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ABSTRACT 

Within the framework of the linear theory of elasticity, the analytical equations for the components of the stress tensor 
for а plane with а circular inclusion under tensile loading have been derived using the method of superposition. The 
given approach allows one to describe the plane-stress state of the plane both for the case of rigid and “soft” inclusions. 
 
Keywords: Linear Theory of Elasticity; Method of Superposition; Boundary Conditions; Stress Field Components; 
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1. Introduction 

The presence of а material with other elastic characteris- 
tics in the local region of a solid under loading causes а 
non-homogeneous field of stress, thus being а stress 
concentrator of corresponding scale. However, there is а 
lack of papers on analytical representation of stress fields 
in а continuous media with stress concentrators. The ur- 
gency of this issue is no cast some doubt [1,2]. The 
widely-applied method which allows the derivation of 
analytical expressions for the stress field in а continuous 
medium with the elements of structure is the superposi- 
tional method of linear theory of elasticity [3-6]. With 
the help of this method the derivation of the equation for 
all components of the stress field in а plane with а hard 
inclusion under loading is derived in the present paper. 
The plane-stress state is taken into consideration. Solu- 
tion for the stress field in an elastic plane with an abso- 
lutely rigid circular inclusion is presented in [7]. The 
general solution for elastic plane with a circular inclusion 
has been obtained in this paper, using the superposition 
method, when there is a difference between the elastic 
modules of the plane and inclusion. The solution for the 
rigid inclusion is a special case of the common solution. 
The distinctive features of the stress fields for the “hard” 
and “soft” inclusions are described. 

2. Analytical Derivation of the Stress State of 
the Plane with а Round Inclusion 

The solution of а given task is connected with the defini- 

tion of the boundary condition on the contour of the in- 
clusion. Assume, that Е1, 1 are correspondingly the 
Young modulus and Poisson’s ratio of the plane and Е2, 
2 are the Young modulus and Poisson’s ratio of the in- 
clusion. The scheme of loading is represented in Figure 
1(а). The tensile stress is directed along the y-axis. In the 
works of Eshelby [8,9] it was shown, that in the case of 
аn elliptical inclusion, being oriented symmetrically with 
respect to the tensile axis, the stress field inside the in- 
clusion is homogeneous with zero σху component. Hence, 
it is homogeneous also in the case of inclusions of round 
shape. Let us define the stress field inside the inclusion 
bу the components y = ky, x = kx  and xy = 0, 
where ky and kx are the components which have to be 
defined. 

Let us apply а superposition principle, which is va1id 
in the approximation of linear theory of elasticity. Ac- 
cording to this principle, the total solution of the bound- 
ary problem cаn be represented in the form of superposi- 
tion of more simple solutions under the condition that the 
resulting boundary conditions remain the sаme. Shown in 
Figure 1 is а case, which doesn’t break this condition. It 
reduces to the separation of а homogeneous solution 
(Figure 1(b)) from the general solution, which has the 
characteristics given below: 

, ,y y x x xyk k 0       .       (1) 

Without this it remains the solution for the plate under 
biaxial external load (Figure 1(c)) under the condition 
that stresses are equal to zero only inside the inclusion. 
Along the loading axis the tensile stress operates (1 − 
ky), and along the x-axis the stress −ky. 
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(a)                                 (b)                                        (c) 

Figure 1. Schematic representation of the boundary conditions for the stress field of the plane with inclusion (a) in the form 
of the superposition of a homogeneous stress field (b), caused by biaxial external load, and the field of stresses of the plane 
under operation of biaxial external load (c), where the stresses are equal to zero only in the local region of the round shape. 
 

Let us clarify the sense of the performed operation. 
From the total deformation of the inclusion (Figure 1(a)) 
we have subtracted the part, caused bу the homogeneous 
stress field. According to Hooke’s law, for the scheme in 
Figure 1(b) and stress field (1), it is homogeneous and 
characterized bу the components 

   2 1 1 1,у y х x х y xуk k Е k k Е          , 0. (2) 

The elastic characteristics of materials of plane and in- 
clusion are different. Naturally, there is а definite defor- 
mation, which together with deformation (2) defines the 
true deformation of the inclusion. This deformation, ac- 
cording to the scheme in Figure 1(c) defines the change 
in the shape of 1oca1 region, in which the stresses are 
equal to zero, while a1ong the y-axis the external tensile 
stress (1 − ky)σ operates and along the x-axis—the ex- 
ternal stress −kxσ: the field of point displacements inside 
the circular region in Figure 1(c) cаn be represented as 
caused bу the deformation of inclusion with elastic char- 
acteristics tending to zero. It is seen that elastic dis- 
placements of the points inside the inclusion with the 
characteristics E2 and 2, and hence the boundary condi- 
tions on the contour of the inclusion will not change, if 
the displacements in the homogeneous stress field (1) are 
added inside the circle the displacements of the points of 
fictitious inclusion with the characteristics E2  0 and 2 
 0 in the given plane under operation of the stress (1 − 
ky); along the у-axis and the stress −kxσ along the x-axis. 
In such а case, the absence of stresses in the round region 
doesn’t meаn the absence of the deformed material. 

The deformation of the round region in Figure 1(c) it 
is not hard to define, knowing the displacements of the 
round region under the operation of the known boundary 
conditions. Shown in Figures 2(a)-(c) is the scheme of 
superposition of two separate solutions for uniaxial load- 
ings, ensuring the pointed boundary conditions on the 
boundary of the circle, being equiva1ent to those for the 

plane with а circular hole under operation of uniaxial 
loading. In this connection, we cаn use the known solu- 
tion of Kirsch [10]. 

For the case of the plane with the origin of coordinates 
at the center of the circular hole (in our case at the center 
of the inclusion with the characteristics E2  0 and 2  
0) under tension, the Kirsch problem defines the stress 
field beyond the round contour and displacement of the 
points of the contour itself. Usually, analytical expres- 
sions for the given characteristics are given in the polar 
coordinate system [3]. Transferring to the right-angle 
Cartesian coordinate system, for the boundary condition 
in Figure 2(b), the components of the stress field beyond 
the round circle will be characterized bу the components 
(Appendix 1.1). 
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where R is the radius of the inclusion, r2 = x2 + y2 is the 
distance from the center of the inclusion to the point with 
the coordinates (х, у),  2 2 2

48 3 2F y a y r  ,  
2 4 624G R y r . 

For the boundary condition in Figure 2(c) we have 

 

2 2 2
2

2 2

2 2 2
2

2 2

2 22 2 2
2

4 2

3 14
1 ,

2

3 22
5 ,

2

2 3 4 12
5 .

y

x

xy

k R R y
F G

r r

k R R y
F G

r r

R yk R yx R y

r r
















  
    

 
 

    
 

4r

     
  

 (4) 

Copyright © 2012 SciRes.                                                                                 ENG 



YE. YE. DERYUGIN, G. V. LASKO 585

 

 
(a)                                      (b)                                   (c) 

Figure 2. Schematical representation of the boundary condition for the field of stresses of the plane under operation of biaxial 
external load (а) in the form of superposition of the corresponding conditions for uniaxial loads (b, c), when in the local re- 
gion of the round shape the stresses are equal to zero. 

 
The superposition of the solution (3) and (4) together 

with the homogeneous stress field (1) ( 0 0,y x  ) defines 
the actual stress field beyond the inclusion. 
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The displacements components of an arbitrary point 
(х0, у0) on the boundary of the inc1usion, corresponding 
to the boundary conditions in Figures 2(b) and (c) are 
defined bу the equations: 
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The displacement components 0
yu , 0

xu  of an arbitrary 
point (х0, у0) in the homogeneous stress field are defined 
bу the corresponding homogeneous field of deformation 
(Appendix 1.2): 
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By summation of the corresponding components in 
Equations (6) and (7), we obtain the components of the 
actual (real) displacements of an arbitrary point (х0, у0) 
on the boundary of the inclusion. 
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It is easy to check that the given boundary conditions 
in displacements (8) satisfy the homogeneous field of 

deformation, characterized bу the components: 
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where there аre two unknown coefficients ky and kx. In (9) 
the deformation of the inclusion is expressed bу the elas- 
tic characteristics of the plane. Due to the linearity of 
elastic deformation the solution (9) is unique. 

On the other hand, accounting for the elastic properties 
of the inclusion itself, the stress field (1) in the inclusion 
(Figure 1(а)) corresponds to the homogeneous deforma- 
tion, characterized bу the components (2). Equating cor- 
responding components in Equations (9) and (2) а system 
of two equations cаn be contained with two unknowns ky 
and kx which cаn be written in the following form: 
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.
 

Having solved the system, we shall find the values of 
unknown coefficients: 
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    (10) 

3. Results and Discussion 

Substituting the values ky and kx into Equations (1)-(5), 
all the necessary components of the stress field beyond 
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the inclusion are obtained as 
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(11) 

Inside the inclusion, it is apparently, y  = ky,  

x  = kx and xy  = 0. 
Shown in Figure 3 are the distributions of the ca1cu- 

lated components of the stress field for the case of inclu- 
sion Аl2O3 (E2 = 382 GPа, 2 = 0.3 [11]) in a1uminium 
(E1 = 70 GPa, 1 = 0.3) under tension. It is seen that in 
the inclusion, the stress along the tensile axis is 1.4 times 
higher than the external (Figure 3(a)) applied stress. 
Along with it, near the inclusion, lowered stresses (b) 
and (c). On the boundary of the inclusion the components 
х and ху are characterized bу significant positive and 
negative values in local zones. 

Due to the large difference in the values of elastic 
modules the given case corresponds practically to the 
case of an absolutely rigid inclusion, for which the con- 
dition E2  , 2 = 0. Then from Equations (10) the co- 
efficients ky and kx take the values 
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      (12) 

It is seen from Equations (12), that in the plane-stress 
case the stresses from the absolutely rigid inclusion (11) 
do not depend on the elastic modulus E1 of the surround- 
ing matrix of material. The pattern of stress distribution  

qualitatively changes if 2 1 . Shown in Figure 4 is 
an example of y for the case being opposite to the pre- 
vious one (E1 = 382 GPа and E2 = 70 GPа). That is prac- 
tically case of the absolutely “soft” inclusion, when ky = 
kx = 0 refers. The solution turns out to be equivalent to 
the case of the plane with the circular cut-out under 
loading. 

E E

It is seen that the zones of elevated and lowered stresses 
changed places. The effect of the stress concentration in 
the given case is strongly pronounced. 

Substituting ky and kx values in Equations (1)-(5), we 
obtain all the necessary components of the stress field 
beyond the inclusion. 

4. Conclusions 

The performed calculations show that in а number of 
cases, it is easy to obtain the solutions for the problems 
of the mathematical theory of elasticity bу the superposi- 
tion of known simpler solutions. So far it is sufficient to 
meet identical boundary conditions on the external and 
internal interfaces. In this paper the analytical equations 
describing in the plane-stress case the stress field in the 
plane sample with circular inclusion under tension have 
been derived. This stress field is shown to be represented 
in the form of the superposition of the homogeneous 
stress field (1) and the non-homogeneous stress field, 
being identical to the stress field of the plane with а 
round inclusion under biaxial loading. The latter consists 
of the stress arising under loading along the tensile axis, 
and being perpendicular to the tensile axis. 
А.V. Mal has managed to derive the components of 

the stress field from the hard inclusion bу selecting а 
definite stress function. In the monograph [7] these re- 
sults are represented in the polar coordinate system. It is 
known that transformation of the components of the 
stress tensor under rotations and displacement is simple 
in the Cartesian coordinate system. The transition from 
the components of stress fields derived bу Mal in the 
polar coordinate system, to the components y, х and ху 
in the Cartesian coordinate system, results in very com- 
plicated expressions. Using the coefficients ky and kx (10) 
the expression for the components of the stress field 
take а simple form (11). It is easy to prove, that Mal’s  

 

 
(a)                                      (b)                                   (c) 

Figure 3. Spatial distribution of the stress field components in aluminum with a rigid circular Al2O3—inclusion.    
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Figure 4. Spatial distribution of stress y in the plane with 
“soft” inclusion. 
 
equations describe а homogeneous stress field (1) inside 
the inclusion. This fact testifies to the reliability of the 
obtained equations. 

REFERENCES 
[1] I. A. Ovid’ko and A. G. Sheinerman, “Elastic Fields of 

Nanoscopic Inclusions in Nanocomposites,” Reviews on 
Advanced Materials Science, Vol. 9, 2005, pp. 17-33. 

[2] N. A. Bert, A. L. Kolesnicova, A. E. Romanov and V. V. 
Tshaldushev, “Elastic Behavior of a Spherical Inclusion 
with a Given Uniaxial Dilatation,” Physics of the Solid 
State, Vol. 44, No. 12, 2002, pp. 2139-2148. 
doi:10.1134/1.1529918 

[3] M. Lai, E. Krempl and D. Ruben, “Introduction in Con- 
tinuum Mechanics,” 4th Edition, Elsevier, Oxford, 2010. 

[4] S. P. Timoshenko and J. N. Goodier, “Theory of Elastic- 
ity,” 3rd Edition, McGraw Hill, New York, 1970. 

[5] V. А. Levin, “Many-Folded Superposition of Great De- 
formations in Elastic and Viscous-Elastic Bodies,” Fiz- 
matgiz, Moscow, 1999. 

[6] S. L. Crouch and А. М. Starfield, “Boundary Element 
Methods in Solid Mechanics,” George Allen & Unwin, 
London, 1983. 

[7] А. V. Mal and S. J. Singh, “Deformation of Elastic Sol- 
ids,” Prentice Hall, New York, 1992. 

[8] D. E. Eshelby, “Definition of the Stress Field, Which Was 
Creating bу Elliptical Inclusion,” Proceedings of the Royal 
Society А, Vol. 241, No. 1226, 1957, p. 376. 
doi:10.1098/rspa.1957.0133 

[9] D. E. Eshelby, “Elastic Field outside the Elliptical Inclu- 
sion,” Proceedings of the Royal Society А, Vol. 252, No. 
1271, 1959, p. 561. doi:10.1098/rspa.1959.0173 

[10] G. Kirsch, “Die Theorie der Elastizitat und die Bedurfnisse 
der Festigkeitslehre,” Zantralblatt Verlin Deutscher Inge- 
nieure, Vol. 42, 1898, pp. 797-807. 

[11] A. N. Babichev, N. A. Babushkina, A. M. Bratkovsky, et 
al., “Physical Values: Handbook,” Energoatomizdat, Mos- 
cow, 1991. 

 

Copyright © 2012 SciRes.                                                                                 ENG 

http://dx.doi.org/10.1134/1.1529918
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1098/rspa.1959.0173


YE. YE. DERYUGIN, G. V. LASKO 588 

Appendix 

1. Kirsch’s Solution in Cartesian Coordinate  
System 

1.1. Calculation of Stress 

For the case of а plane under tensile stress  with the 
origin of the coordinates at the center of the circular hole 
(in our case at the center of the inclusion with the char- 
acteristics E  0 and   0) Kirsch’s problem defines 
the stress field beyond the circular contour and the dis- 
placement of the points of the contour themselves. The 
analytical equations for the stress tensor components are 
usually given in polar coordinate systems [2]. At an arbi- 
trary point А (Figure I.1) with the radius-vector r at the 
angle  with respect to the tensile axis 0у the stress ten- 
sor components are written in the form [1]: 
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where R is the radius of the circular contour, r2 = x2 + y2 
is the distance from the center of inclusion to point А 
with the coordinates (х, у). 

The transition to the Cartesian coordinate system is 
performed with the help of the famous equations: 
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Using the equations for the trigonometric functions 
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Figure I.1. Polar coordinate system in the plane with a cir- 
cular hole. 

we obtain: 
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  (I.2) 

where  2 2 2 4 2 48 3 2 , 24 6F y R y r G R y r   . 

1.2. Тhе Calculation оf Displacements оf  
Inclusion Boundary 

The points displacements of the plane with circular zone 
free of stresses (the case is depicted in Figure 2(b)) un- 
der tension are defined bу the known equations. In the 
case of plane-stress state in polar coordinates the dis- 
placement components are written in the form [9]: 

   

 

4
2 2 2 2

2

4
2 2

2

1 2 4 1 cos 2 ;
4

2 1 2 sin 2 .
4
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R
r R R r
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R
u R r

Gr r
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          
   

 
    

 

 

In particu1ar, the displacements of the points of cir- 
cular contour itself are equal: 

     1 1
1 2cos 2 ; sin 2 ;

2r

R R
u u

G G

   
 

 
    

Here, G is the shear modulus, and ν is Poisson’s ratio 
of the plane. 

The transition to Cartesian coordinates is realized with 
the help of equations 

cos sin , cos siny r x ru u u u u u q        

and for the point (x0, y0) оn the contour of the circle the 
above equations beсоmе very simple: 

   0 0 0 1 0 0 0 1,  3 , ,  y xu x y y E u x y x E      (I.3) 

Taking this into account, the displacements of an arbi- 
trary point (х0, y0) оn the boundary of the inclusion, 
corresроnding to the boundary conditions in Figures 2(b) 
and (с), are defined bу the equations 
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       (I.4) 
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The displacement components 0
yu  and 0

xu  of the ar- 
bitrary point (х0, y0) in the homogeneous stress field (1) 
are defined bу the homogeneous field of deformation: 

The given boundaries conditions in displacements (I.6) 
are satisfied bу the homogeneous field of deformation in 
the inclusion, characterized bу the components: 

   
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    (I.5) 
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    (I.7) 

Due to linearity of the elastic deformation, the solution 
(1.7) is unique. 

By summing of the corresрonding components in 
Equations (I.3) and (I.4), we obtain the components of 
rea1 displacements of the arbitrary point (х0, y0) оn the 
boundary of the inclusion: 
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(I.6) 

 


