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ABSTRACT 

In this paper a new approach for increasing the performance of burst error correction that occurs during data transmis-
sion in low-frequency channels with pulse-code modulation is proposed. The specific technique is based on the 
weighted checksum which is computed with arithmetic operations. It is shown that the solution proposed not only 
guarantees the correction of any single error burst but it also lowers the computational complexity so that procedure 
correction time does not depend on controlled data block length. Finally, the use of the algorithm is illustrated via the 
thorough presentation of an example of erroneous data transmission. 
 
Keywords: Burst-Errors; Reed Solomon; Arithmetic Weighted Checksum 

1. Introduction 

The development of the information transmission tech-
nologies in the computer networks and in the telecom-
munication systems is inseparably connected with the 
problem of integrity and of ensuring high effectiveness 
of error detection and correction of errors which occur 
during data transmission. 

The dynamic increase in the speed of information 
transmission in the buses of computer systems and the 
channels of computer networks brings about stringent 
requirements for the performance of the hardware im-
plementation of the error detection and correction algo-
rithm: it must ensure the realization of the operations 
which are connected with the rate of error detection for 
data transmission.  

A continuous increase in the speeds of data transmis-
sion in the telecommunications network systems is re-
sulted in change of error character and effectiveness cri-
terions of error detecting and correction. Today the main 
cause of data transmission errors is external impulse 
noise [1]. Data transmission speeds up the external im-
pulse noise’s influence on few adjacent channels signals. 
In consequence, the group of adjacent bits of transmitted 
data can be distorting. Such group of bits is named burst 
of errors. So, today bursts of bits distortions become 
dominating type of errors [1]. 

On the other hand, the dynamic increase of the data 
transmission speed has changed the importance such of 
tradition error control effectiveness criterions as number  

control bits and possibilities of detecting and correction 
errors in rate data transmission. It is clear that in modern 
condition of significant speeding up of data transmission, 
its increasing of the importance of computation complex-
ity of detecting and correction errors procedure which 
impose the possibilities of real time error control. On the 
contrary, the modern tendency for increase of speed and 
values of data transmission decreases the importance of 
such tradition error control effectiveness criterions as 
number control bits. 

Thus, the problem of detecting and correcting burst of 
errors in rate data transmission is very important and 
requires attention for the current and future technological 
developments in computer and telecommunications sys-
tem. This specifies the urgency and the practical impor-
tance of the development of new methods and means to 
speed up the burst errors detection and correction proce-
dures. 

2. Burst Error Analysis and Existing  
Techniques for Their Correction 

The errors that arise during data transmission in low- 
frequency channels with pulse-code modulation are caused 
by two types of sources: internal and external. Among 
the internal data transmission error sources are thermal 
noise that is present in every electronic device. Noise or 
interference signals are caused by events external to the 
transmission path (solar flares affecting satellite elec-
tronics or radio waves, heavy electrical machinery etc.), 
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frequency, amplitude, or phase distortion of the trans-
mitted signal [2]. 

Unlike the errors that are caused by thermal noise, all 
other sources tend to give errors that formulate bursts. 
About the frequency of the error events only empirical 
conclusions can be drawn by testing under real condi-
tions. 

The term burst errors suggest that those errors are cor-
related, i.e. if one bit is erroneous, it is quite likely that 
the adjacent bits have also been corrupted. When one 
refers to the term burst error of size m, what is meant is 
that the distance in bits from the first to the last error in 
the frame is at most m – 1 while the intermediate bits 
may or may not be corrupted. 

Indeed, let the externally produced noise correspond to 
a maximum duration tn. One thing worth mentioning is 
that for the same bit error rate, burst errors are in princi-
ple easier to deal with than random errors. For example, 
consider the case of frames consisted of 1000 bits and an 
overall error rate of 1 in 1000. If all errors were random, 
almost all frames would be corrupted. However, if deal-
ing with burst error events of size 1000, only 1 frame in 
1000 would be corrupted [3]. The disadvantage that 
comes with the appearance of burst error events is that 
error detection and correction as well as analytical mod-
eling of the specific patterns is much more difficult to 
achieve compared with the case of random errors. 

When random error is the case, the theoretical model 
of the less memory Binary Symmetric Channel (BSC) is 
being used. The BSC is not appropriate for the descrip-
tion of burst error events as a channel with memory is 
necessary [4]. 

The probability that two burst errors occur is lower 
than the probability of the occurrence of a singular burst 
error. Thus, burst error multiplicity is usually considered 
to be equal to one in the state of the art. 

With the use of special coding it is possible to distin-
guish two approaches for the control of the appearing 
errors: 
 The error detection by special codes and their correc-

tion by retransmitting the data block (ARQ—Auto-
matic Repeat Request); 

 The correction of the appearing errors by applying 
correcting codes without the repeated transmission 
(FEC—Forward Error Correction). 

The choice of the appropriate technology is deter-
mined by the features of the data transmission channel as 
well as the particularities of the specific use. Thus, in 
wired systems for digital data transmission, in which the 
intensity of errors is several orders lower in comparison 
with the wireless channels, the use of ARQ is considered 
to be more effective. On the contrary, in the wireless 
channels the prevailing source of the transmitted errors is 
the externally produced noise and in this case the inten-

sity of the appearing errors is high enough to consider the 
application of FEC technologies to be more preferable. 

In general, ARQ technology is being preferred over 
FEC technology as the latter demands more complicated 
decoding hardware and greater redundancy. This makes 
sense if one takes into consideration that FEC technology 
demands not only the knowledge of the occurrence of at 
least one error but also of the exact number of erroneous 
bits and of course of the exact positions of the corrupted 
bits in the affected block. Therefore, the drawbacks of 
error correction codes include the relatively large volume 
of control information, the complexity of the procedures 
and the decoding process. As a matter of fact, the number 
of control bits increases exponentially as the multiplicity 
of errors that are required to be corrected increases. Ad-
ditionally, in the case of correction codes the computa-
tions for the syndrome calculation take place even if no 
corruption has occurred and that causes a considerable 
cost in complexity [3]. 

For burst error correction usually the cyclic codes are 
utilized. Among cyclic codes which are peculated to one 
burs error correction, Fire, Abramson and Melay-Abram- 
son codes [2] can be mentioned. At the same time the 
most widespread is Reed-Solomon code [4] which is able 
to correct few burst errors. In practice, the type Reed- 
Solomon code for one burs error correction is most fre-
quently used. 

Reed-Solomon code is non-binary codes suggests the 
division of the transmitted block into n symbols, each of 
which will be consisted of m bit. With the use of 2 × h 
control symbols a Reed-Solomon code allows the correc-
tion of every distorted bit in h symbols. However the 
computational complexity of the implementation of the 
demanded calculations is unjustifiably large. From the 
mathematical point of view, the procedure of distorted 
symbol location consists of solving of nonlinear system 
equations. In fact according to Reed-Solomon code tech- 
niques for this nonlinear system equations solving use 
enumeration: finding of nonzero components error loca- 
tion vector executed by examining all n variants. It 
means that computational complexity of procedures cod- 
ing, decoding and error correction depend on transmitted 
block length.  

Usually, both encoding and decoding procedures are 
implemented with specific devices and since Reed-Solo- 
mon codes are cyclic, encoding as well as error control 
are implemented in a sequential way, namely without the 
ability of parallel computations. Finally, since Reed- 
Solomon codes compute the syndromes whether there is 
an error or not, computational cost increases even more. 

Let us consider that the burst error is localized in a 
specific symbol. This is the exact case where code Reed- 
Solomon theoretically minimizes the number of control 
digits to use. However, the occurrence of a burst error in  
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low frequency channels or during data storage has sev-
eral further crucial features and those particular features 
allow the proposed method to maximize its efficiency in 
burst error correction compared to Reed-Solomon codes. 
For the correction of this kind of errors, Reed-Solomon 
codes must be able to guarantee the correction of h = 2 × 
r—bit symbols, since the burst error could originate any-
where in the sequence. Consequently, the total number of 
control symbols required in the case of Reed-Solomon is 
equal to 4 (4 × m bits) while the theoretical minimum is 2 
× r bits. That implies that Reed-Solomon code is clearly 
suboptimal for the solution of the problem under study.  

Another approach over the last years is the use of sim-
ple weighted checksum for error correction [3]. The 
based on logical weighted checksum approach for single 
burst error correction [3] is more effective in comparison 
to Reed-Solomon codes: used less control bits, this ap-
proach allowed to red m 

 to . Using logical 
weighted checksum approach enhances the efficiency of 
single burst error control in low frequency channels, due 
to the decomposition of the main problem in two parts: 
the localization of the positions of the corrupted bits in 
the burst and the localization of the start point of the 
burst that has occurred. 

uce computation complexity fro
  O 4 n m   2

2O 4 log n m 

From the modern effectiveness criterions, the main 
disadvantage of logical weighted checksum method con- 
sists in that computation complexity of burst error cor- 
rection procedure depends on transmitted block length. 

The aim of presented investigation is to speed up the 
burst error correction procedure so that it can be executed 
in rate data transmission. 

3. Burst Error Correction 

Let us consider a transmitted information block B that 
consists of N bits:  

 1 2, , , NB b b b  ,  0,1lb   .  1, ,l N  

Proposed method assumes that this block divided into n 
symbols: . Every j-th symbol X , 

 contain m bits 
 1 2, , , nB X X X 

n
 j

1, ,j   1 2, , ,j j j jmX x x x 
, ,

, so 
that    1 1 2 21 1,j m j m jm j mj jx b x b 

2 2x x   

1

x b

2 12mx  

      , where 
m is the maximum size of the burst. Each one j-th symbol 
Xj can be considered as binary number  

1 2 3j j j j jm . For every 
j-th symbol Xj there is weight coefficient Wj defined as 

. 

D x 

W j j

The control code C consists of three components C = 
{C1, C2, C3}, first of which—C1 is the arithmetic sum of 
odd-numbered symbols of the transmitted block: 

  
1

1

1 1
.

2

j
n

j
j

C


 
  D             (1) 

Second component С2 is calculated as arithmetic sum 

of symbols with even number in transmitted block: 

  1

2
1

1 1
.

2

j
n

j
j

C D





 
              (2) 

The third component C3 is the arithmetic sum of 
products symbols by its weight coefficients, whose are 
by one greater of symbols number: 

 3
1

1
n

j
j

C j


   D             (3) 

The mentioned above control code components calcu-
lated according to Equations (1)-(3) by sender are de-
noted as C1S, C2S and C3S. After the calculation of the 
control code at the sender side, this information is sent to 
the receiver in the following order: C3S, C1S, C2S, X1, X2,···, 
Xn. 

For example, let us consider the data block B which 
consists of 16 bits (N = 16) B = {1001 1010 1100 101}. 
If maximal number m of bits if burst equals 4 (m = 4), 
transmitted block divides into four (n = 4) 4-bit symbols: 
X1 = {1001}, X2 = {0111}, X3 = {1111}, X4 = {1010}. 
Correspondently: D1 = 9, D2 = 14, D3 = 15, D4 = 5. On 
the sender side the components of the control code will 
be computed as such:  

1 1 3 9 15 24SC X X    

2 2 4 14 5 19SC X X

;  

    

3 1 2 32 3 4

2 9 3 14 4 15 5 5

C X X X      

       

; 

 45

145.
S X



Sender sent to the receiver following bits sequences: C3S, 
C1S, C2S, X1, X2,···, Xn = 1000100 00110 01010 1001 
0111 1111 1010. 

On the receiver side the information block and senders 
control code are received and using Equations (1)-(3) the 
receiver control code components denoted as C1R, C2R 
and C3R are calculated. The receiver calculates the dif-
ference Δ using the three components computed in their 
end and those that were received. Indeed,  = <1, 2, 
3> where 1 = С1R – С1S, 2 = C2R – C2S and 3 = C3R – 
C3S. 

Consequently, the receiver analyses the code  for the 
purpose of determining if the information block was 
transmitted without errors, for the detection of possible 
transmission errors in the information block and for the 
correction of such errors. Assuming that only a single 
burst of errors occurs and that this burst distorts no more 
than tree symbols, there may occur one of the following 
cases: 

1) If all three components of code Δ are equal to zero, 
namely 1 = 0, 3 and 3 = 0, then the information block 
has been transmitted without errors. 

2) One or pair of adjacent symbols of information 
block B = {X1, X2,···, Xn} are distorted. 
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3) Control code component C2S and first symbols X1 of 
information block are distorted. 

4) One or pair of adjacent control code components 
C2S, C1S, C3S are distorted. 

In second and third cases it is necessary to correct er-
ror in information block. In last case it would suffice to 
determinate this type of errors. 

In second and third cases there are two different vari-
ants: only one symbol Xv is distorted and two adjacent 
symbols Xv and Xv +1 are distorted. If only one v-th sym-
bol Xv is distorted and its number v is odd than  

. Consequently 
number v can be defined by following way: 

1 2 3 1, 0,  а 1vR vSD D v          

3

1

1v


 


                 (4) 

Correction is executed by following way:  

1–vS vRD D 



. In a similar manner the one symbol with 
even number in block is corrected.  

 When two adjacent symbols Xv and Xv +1 are distorted 
and v is odd than  

1 2 1, 1,,vR vS v R v SD D D D        

  
 

3 1 2

2 1 2

and             1 2

                  1 ( )

v v

v

        

       
 

Such as in symbol Xv the high bits are distorted and in 
next symbol Xv+1 the low ones, condition 1 2  is 
fulfilled. In view to above number v of first distorted 
symbol can be define by following way: 

  

3 2

1 2

1.V
 


  





             (5) 

For correction of distorted symbols, it is need to exe-
cute operation:  and .  1vS vR

In a similar manner if v is even: 
D D   1, 1,R 2v S vD D  

1 2  and num-
ber v of first distorted symbol can be defined by follow-
ing way: 

  

3 1

1 2

1.V
 


  





              (6) 

For correction of distorted symbols, it is need to exe-
cute operation:  and .  2vS vR 1, 1, 1

The outlined way for burst error correction can be il-
lustrated by such example. It is suggested that during bits 
sequences transmission: C3S, C1S, C2S, X1S, X2S,···, XnS = 
1000100 00110 01010 1001 0111 1111 1010 external 
noise caused a burst of errors that corrupted third and 
fourth symbol of information block. As a result, the cor-
rupted symbols have been received on receiver side, 
which are as: X3R = {1010}, X4R = {0010}. Correspon-
dently D1R = 9, D2R = 14, D3R = 5, D4R = 4. Consequently, 
on the receiver side the components of the control code 
will be computed as such:  

D D  Dv S v RD  

1 2

3 3

9 5 14, 14 4 18,

2 9 3 14 4 5 5 4 100.
R R

R R

C C

C C

     
         

 

The difference of control code is calculated on re-
ceiver side as:  

1 214 24 10, 18 19 1            

and          3 100 145 45     .  

Because of 1 2    then first distorted symbol has 
odd number v, which according to (5) is calculated as:  

3 2

1 2

45 1 44
1 1

10 1 11
V

    
1 3      

     
 

Procedure correction of X3 and X4 executed by calcula-
tion:  

 3 3 1 5 10RD D      mod 25 = 15,  

4 4 2 4 1 5RD D      . 

If control code component C2S and first symbols X1 of 
information block are distorted then 1  0, 2  0 and 3 
 0, despite the fact that 1 1 1R SD D    and 2 1   , 
3  1 × 2. If all mentioned conditions are fulfilled then 
correction executed by the way: . 1S 1 1R

If only one of control code components C2S, C1S or C3S 
is distorted that two from codes 1, 2 and 3 equal to 
zero and one is not equal to zero. This situation can not 
be arising in case information symbol distorting and so 
can be easily defined. 

D D  

In the case that pair of control components are dis-
torted during transmission there are two variants: pair C2S, 
or pair C3S, C1S is distorted. In first variant 1  0, 2  0 
and 3  0, it is clear that such situation can not be aris-
ing in case information symbol distorting and so can be 
easily defined. 

In second variant 3  0, 1  0 and 2  0. Because 
C3S is transmitted before C1S, in component C3S the high 
bits are distorted and in component C1S the low bits are 
distorted. It means that 3 1    and it’s simply to 
show that:  

 3 1 2 1n .                     (7) 

It is clear that in case distorting of information symbol 
occurs, the condition (7) can not be fulfilled, so this con-
dition can be used to define the situation when pair C3S, 
C1S is distorted. 

4. Effectiveness Estimation 

As mentioned above, the main effectiveness criterions 
for means error correction are: number of needing con-
trol bits and computational complexity of coding, decod-
ing and error correction procedures. The computational 
complexity and time complexity define the time which is 
needed for error control and correction. 
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For proposed burst error correction method number k 
control bits is determined by the sum of size of control 
code components C1, C  and C . It is clear that maximal 
value of C1 and C2 is 

2 3

  12 1 2 2m mn n     . Thus, bit 
size of control code components C1, C2 is equal: 

. Maximal possible 
value of components C3 is equal:  

 1
2 2log 2 log 1mn n      

plicity higher than the one which allows correction. For 
instance, in case of the occurrence of two burst errors, 
the code proceeds to an erroneous correction of an un-
distorted symbol. On the contrary, for the method de-
scribed above there is a control mechanism of the errors 
that cannot be corrected so as to alert the user to request 
retransmission. 

m 

    
     2 2

2 1 2 3 1

2 1 2 2 2 2

m

m

n

n n n n 1.m

     

        


 

The primary advantage of the proposed method is the 
efficient correction of single burst errors with an imple-
mentation that demands low computational complexity 
both for the control and the error correction. 

Correspondently, bit size of components C3 is equal 

  
 

2 1
2

2
2

log 2 2

log 2 1 2 log .

mn n

n n m n

    
           2 m

1

 

For coding (control code components calculation), it 
needs to execute three addition and one multiplication 
per symbols of block. In view of the fact that modern 
processors contain the fast multiplier, it can be conceded 
that there are executed four operations per symbol. So, 
coding computational complexity—O(4 × n). In pro-
posed method is similar to coding and, correspondently, 
complexity of decoding procedure—O(4 × n). For single 
burst error correction according to (4)-(6) is required four 
operation of addition and one operation of division. 
Eventually, for correction only five processors operation 
are required. It means that for burst error correction op-
eration time does not depend on both information block 
length and symbol length. 

Thus, the control bits number k is equal: 

  23 1 4 logk m n                  (8) 

For Reed-Solomon codes which are also used for the 
solution of similar problems, the correction of a single 
burst error of size up to m bits in low-frequency channels 
demands 4 × m control bits. 

The comparison of the two methods shows that the 
suggested one requires a trifle over control bits in com-
parison to Reed-Solomon codes. For example, for the 
correction of a burst error the size of which is up to 8 (m 
= 8) in a packet of size 64 bytes (n = 64), with the use of 
Reed-Solomon 4 × m = 32 bits are required while with 
the proposed method 2  control bits 
are used or 40% higher than Reed-Solomon codes need.  

3 7 4 log 64 45   

Reed-Solomon code single burst error correction in-
cludes such procedures: 

1) Solving of the system of two symbols equation for 
locator error vector coefficient define. 

2) Location of the position of two distorted symbols in 
data block. To do this, it would require searching non-
zero values of location error vector by enumeration n 
possible variants. 

Additionally, Reed-Solomon codes put restrictions on 
the size n of the controlled information block B depend-
ing on the value of m. Thus, the block size must be up to 
2m symbols or 2m × m bits. For instance, when m = 4 the 
information block size cannot exceed 8 bytes. On the 
contrary, the suggested technique which is based on the 
decomposition of the initial problem into the sub-prob- 
lem of the localization of the burst and the sub-problem 
of the distribution of the errors in the burst guarantees 
single burst error correction without putting restriction on 
the size of the information block. 

3) Solving the system of symbols equation for location 
distorted bits for every distorted symbol. 

The total number of processors operation is equal 4 × 
n × m. For example, for the correction of a burst error the 
size of which is up to 8 (m = 8) in block of size 64 bytes 
(n = 64), with the use of Reed-Solomon 4 × n × m = 2048 
processors operations are required while with the pro- 
posed method only five that is less than Reed-Solomon 
codes by factor 410. The data for comparison analysis of 
computation and time complexity proposed method and 
Reed-Solomon codes are shown in Table 1. 

Finally, in Reed-Solomon codes there is lack of a con-
trol mechanism of the occurrence of errors of multi- 

 
Table 1. Computational/time complexity both methods. 

Computational complexity Time complexity 
Procedure Propose 

method 
Reed-Solomon code

(h = 2) 
Proposed 
method 

Reed-Solomon code 
(h = 2) 

Coding O (4 × n) O (12 × n × m). O (log2n) O (12 × n × m). 

Error detection O (4 × n) O (20 × n × m) O (log2n) O (20 × n × m) 

Burst error correction Four addition and one division O (4 × n × m) Four addition and one division O (4 × n × log2 × m) 
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The data analysis based on Table 1 shows that the use 

of the method based on checksum allows the substantial 
reduction of time complexity compared to Reed-Solo-
mon code. Consequently, an increase of the speed of the 
encoding, decoding and error correction has been achieved. 

5. Conclusions 

The proposed approach enhances the efficiency of single 
burst error control in low frequency channels due to the 
decomposition of the main problem in two parts: the lo-
calization of the positions of the corrupted bits in the 
burst and the localization of the start point of the burst 
that has occurred. To succeed in reducing computational 
complexity and speeding up processes involved, the pre-
sent technique suggests the use of a conventional check-
sum method and the use of the weighted version of the 
checksum for the solution of the first and the second 
problem respectively.  

The main advantage of proposed approach is that pro-
cedure burst error correction has computational complex-
ity less than Reed-Solomon codes by 2 - 3 order and less 
that method based on logical weighted checksum by one 
order. It means that proposed approach assures signifi- 

cant speeding up of burst error correction in comparison 
to known methods. In doing so, required control bits 
number increase shall be no more 45%. 

It has been shown that the application of the method 
described in this paper lowers the computational cost of 
the operations that need to be executed for the correction 
of the burst error comparing to Reed-Solomon codes.  

REFERENCES 
[1] B. Sklar, “Digital Communication, Fundamental and Ap- 

plication,” Prentice Hall, Upper Saddle River, 2001, p. 
1104. 

[2] R. E. Blahut, “Theory and Practice of Error Control Codes,” 
Addison-Wesley Publishing Company, Boston, 1983, p. 452. 

[3] N. G. Bardis, O. Markovskyi and N. Doukas, “Efficient 
Burst Error Correction Method for Application in Low 
Frequency Channels and Data Storage Units,” Proceed-
ings of IEEE Digital Signal Processing Conference, Corfu, 
6-8 July 2011, pp. 1-6.  

[4] S. B. Wickers and V. K. Bhargava, “Reed-Solomon Codes 
and Their Applications,” IEEE Press, Piscataway, 1983, p. 
433. 

 

Copyright © 2012 SciRes.                                                                                 ENG 


