b). The region of valid 
coefficients pair combination is very small compared to 
total available space region for all the plots in Figures 1 
to 7. Despite this space bound constraint majority of the 
plots are noted for their visual excitement. The observed 
visual differences in these plots can be a good explana-
tion for the noted computation accuracy potential of 
fourth scheme over its counterpart third order scheme. 

4. Conclusion 

This study have shown that the coefficients of the slope 
estimate for the third and fourth schemes have mix sign 
for large number of simulated cases. However, none of  

Table 2. Selected simulation results for the fourth order 
scheme. 

(a) 

Coefficients 
S/N

2a  3a  4a  21b  31b  32b  41b  

1 0.33 0.67 1.00 0.33 −0.34 1.01 1.01

2 0.78 0.53 1.00 0.78 0.38 0.15 −0.09

3 0.52 0.43 1.00 0.52 −0.61 1.04 −0.18

4 0.74 0.64 1.00 0.74 0.55 0.09 0.46

5 0.48 0.76 1.00 0.48 −4.04 4.80 1.14

6 0.67 0.60 1.00 0.67 0.51 0.09 0.24

7 0.58 0.47 1.00 0.58 0.20 0.27 −0.23

8 0.31 0.61 1.00 0.31 −0.16 0.76 0.81

9 0.46 0.21 1.00 0.46 1.00 −0.79 −0.05

10 0.53 0.26 1.00 0.53 −0.79 1.05 −0.54

11 0.62 0.49 1.00 0.62 0.28 0.21 −0.24

12 0.80 0.68 1.00 0.80 0.60 0.08 0.69

13 0.41 0.22 1.00 0.41 0.48 −0.27 0.46

14 0.39 0.25 1.00 0.39 0.46 −0.21 0.47

15 0.36 0.75 1.00 0.36 −0.68 1.43 1.87

16 0.78 0.34 1.00 0.78 0.17 0.17 −3.48

17 0.57 0.61 1.00 0.57 0.79 −0.17 0.25

18 0.36 0.80 1.00 0.36 −0.94 1.74 4.05

19 0.29 0.50 1.00 0.29 0.06 0.44 0.73

20 0.66 0.58 1.00 0.66 0.47 0.11 0.12

(b) 

Coefficients 
S/N 

42b  43b  1c  2c  3c  4c  

1 −1.01 1.00 0.88 −0.38 0.37 0.12 

2 −0.74 1.82 −0.08 0.12 0.76 0.19 

3 0.72 0.47 1.24 −0.54 0.13 0.17 

4 −1.61 2.15 −2.16 1.18 1.70 0.29 

5 −0.26 0.12 1.39 −0.61 0.08 0.15 

6 −2.45 3.21 −2.07 1.12 1.73 0.21 

7 −0.40 1.62 0.50 −0.17 0.50 0.16 

8 −1.05 1.24 0.69 −0.28 0.45 0.14 

9 1.70 −0.65 1.74 −0.77 −0.14 0.18 

10 1.07 0.47 1.33 −0.59 0.10 0.16 

11 −0.67 1.91 0.27 −0.05 0.62 0.16 

12 −1.09 1.40 −3.01 1.61 1.96 0.45 

13 2.63 −2.09 2.35 −1.04 −0.50 0.19 

14 3.28 −2.75 2.73 −1.24 −0.68 0.19 

15 −1.73 0.86 1.05 −0.46 0.32 0.09 

16 −0.06 4.54 0.81 −0.35 0.47 0.07 

17 3.05 −2.30 3.63 −1.73 −1.08 0.18 

18 −4.13 1.08 1.10 −0.49 0.33 0.06 

19 −1.71 1.98 0.18 −0.01 0.66 0.17 

20 −2.04 2.92 −1.29 0.73 1.36 0.20 

Copyright © 2013 SciRes.                                                                                 ENG 



T. A. O. SALAU, O. O. AJIDE 534 

Table 3. Distribution statistic of 5000 simulated (  to ) 

and (  to ). 
1c 3c

1c 4c

Third Scheme Fourth Scheme Number of 

1c  to  4c

 0  Count Percentage of Count Count Percentage of Count

None (Zero) 36 0.72 164 3.28 

1 2844 56.88 3855 77.10 

2 2120 42.40 981 19.62 

3 0 0.00 0 0.00 

4 NA NA 0 0.00 

Total 5000 100.00 5000 100.00 

NA = Not applicable. 
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cases. The comparisons of corresponding scatter plots are 
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tween corresponding scatter plots and distribution results 
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