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Abstract 
The two-layered (0 - 50 and 50 - 250 mm) surface horizon hydraulic parame-
ters of three dryland floodplain soil-types under aquafer water management 
in Postmasburg, Northern Cape Province of South Africa were estimated with 
HYDRUS-1D model. Time dependent water infiltration measurements at 30 
and 230 mm depths from simulated rainfalls on undisturbed 1 m2 small plots 
with intensities of 1.61 (high), 0.52 (medium) and 0.27 (low) mm·min−1, were 
minimised using a two-step inversion. Firstly, separate optimisation of the 
van Genuchten-Mualem model parameters for the two surface-horizon layers 
and secondly, simultaneous optimisation for the joint two-layered horizon 
with first step optimal parameters entered as initial values. The model repro-
duced transient water-infiltration data very well with the Nash-Sutcliffe 
model efficiency coefficient (NSE) of 0.99 and overestimated runoff (NSE; 
0.27 to 0.98). The upper surface horizon had highly optimised and variable 
parameters especially θs and Ks. Optimal Ks values from higher soil surface 
bulk-density (≥1.69 g·cm−3) were lower by at least one order of magnitude to 
double ring infiltrometers and water infiltration properties were different (P 
< 0.05) for the high rainstorm due to raindrop impact and surface crusting. 
Optimal α and n parameter values corresponded well with texture of the 
Addo (Greysols), Augrabies (Ferralsols) and Brandvlei (Cambisols) soil types. 
However, θs and Ks showed greater sensitivity to model output and exerted 
greater influence on dryland floodplain water-infiltration and runoff charac-
teristics. Increasing rainfall simulation period to attain near-surface saturated 
conditions and inclusion of surface ponding data in the inverse problem 
could considerable improve model prediction of hydro-physical parameters 
controlling surface-subsurface water distribution in fluvial environments. 
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1. Introduction 

Soil hydraulic properties controlling infiltration and runoff play an important 
part in capturing and distributing water resources in dry riverbed and flood-
plains. These fluvial environments are strategic sites for groundwater recharge 
and water-resource development. Modelling surface and subsurface water-flow 
requires knowledge of soilhydraulic parameters. However, sedimentation and 
“amphibious” conditions characterising fluvial depositional environments make 
soil surface hydraulic properties to be highly variable [1] [2]. 

Soil hydraulic properties, which describe water-flow in variably saturated me-
dia, include saturated hydraulic conductivity (Ks), unsaturated hydraulic con-
ductivity (K), and the soil water retention curve (SWRC). The SWRC represents 
the relationship between water content (θ) and metric suction (h), and mathe-
matically represented by various pore-size distribution models ([3] [4] [5] [6]). 
These analytic models use parameter based closed-form equations to describe 
θ-h relationship and are used to predict other more difficult properties, K(h) or 
K(θ) in particular. Application of analytic models has been actively studied for 
several decades, but relatively few studies exist in which hydraulic parameters of 
fluvial soil types have been estimated using data from in situ experiments. 

Soil types developed from colluviation and sedimentation vary from highly 
permeable to impermeable [1]. Fluvial processes, geometry and topography in-
fluence the nature and type of alluvium deposits in floodplains [2]. Gravel and 
sands alluvium affect floodplain-segments associated with fast-running water 
while alluvium of silt and clays affects segments with slow-moving water. Higher 
permeability of course textured alluvium deposits is linked to rapid and shallow 
groundwater recharge [1]. Low relief terrain of most arid floodplains reduces 
flow velocities that favour water infiltration and widespread recharge. However, 
settling and accumulation of translocated fine particles from other positions by 
runoff and erosion can remarkably reduce permeability of the soil surface even 
of course-textured soil types [7]. Hot and dry conditions of arid climates make 
floodplain inundation events rare and far apart resulting to bare soil and sparse 
vegetation. Under these conditions, compaction and sedimentary crust forma-
tion characterise soil surface conditions [7]. 

A soil crust often consists of two parts. The first is an upper skin seal, 0.1 mm 
thick and forms under the influence of raindrop impact, splash, slaking, swelling 
and sedimentation. The second is a 2-mm thick deeper region of washed-in dis-
persed fine particles [7]. Permeability of the soil beneath the crust is 200 times 
higher than the washed in layer and about 2000 times higher than the skin seal 
[8]. A 0.1 mm thick surface crust may reduce infiltration rate (IR) from 800 cm 
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day to 70 cm day [7] [9]. Subsequently, the matric flux potential and hydraulic 
gradient could decrease K(h) by an order of several magnitudes. Direct meas-
urement of a soil crust hydraulic properties is not practical due to its dual thin 
layers and stringent procedures requiring highly specialised equipment. A stan-
dard procedure uses data from tension disk infiltrometers and pre-installed 
mini-tensiometers beneath a soil crust to estimate K(θ), pressure head (h) and 
sorptivity. 

Alternatively, due to the delicate nature of a crust, steady-state infiltration 
measurements is commonly used to indirectly estimate hydraulic properties of a 
well-established soil crust with a constant thickness. Touma et al. [9] combined a 
rainfall simulation experiment and a single-ring infiltrometer test on the same 
site before and after removing the crusted layer to calculate the crust steady state 
IR. Alagna et al., [10] adopted the same approach, but substituted the minidisk 
tension infiltrometer with a rain simulator and used pedo-transfer functions to 
estimate steady state IRof the soil beneath the crusted layer. These studies relied 
on saturated crust hydraulic properties and limited findings to steady state IR or 
Ks. In this study, saturated and variably saturated flow parameters are estimated 
using a numerical model with an inverse parameter optimisation algorithm [11] 
and is coupled with transient soil-surface water infiltration measurements from 
small-plot rainfall simulation experiments. Usefulness and advantages of the in-
verse method and hydraulic parameter estimation from transient soil-water 
measurements has been well demonstrated over several decades [11] [12] [13] 
[14]. 

The aim of this study was to determine the near-surface soil hydro-physical 
properties of the dominant soil types found at a dryland floodplain used to 
monitor groundwater recharge in the Northern Cape of South Africa. Referred 
as a drainage or dryland floodplain, the area has several boreholes (Figure 1(c)) 
drilled into shallow aquifers that are artificially recharged by pumping water 
from open cast mine pits of a nearby iron ore mine. Since the launching of the 
aquifer recharge program in 2012, data from groundwater measurements 
showed remarkable improvements. However, lack of soil surface hydro-physical 
data made it difficult to account for the contribution of direct water infiltration 
from rainstorm events to the subsurface water balance.Physical models such as 
the Richards [15] equation and Green Ampt, [16] model require accurate esti-
mation of soil hydraulic properties to compute water-flow in variable saturated 
soils. The study only sought to near surface hydraulic parameters that are better 
predictors of water infiltration and runoff from the studied floodplain segment. 
Parameter sensitivity was assumed to depict a measure of influence on soil-water 
infiltration and runoff characteristics of the studied floodplain soil types. The 
specific objectives were therefore to: 1) estimate near-surface soil hydraulic pa-
rameters of three floodplain soil-types from transient water infiltration data us-
ing a two-step inverse parameter optimisation approach [17], and 2) evaluate 
sensitivities between parameters of the van Genuchten [6] analytic model for 
rainwater infiltration and runoff simulation results. 
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Figure 1. Geographical location (o) of the Postmasburg town in the Northern Cape 
Province, South Africa (a), Aerial photograph of the floodplain with location soil types 
(b), and boreholes infrastructure of the aquifer recharge program (c). 

2. Material and Methods 
2.1. Site Description 

The study area was located at the dryland floodplains under wild life and aquafer 
water management of the Anglo American Kolomela Iron Ore mine, situated 30 
km south of the Postmasburg town, Northern Cape Province of South Africa 
(Figure 1(a)). The area had a common slope of 1% with three dominant soil 
types (Figure 1(b)). These included the Addo, Augrabies and Brandvlei soil 
forms [18], which also referred respectively as Greysols, Ferralsols and Cambi-
sols by the International Union of Soil Science (IUSS) Working Group World 
Resource Base (WRB) [19]. The Food Agriculture Organisation (FAO)WRB, 
[20] for soil resources generally referred to these floodplain soils types as fluvi-
sols. A summary of soils physical and chemical properties is shown in Table 1. 
The Addo and Brandvlei soil forms found at altitude of 1252 m while the Aug-
rabies at altitude of 2060 m. 

A long-term rainfall data constituting monthly minimum, maximum and av-
erages over a 98- year period of the Postmasburg area was summarised in Table 
2. The wettest months are January to March and the driest months are June to 
August. Rainfalls with amounts of 130 mm and 104.5 mm were the highest re-
corded rainstorms and occurred in the months of February and January, respec-
tively. Needle like vegetation and sedges were common in the Addo while clus-
ters of tussock grasses and bushy plants were observed in the Brandvlei and 
Augrabies soil forms. Vegetation was withered and dormant with the ground 
virtually bare.  

2.2. Experimental Design and Treatments 
2.2.1. Rainfall Simulation Experiment 
A mobile field rainfall simulator was used to generate soil water infiltration and 
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runoff data. The simulator constituted of oscillating sprinkler nozzlewith ad-
justable height in a closed compartment to protect operations on windy days 
(Figure 2(a)). It is also fitted with water pump; pressure gauges and intensity 
regulators. At the floor of the compartment is a metal runoff frame of 1 m × 1 m 
area that when inserted on the ground at 10 cm soil depth formulated the ex-
perimental plots (Figure 2(b)). Plots were prepared close to representative soil 
profiles from each of the three soil types. A gutter fitted on the sloping side of 
the frame connects with an outlet pipe for runoff collection. The simulator cre-
ated three rainstorms of 0.27 mm·min−1 (low), 0.52 mm·min−1 (medium) and 
1.61 (high) mm·min−1 intensities. When calibrating the rainfall simulator, many 
discharge irregularities and inconsistencies confounded intensities higher than 
1.62 mm·min−1 or 80 mm·hr−1 and lower than 0.27 mm·min−1 or 16 mm·hr−1. Se-
lected rainfall intensities intheir increasing order had simulated times of 56, 50 
and 40 minutes to obtain corresponding accumulative amounts of 15, 26 and 65 
mm (Table 3). To ensure that the correct rainfall amount for a particular inten-
sity a time-based calibrated automated rain gauge was placed inside the simula-
tion plot (Figure 2(b)).  
 

Table 1. Summary of soil types physical and chemical properties. 

Soil types and master horizons 

 
Addo Augrabies Bransvlei 

Soil characteristics A B1 C A B1 B2 A B1 C 

Physical properties 
         

Coarse sand (%) 1.68 1 1.7 12.4 14 16.1 1.9 0.9 0.9 

Medium sand (%) 2.42 2.1 3 3.6 3.9 3.1 1.8 1.4 1.7 

Fine sands (%) 14.4 19.4 19.9 40 45.5 43 55 51.1 56.6 

Very fine sand (%) 19.1 18.9 18 16.4 11.1 16.2 20.7 22.1 19.5 

Coarse silt (%) 13.6 12.4 12.3 7.6 6.4 5.7 3 5 3 

Fine silt (%) 23.6 19.7 18.8 6 4.8 5.7 2.6 6.3 5.5 

Clay (%) 24.1 25 26 14.6 15.8 11.7 15.1 13.5 12.8 

Bulk density (g·cm−3) 1.52 1.52 1.48 1.76 1.73 1.66 1.69 1.59 1.53 

Exchangeable cations 
      

Calcium (mg·kg−1) 7650 5090 4850 1788 1566 1054 6320 6240 2950 

Magnesium (mg·kg−1) 1340 1710 1600 305 348 820 700 920 1450 

Potassium (mg·kg−1) 313 210 157 326 176 207 186 241 282 

Sodium (mg·kg−1) 60 41 46 18 18 21 25 29 101 

 
Table 2. Long term (98 years) monthly rainfall (mm) for the Postmasburg area. 

 
Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec 

Min 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 

Max 104.5 130 77.5 69.6 46.2 39.5 31 34 39.5 66.5 66 69 

Mean 9.6 12.3 10.7 9.0 7.0 5.7 5.3 5.1 6.2 8.0 8.7 9.4 
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Table 3. Characteristics of simulated rainstorm treatments. 

Size 
 

Intensity 
(mm·min−1) 

Duration (min) 
Total 
(mm) 

High 1.62 40 65 

Medium 0.52 50 26 

Low 0.27 56 15 

 

 
(a)                              (b) 

Figure 2. A Hofrey rainfall simulator (a) mounted on a small plot with a 1 m × 
1 m metal frame connected to a gutter with an outlet runoff collecting pipe (b). 

2.2.2. Soil Water Infiltration and Runoff Measurement 
Time dependent soil water content and runoff measurement obtained from 
simulated three rainstorm treatments replicated three times from the three soil 
types. Installation of the mobile simulator metal frame and driven to the ground 
up to 10 cm depth on undisturbed land representative of soil surface conditions 
in situ. Centrally of each plot a 1 m long capacitance soil water measuring 
(DFM) probe was vertically installed such that water-measuring sensors are at 3 
cm, 23 cm, 43 cm, 63 cm and 83 cm depths (Figure 2(b)). Programmed capaci-
tance continuous water meter probes measured soil water content at minute in-
tervals during rainstorm simulation. Soil water content measurement taken 
prior and post rainfall simulation used as initial and final soil water contents, 
respectively. Gravimetric soil water content and bulk density values employed to 
calibrate capacitance water sensors. Runoff measurement involved time to run-
off and runoff amounts for every after 5 min intervals until simulation cut-off 
time. Manual measurement of runoff yield obtained from the gutter with a 
measuring cylinder.  

2.3. Theoretical and Experimental Considerations 
2.3.1. Numerical Flow Model 
The Richard equation [15] is a numerical model that describes flow in variably 
saturated soils and for one-dimensional vertical infiltration written as follows: 
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1H S
t z z
θ∂ ∂ ∂ = − − ∂ ∂ ∂ 

                        (1) 

where ∂θ/∂t is the surface water flux, z is the down wide direction; H is the 
soil-water pressure head relative to atmospheric pressure (H = h + z), h being 
matric suction potential and S is the sink. HYDRUS-1D software [18] modifies 
the one dimensional vertical flow equation by using cos α instead −1 represent-
ing downward gravity gradient. The α is the angle between the flow direction 
and the vertical axis with α = 0˚ for vertical flow and 90˚ for horizontal flow. 
HYDRUS-1D code numerically solves the water flow equation using the 
Galerkian-type linear finite element scheme.  

2.3.2. Soil Hydraulic Functions 
The single porosity model of van Genuchten (1980) [6] described soil hydraulic 
functions in terms of soil-water retention θ(h), parameters. It also predict un-
saturated hydraulic conductivity function from the statistical pore-size distribu-
tion model [5] shown in Equations (2) and (3). 

( )
{ }1

s r
r mn

h
h

θ θ
θ θ

+
= +

+ ∝
                     (2) 

( )
2

11
2 1 1

m

m
s e eK K S Sθ

  
 = − −     

                   (3) 

where θr and θs are residual and saturated water contents (mm·mm−1), respec-
tively; α is the air entry value also referred as bubble pressure [mm], n is the pore 
size distribution parameter [-], Ks is the saturated hydraulic conductivity, and l 
is a pore-connectivity parameter assumed to 0.5 [-]. The condition m = 1 − 1/n 
should be satisfied with the air entry value of −2 cm. 

Initial estimate of the van Genuchten [6] model water retention and hydraulic 
conductivity parameters of Maulem [5] were predicted using the Rosetta 
pedo-transfer model of Schaap et al. [19] constituted in the HYDRUS-1D soft-
ware [21]. Rosetta estimate retentive curve with good statistical comparability to 
known retention curves of other media with similar properties to the medium’s 
particle-size distribution and other soil properties [22].  

2.4. Inverse Modelling  

The HYDRUS-1D model have an inverse modelling capability and was required 
to optimise unknown parameters for van Genuchten [6] model characterising 
rainstorm infiltration in the water flow equation (Equation (1)). The objective 
function constituted residuals between observed and predicted soil water con-
tents at different depths and times and was minimised using the Leven-
berg-Marquardt nonlinear minimization method ([23] [24]). Mathematically, 
the objective function may be defined as  

( ) ( ) ( )
2*

1, , , ,N
i i i i ii W z t z tβ θ θ θ β

=
 = − ∑                 (4) 
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where ɸ(β) is the objective function of the parameter vector, β; θi* and θi are 
measured and predicted soil water contents, respectively; z is the depth; t is the 
time and N is the number of observations available; W is the weight of specific 
measurement by standard deviation. 

The surface horizon constituted the flow domain discretised into upper (0 - 
50) and lower (50 - 250 mm) layers with observation points at 30 mm and 230 
mm depths, respectively. HYDRUS-1D model predicts well infiltration proper-
ties near the surface but because of neglecting the effect of entrapped air on wa-
ter infiltration, it often underestimates the infiltration depth [25]. The 
two-layered horizon was discretised into 101 nodes with specified nodal density 
of 0.01 and 1 for the upper and lower layers. The high density of the near surface 
superficial layer was aimed to capture rapid changes in water contents by the 
advancing wetting front. Infiltration was initiated by atmospheric boundary 
condition with surface runoff and was maintained for period of the simulated 
rainstorm. Rainstorms intensity and zero values of evapotranspiration were 
specified. Free drainage was prescribed for the lower boundary condition and 
initial conditions given in terms of water contents measurements. Time discre-
tization was in minutes with 20 maximum number of iterations and initial time 
step of 0.01. 

To improve parameter identification and uniqueness for upper and lower lay-
ers the surface horizon, a two-step inverse parameter optimisation [17] was 
conducted. The first step estimated soil hydraulic optimal parameter values of 
the upper and lower surface horizon layers as separate independent layers. The 
second step estimated hydraulic parameters of a two-layered surface horizon 
simultaneously with optimal values from the first step as initial estimates. The 
Rosetta pedotransfer program contained in HYDRUS-1D estimated initial pa-
rameter values using soil type sand, silt and clay fractions and bulk density 
(Table 1). Time dependent soil-water contents measurements at 30 mm and 230 
mm were used in the objective function for the first and second step inversion. 
HYDRUS calculates infiltration-excess runoff in the absence of ponding by the sys-
tem-independent atmospheric boundary conditions. The surface water-infiltration 
flux was limited by the following two conditions [26]:  

( ) 1 ,hK h q
z
∂ + ≤ ∂ 

                     (5) 

,A Sh h h≤ ≤                          (6) 

where, q maximum potential infiltration flux under the current atmospheric 
conditions, h is the matric suction potential at soil surface, z is depth, K(h) is 
unsaturated hydraulic conductivity, and hA and hS are, respectively, minimum 
and maximum matric suction potential allowed under the prevailing soil condi-
tions.  

2.5. Sensitivity Analysis 

The objective function minimised in inverse parameter optimisation should 
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provide sufficient information about the unknown parameters to be identified 
[24]. This is only possible if the objective function is sensitive enough to track 
changes in the unknown parameters. The ability of the objective function to 
capture these variations presumably within the vicinity of true parameter values 
can be evaluated using sensitivity analysis. Various methods exist including the 
coefficient method or finite difference, a sensitivity equation method and a 
variation method [27]. Sensitivities between different parameters for selected 
model outputs was compared using the unit less coefficient method as normal-
ised by Simunek and van Genucthten [28] with 1% change effected on parame-
ters written as: 

( ) ( )
( ) ( )100 100

1.01
i j ii

ij j i j i
j j j

a e aa
e a Be a

β β β
β β β β

β β β

+ ∆ −∂
= = = + −

∂ −
   (7) 

where eij, is the change in the auxiliary variable ai corresponding to 1% change in 
parameter βj. Thereby β is the parameter vector, while ej is the jth unit vector. 
The parameter vector included the optimised θr, θs, α, n and Ks van Genuch-
ten-Mualem parameters. Sensitivities conducted involved soil water content, in-
filtration rates, accumulative infiltration, runoff rate and accumulative runoff. A 
high sensitivity suggested a well-defined minimum and the parameter can be 
optimised with greater certainty once the global minimum is verified.  

2.6. Statistical Analysis 

The HYDRUS-1D model performance assessed with the Nash-Sutcliffe model 
efficiency coefficient (NSE) [29] and root mean square error (RMSE). The NSE-
was calculated by the expression: 

( )
( )

2*
1

2*
1

1
N

i ii

N
i avei

NSE
θ θ

θ θ

=

=

−
= −

−

∑
∑

                    (8) 

where θ1 is the predicted soil water content; θ*1 is the observed soil water con-
tent; θave is the average soil water content of all the observed events, and N is the 
number of observations i.e., the number of measured events. 

The RMSE is widely used to measure agreement between the observed data 
and model prediction and represented by the expression: 

( )2*
1

N
i iIRMSE

N

θ θ
=

−
=

∑
                    (9) 

The Duncan’s multiple range test (DMRT) was used to compare infiltration 
rates and accumulation infiltration of the three soil types and simulated rain-
storms. The means were ranked from the highest to lowest values and ranks 
were compared to shortest significant ranges (Rp). The Rp was computed as fol-
lows:  

( )( )
2

p d
p

r s
R

−

=                         (10) 
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22
d

ss
r

− =                            (11) 

where rp, tabular values of the significant studentized ranges at 0.05, ds−  stan-
dard error of the mean difference and s is the variance [30].  

3. Results and Discussion 
3.1. Soil Water Content 

Time dependent soil water contents at 30 mm and 230 mm depth measured 
from simulated (high, medium and low) rainstorms were minimised in the ob-
jective function and results for the model fit at 30 mm depth were presented in 
Figure 3. The model was able to reproduce the water contents for the three soil 
types very well with NSE not falling below 0.99. The lower layer had constant 
water content values suggesting the infiltration-wetting front was not detected or 
unable to reach this depth (results not shown). In all soil types, soil water con-
tent decreased with rainstorm size with the Addo and Brandvlei having earliest 
and latest response times regardless of rainstorm size. The good fit by the 
HYDRUS-1D code was not surprising because the model’s ability to reproduce 
measured infiltration data either on bare or vegetated surfaces is well docu-
mented ([25] [31] [32] [33]). Although a good fit is desirable for the minimiza-
tion process, it is not sufficient for parameter identification because data used in 
the objective function directly or indirectly should relate to the unknown pa-
rameters ([24] [28]). Soil water content, pressure head and infiltration rate as 
well as accumulative infiltration data are acceptable for inverse parameter esti-
mation ([28] [34]). 
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(c) 

Figure 3. Observed (obs) and predicted (pred) soil water content at 3 cm depth from the 
Addo (a), Augrabies (b) and Brandvlei (c) soil types. Level of agreement represented with 
Nash-Sutcliffe model efficiency (NSE = 0.99) for the high, medium and low simulated 
rainstorms. 

3.2. Soil-Surface Water Infiltration 

Figure 4 and Figure 5 showed respective water infiltration rates and accumula-
tive infiltration of studied soils and rainstorms estimated by HYDRUS-1D in-
verse parameter optimisation procedure. Final infiltration rates and total infil-
tration rates were summarised alongside runoff parameters in Table 5. Final in-
filtration rates and accumulative infiltration decreased with rainstorm intensity 
and size in all soil types. This finding was consistent with the observation that 
higher rainstorm amounts and intensity resulted to higher final infiltration rate 
([35] [36] [37]). 

Initial infiltration rates declined sharply under the high rainstorm suggesting 
that the 1.62 mm·min−1 intensity was higher than soils infiltration capacity. The 
Addo and Augrabies approached steady infiltration rates after 20 minutes re-
cording final infiltration rates and total infiltration of 0.71 mm·min−1 and 34.8 
mm, and 0.91, mm·min−1 and 36.5 mm respectively. The lower infiltration values 
of the Addo was explained by the total fine silt plus clay content of 47.7% of the 
surface horizon compared to the 20.6% from the Augrabies. The Brandvlei had a 
constant initial infiltration rate for the first 5 min before declining to a final in-
filtration rate of 1.14 mm·min−1 and total infiltration of 50.51 mm. The 
Brandvlei higher infiltration capacity was consistent to the lower total fine silt 
plus clay content of 17.7%. Silt plus clay fraction were easily mobilised by 
high-energy raindrops into formation of surface crusts and seals that can reduce 
infiltration capacity by several orders of magnitudes ([38] [39] [40]). Although 
the high rainstorm had significantly (P < 0.05) higher final infiltration rates, 
these values were lower when compared to Ks from double ring infiltrometers 
(Table 4). Despite double rings overestimations, the lower than expected steady 
infiltration rates confirmed that rainfall amount and intensity influenced steady 
state infiltrability especially when intensity excess steady infiltration rate [41]. 

The medium rainstorm had constant initial infiltration rates in the first 10 
min from the Addo and Augrabies, and 15 min from the Brandvlei, before de-
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clining to significantly similar (P < 0.05) final infiltration rates of 0.38, 0.14 and 
0.38 mm·min−1, respectively. Corresponding accumulative infiltration were 22, 
15.2 and 22.5 mm, respectively. The Augrabies produced lower infiltration rates 
under the medium rainstorm, which were also indifferent when compared to the 
low rainstorm. This result was attributed to the higher surface bulk density (1.71 
g·cm−3) that supported low porosity and permeability. Compacted or crusted 
surfaces of 0.1 mm thick were observed to reduce final infiltration rates by more 
than 10 times [8]. Soils with surface crust of 1 mm thickness had final infiltra-
tion rate of 0.34 mm·mm−1 and crust thicker than 2 mm did not exceed 0.16 
mm·min−1 [42].  
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Soil surface infiltration rates of the Addo (a), Augrabies (b) and Brandvlei (c) 
soil types for high, medium and low simulated rainstorms. Statistical mean differences for 
the Duncan Multiple Range Test (P < 0.05) represented by different letter symbols.  
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(a) 

 
(b) 

 
(c) 

Figure 5. Accumulation infiltration of the Addo (a), Augrabies (b) and Brandvlei (c) soil 
types for the high, medium and low simulated rainstorms. Statistical mean differences for 
the Duncan Multiple Range Test (P < 0.05) represented by different letter symbols. 
 
Table 4. Soils saturated hydraulic conductivity (Ks) derived from double ring 
infiltrometers. 

Soil type 
Ks 

(mm·min−1) 
SD 

(mm·mm−1) 
CV 
(%) 

Addo 0.05c 0.002 4 

Augrabies 1.5b 0.491 33 

Brandvlei 2.02a 0.393 20 

Note: superscript letters, statistical different means depicted by different letters based on least significant 
Difference (LSD) mean separation test P ≤ 0.05; SD, standard deviation; CV coefficient of variation. 
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Table 5. Selected infiltration and runoff properties as predicted by inverse solution. 

Soil types Infiltration Time to runoff Final runoff rate Accumulative runoff 

 Rainstorms Rate Total Observed Predicted Observed Predicted Observed Predicted 

Addo High 0.71c 34.84 4 2.32 0.58 0.91 27.5 29.96 

 Medium 0.38d 21.97 11 12 0.04 0.14 3.82 4.02 

 Low 0.21e 13.39 22 23 0.02 0.06 1.45 1.73 

Augrabies High 0.91b 41.1 4 2.36 0.11 0.71 25.4 23.71 

 Medium 0.14de 15.18 9.3 10.5 0.06 0.38 10.43 10.82 

 Low 0.15e 12.71 19 27 0.03 0.12 2 2.41 

Brandvlei High 1.14a 50.51 4.33 6.11 0.35 0.47 13.97 13.88 

 Medium 0.38d 22.5 11.67 18 0.03 0.144 2.97 3.51 

 Low 0.18e 14 38 38 0.02 0.09 0.89 1.12 

Note: superscript letters, statistical different means depicted by different letters based on the Duncan Multiple Range Test (DMRT) mean separation test at 
95% confident intervals (P < 0.05). Superscripts letters also applicable for accumulative runoff (not shown). 

 
Under the low rainstorm, initial infiltration rates were constant in the first 20, 

25 and 35 min from the Addo, Augrabies and Brandvlei, respectively. Corre-
spondingly, final or steady infiltration rates and total infiltration were 0.21, 0.15 
and 0.18 mm·min−1 and 13.4, 12.7 and 14 mm, respectively. The longer constant 
initial infiltration rates showed that the low rainstorm intensity of 0.27 
mm·min−1 was close to soil-types infiltration capacity, hence steady infiltration 
rates were significantly similar (P < 0.05). However, this result was not surpris-
ing because as rainstorm decreases the wetting rate and infiltration curve de-
creases slowly resulting to lower final infiltration rates ([37] [43]). Interestingly, 
the Addo despite a finer texture had a higher final infiltration rate: a phenome-
non that can be attributed to mineralogy and distribution of exchangeable 
cations. The surface horizon had exchangeable cations of calcium (7650 mg·kg−1) 
and magnesium (1340 mg·kg−1) recognised as good flocculators versus ex-
changeable sodium (60 mg·kg−1) with high dispersivity. Such a distribution fa-
voured a stable than dispersive surface aggregates, which supported infiltration 
especially under less disruptive rainstorm intensity. Stern et al. [44] observed 
that final infiltration rates greater than 0.13 mm·min−1 were associated with sta-
ble aggregates while less than 0.08 mm·min−1 characterised dispersive soils. In 
this study, final infiltration rate was greater than 0.13 mm·min−1 from all soil 
types suggesting that distribution of exchangeable cation did not favour disper-
sive infiltration reduction. However, in less dispersive soils, surface crusting and 
rainfall characteristics controlled final infiltration rates [39]. Prevalence of finer 
aeolian sand fractions under arid drylands climates favoured surface crust for-
mations in South Africa soils ([45] [46]). 

3.3. Water Infiltration-Unsaturated Hydraulic Conductivity 

Figure 6 shows predicted van Genuchten-Mualem model K(θ) of the Addo, 
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Augrabies and Brandvlei upper surface horizons. Corresponding Ks values de-
termined with double ring infiltrometersis presented in Table 4. Saturated hy-
draulic conductivity between soil types were significantly different with the least 
(0.05 mm·min−1) and highest (2.02 mm·min−1) from the Addo and Brandvlei, 
respectively. Unsaturated hydraulic conductivity of soil types showed greater 
variation among rainstorms at near saturation. Corresponding K(θ) values at 
near saturation of the Addo, Augrabies and Brandvleifor high, medium and low 
rainstorms are 0.66, 0.23 and 0.11 mm·min−1, 0.09, 0.03 and 0.02 mm·min−1, and 
0.53, 0.16 and 0.07 mm·min−1, respectively. The result showed that K(θ) function 
at near saturation increased with rainstorm amount and intensity suggesting 
volume of hydraulic active pores increases with rainstorm size until rainstorm 
intensity excess steady infiltration rate ([35] [37] [43]). The K(θ) values at near 
saturation of the Augrabies and Brandvlei under high rainstorm were respective 
lower by 1.41 and 1.49 mm·min−1 when compared to corresponding Ks values. 
Such a reduction in near saturation conductivity is explained by the breaking 
down and slaking of soil surface aggregates by raindrop energy impact, which 
can reduce Ks exponentially [47]. Nciizah and Wakindiki [47] and Fohree, et al. 
[48] also observed that physical properties of surface crusts affecting K(θ) during 
and between rainstorms were always changing. This phenomenon explained the 
inter-changes of K(θ) functions between high and medium rainstorms from the 
Addoand, between medium and low rainstorms from the Augrabies and 
Brandvlei soil forms. Apart from these interchanges, K(θ) under all rainstorms 
merged at lower water contents suggesting rainstorms affected soil infiltration 
properties at near saturation water contents. 

3.4. Soil Surface Runoff 

In addition to soil-types infiltration, Table 5 presented observed and predicted 
time to runoff, final runoff rate and accumulative runoff. Even though runoff 
data was not part of the objective function, HYDRUS-1D model generated infil-
tration-excess runoff using Neumans type system-dependent conditions (Equa-
tions (5) and (6)). Figures 7-9 presented a 1:1 line comparing observed and pre-
dicted runoff rates and accumulative runoff for the Addo, Augrabies and 
Brandvlei, respectively. The model predicted poorly (NSE ≤ 0.27) rainstorm 
runoff rates for all soil types. However, prediction of accumulative runoff was 
satisfactory with NSE ranging from 0.53 to 0.98. Model prediction was highest 
and lowest for medium and lower rainstorms, respectively. In all cases, the 
model overestimated runoff rates and total runoff production, a phenomenon 
attributed to the exclusion of ponding conditions. 

Due to shorter simulation periods (≤56 min), ponding was assumed to be 
negligible at small plots scale. Presence of dry and dormant vegetation on plots 
that can influence surface water storage and delay time to runoff [49] were not 
specified as part of the upper boundary conditions, hence the model runoff 
overestimation. Nevertheless, spatiality of vegetal cover and surface roughness 
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in-situ can make ponding parameter(s) difficult to determine [21]. Agreement 
between observed and predicted accumulative runoff was sufficient though to 
describe soil-type surface runoff properties using optimised parameters. How-
ever, this should be done with caution only applicable for the prevailing soil sur-
face condition. 
 

 
(a) 

 
(b)                                         (c) 

Figure 6. Unsaturated hydraulic conductivity estimated from inverse solution of the Addo 
(A), Augrabies (B) and Brandvlei (B) soil types for High, Medium and Low rainstorm 
treatments. 
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(a) 

 
(b) 

Figure 7. Measured and predicted runoff rate (a) and accumulative runoff (b) of the Ad-
do for High (H), Medium (M) and Low (L) rainstorms. 

 

 
Figure 8. Measured and predicted runoff rate (a) and accumulative runoff (b) of the Au-
grabies for High (H), Medium (M) and Low (L) rainstorms.  
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Figure 9. Measured and predicted runoff rate (a) and accumulative runoff (b) of the 
Brandvlei for High (H), Medium (M) and Low (L) rainstorms. 
 

The Brandvlei had longest time to runoff (4.3 to 38 min) for all rainstorms 
while the Addo and Augrabies had shortest times for the high and lower rain-
storms, respectively. Total runoff increased with opportunity time making the 
Addo and Augrabies to have highest runoff for the respective high (27.5 mm) 
and lower (2.41 mm) rainstorms. This result collaborated with the higher total 
fine silt plus clay (47.7%) fraction of the Addo and bulk density (1.76 g·cm−3) of 
the Augrabies; observed earlier in this study as factors that reduced infiltration. 
Soils with high quartz fraction like in the Augrabies have poor bonding proper-
ties to protect aggregates against raindrop impact and hence, are highly disper-
sive and susceptible to surface crusting [42]. Total clay plus fine silt was lowest 
(17.7%) from the Brandvlei suggesting clogging of hydraulic pores by fine sedi-
ments was too low to affect infiltration a sentiment that was shared by Lado et al. 
[50]. In addition, excluding course and medium fractions, the Brandvlei had to-
tal sand fraction of 76% suggesting it had more uniform particle size distribution 
a property that discouraged translocation of dispersed fine articles and deposi-
tion into voids. Such a property is common among the wind-blown sands of arid 
and semi-arid regions of South Africa and in the absence of impervious under-
lying horizon, these soils supported deep infiltration and drainage ([50] [51]). 
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3.5. Soil Surface Hydraulic Parameters  

Table 6 presented initial and optimised parameters of the Genucthen-Mualem 
model for the respective Addo, Augrabies and Brandvlei soil forms at 30 mm 
and 230mm depths. Inverse parameter optimisation was able to minimise objec-
tive function from the Addo, Augrabies and Brandvlei with RMSE not higher 
than 0.01. Initial and optimised parameters were considerable different among 
soil types and rainstorms with the exception of θr in the Addo and Brandvlei. 
The Addo and Bransdvlei were initially described as the least (Ks = 0.05 min−1) 
and most (Ks = 0.23 mm·min−1) permeable, respectively. However, optimised Ks 
values described the Addo as the most permeable (Ks; 0.11 to 0.78 mm·min−1) 
and the Augrabies as least permeable (Ks; 0.2 to 0.52 mm·min−1). This result 
showed that parameters derived from theoretical pedo-transfer functions were ill 
posed for describing soil-water dynamic processes in-situ. Soil heterogeneity and 
occurrence of superficial crusted surface layers and variability in atmos-
pheric-surface boundary conditions are among the common reasons ([52] [53] 
[54]). Nevertheless, parameters estimated from laboratory soil-water retention 
curves and pedo-transfer functions provided reliable initial parameter estimates 
foroptimisation of unknown parameters ([11] [55]).  
 

Table 6. Initial soil hydraulic parameters obtained from Rosetta-code and final optimised parameters obtained by HYDRUS-1D 
inverse solution for the upper and lower surface horizon under high, medium and low rainstorm treatments. 

Soil parameters High rainstorm Medium rainstorm Low rainstorm 

Addo Rosetta 3 cm 23 cm RMSE 3 cm 23cm RMSE 3 cm 23cm RMSE 

Qr 0.07 0.07 0.07 0.001 0.07 0.07 0.002 0.07 0.07 0.002 

Qs 0.39 0.43 0.41 0.001 0.42 0.41 0.002 0.43 0.46 0.002 

alpha 0.002 0.007 0.007 0.001 0.008 0.007 0.002 0.007 0.007 0.002 

n 1.46 1.674 1.856 0.001 1.808 1.890 0.002 1.765 1.890 0.002 

Ks 0.05 0.66 0.78 0.001 0.23 0.74 0.002 0.11 0.72 0.002 

L 0.50 5.81 0.24 0.001 0.0003 0.25 0.002 0.00002 1.96 0.002 

Augrabies 
          

Qr 0.05 0.07 0.07 0.005 0.07 0.06 0.001 0.07 0.07 0.003 

Qs 0.32 0.43 0.45 0.005 0.42 0.45 0.001 0.42 0.45 0.003 

alpha 0.004 0.002 0.002 0.005 0.002 0.002 0.001 0.002 0.002 0.003 

n 1.33 2.680 1.410 0.005 2.680 1.410 0.001 2.919 2.680 0.003 

Ks 0.10 0.33 0.51 0.005 0.03 0.06 0.001 0.02 0.03 0.003 

L 0.50 0.50 6.03 0.005 0.17 0.73 0.001 0.00002 0.80 0.003 

Brandvlei 
          

Qr 0.05 0.04 0.05 0.011 0.04 0.04 0.002 0.04 0.04 0.003 

Qs 0.343 0.41 0.43 0.011 0.44 0.41 0.002 0.41 0.41 0.003 

alpha 0.0031 0.011 0.014 0.011 0.011 0.011 0.002 0.007 0.011 0.003 

n 1.4869 2.801 2.680 0.011 2.801 2.801 0.002 3.857 2.801 0.003 

Ks 0.23 0.60 1.915 0.011 0.17 0.45 0.002 0.07 0.111 0.003 

L 0.5 0.50 0.00003 0.011 0.000001 0.000001 0.002 2.19 0.109 0.003 
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Optimised parameters varied considerably for upper and lower surface hori-
zons. The Ks fitted for upper layer was always lower when compared to the 
lower surface horizon. This result showed that the soil surface was susceptible to 
compaction and raindrop impact especially under higher rainstorm intensities 
[33]. Lower Ks values of the upper surface horizon corresponded with lower θs 
for the Augrabies and Brandvlei soil forms under the high rainstorm in particu-
lar. Higher surface bulk density of not less than 1.67 g·cm−3 and disruptive power 
of high intensity raindrop were the reasons. Despite the initially higher α pa-
rameters, which represented the coarseness of the Augrabies (0.004) and 
Brandvlei (0.003), the optimised α values for the former was remarkably lower 
(0.002). The lowest α parameter depicted the Augrabies as a fine textured soil 
because of higher bulk density of 1.76 g·cm−3, which reduced permeability and 
porosity for the upper surface horizon in particular. Larger n parameter repre-
sented greater pore-size distribution uniformity. The Addo had lowest n pa-
rameter (1.674 to 1.890) and were always lower in the upper compared to lower 
surface horizon. This result corresponded to the lower bulk density (1.52 g·cm−3) 
and higher total fine silt and clay (47.7%). Bonding and cementing properties of 
clays improved aggregate stability and inter-aggregate porosity [56]; a phe-
nomenon that supported higher θs parameter for the Addo’s upper horizon es-
pecially under the higher intensity rainstorms. Aggregate stability against dis-
persion in the Addo was also supported by large exchangeable magnesium and 
calcium compared to exchangeable sodium [57].  

Larger n parameter (2.801 to 3.857) characterised the Brandvlei followed by 
the Augrabies (2.680 to 2.919). Greater uniformity depicted by larger n values 
for the Brandvlei collaborated with the 76% total sand fraction excluding course 
and medium sand fraction. In addition to larger n parameter, larger α parameter 
(0.007 to 0.14) described the Brandvlei surface horizon suggesting it was a uni-
formly course textured soil. This description supported the higher infiltration 
and lower runoff of the Brandvlei from all rainstorm treatment. 

3.6. Parameter Sensitivity  

Sensitivities of soil water content (θ), infiltration rate (I), accumulative infiltra-
tion (Z), runoff rate (Ror) and accumulative runoff (Acc. Ro) to 1% change in 
optimised parameters for the medium rainstorm were presented in Figures 
10-12 for the Addo, Augrabies and Brandvlei soil forms, respectively. Similar 
results were observed under the high and low rainstorms (data not 
shown).Sensitivities of model output to 1% change in parameters were notice-
able at two infiltration stages; firstly, passing of wetting front at 30 mm depth 
resulting to a sharp rise in θ and secondly, when θ approached near saturation 
values. Table 7 also showed model output sensitivity to 1% change in hydraulic 
parameters as inferred from the RMSE. Deviation of RMSE from the optimised 
value due to 1% change in parameters was limited to θs and Ks parameters had 
greater influence on model output. Considerable deviation was from the Addo 
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and Brandvlei with the latter higher RMSE suggesting model output showed 
greater parameter sensitivity. 
 
Table 7. Effect of 1% change in parameters on models output for the medium rainstorm 
as inferred from the Root Mean Square Error (RMSE). 

Parameters Addo Augrabies Brandvlei 

 RMSE RMSE RMSE 

Optimised value 0.002 0.001 0.0015 

Qr 0.011 0.001 0.006 

Qs 0.004 0.002 0.003 

Alpha 0.003 0.001 0.007 

N 0.003 0.001 0.012 

Ks 0.003 0.005 0.006 

 

 
Figure 10. Addo soil type sensitivity coefficients (SCs) of soil water content (θ), infiltra-
tion rate, I(t), accumulative infiltration (Z), runoff rate (Ror) and accumulative runoff 
(Acc Roac) at 3 cm depth to 1% change in parameters θr, θs, alpha, n and Ks. 
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Figure 11. Augrabies sensitivity coefficients (SCs) of soil water content (θ), infiltration 
rate, I(t), accumulative infiltration (Z), runoff rate (Ro) and accumulative runoff (Acc Ro) 
at 3 cm depth to a 1% change in parameters θr, θs, alpha, n and Ks. 
 

Sensitivities of soil water content to 1% change in parameters were highly 
variable among soil types. In the Addo, soil water content sensitivity to all pa-
rameters was limited to the first 15 minutes with well-defined peaks at 10 min-
utes of 0.02 and 0.01 for respective θr and θs after which became constant. Soil 
water content from the Augrabies showed greater sensitivity to θs and Ks after 
10 minutes reaching respective peaks of 0.005 and 0.007 at 15 and 30 minutes, 
consecutively. Brandvlei soil water contents after 15 minutes showed sensitivity 
to all with the least being n parameter. Only θs had a well-defined peak at 18 min 
of 0.006 while α, θr and Ks parameters increased with time reaching respective 
peaks of 0.009, 0.008 and 0.007, before assuming nearly constant trends. Sensi-
tivity of soil water content to Ks appeared to increase with infiltration time espe-
cially for the Augrabies and Brandvlei, soils forms, and both clay content of less 
than 20% in all their horizons.  
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Figure 12. Blandvlei’s sensitivity coefficients (SCs) of soil water content (θ), infiltration 
rate, I(t), accumulative infiltration (Z), runoff rate (Ro) and accumulative runoff (Acc Ro) 
at 3 cm depth to a 1% change in parameters θr, θs, alpha, n and Ks. 
 

Sensitivities of infiltration rates to 1% change of parameters was characterised 
by defined peaks after detection of the wetting front with some parameters in-
creasing sensitivity with time. In the Addo, except n parameter, parameters had 
distinct peaks within 12 to 20 minutes after which all parameter sensitivity to in-
filtration rate were diffused to nearly constant rates of less than 0.004. Soil water 
content displayed a different parameter sensitivity for the Augrabies and 
Brandvlei. Infiltration rate showed greater sensitivity to θs and Ks that increased 
after the 25 min time mark to reach sensitivities of 0.18 and 0.23, respectively. 
From the Brandvlei, all parameters had definite peaks at 18 minutes with the α, 
θr and Ks assuming sensitivities that increased with time after the 20 min time 
mark suggesting that increasing infiltration time measurement would have im-
proved these parameters information. However, research has showed that sensi-
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tivity of infiltration rate to hydraulic parameters was limited to the period when 
of detecting wetting front to the time when gravity began to influence infiltra-
tion [58]. This conditions appeared to apply in the Addo which was least af-
fected by surface compaction and raindrop impact. However, in the Augrabies 
and Brandvlei sensitivity of infiltration rate to parameters extended over longer 
period especially for θs and Ks. Clogging of pores and densification due to rain-
drop impact on soils with higher (≥72%) sand fraction was the reason. Parame-
ter sensitivity showed by runoff rates was similar to that of infiltration rates for 
the respective soil types. This observation suggested that estimated soil hydraulic 
parameters from prescribed near-surface time-variable soil-moisture and at-
mospheric boundary conditions with surface-runoff represented the partitioning 
of rainwater infiltration and runoff fluxes.  

Sensitivities of accumulative infiltration from soil types increased with time 
following rapid increase in soil water content. For the Addo sensitivities in-
creased after 12 min from all parameters reaching 0.189 for α parameter by the 
end of the infiltration. Despite Ks being the least sensitive from the Addo, it was 
the most sensitive along with θs in the Augrabies increasing after the 30 min 
time mark to reach 0.447 the highest realised from this study. This trend would 
have continued further with time suggesting that increasing duration of the in-
filtration experiment would have improved parameter identification especially 
θs and Ks parameters. Simunek and van Genuchten [28] shared the same senti-
ment and indicated that benefit of information gained by extending duration of 
the infiltration experiment was limited to the occurrence of steady state condi-
tions. In the Brandvlei sensitivity of accumulative infiltration to θs and Ks had 
well-defined peaks of 0.26 at the 8 min time mark. However, after the 25 min 
mark sensitivity to α and θr parameters increased with time a phenomenon that 
collaborated with the notion that measurements taken further with time would 
improve information about unknown parameters [28]. Parameter sensitivities of 
accumulative runoff showed similar trends to that of accumulative infiltration. 
This was not surprising given soil hydraulic parameters that encouraged infiltra-
tion had opposite effect on runoff. 

4. Conclusions 

Surface horizon hydraulic parameters controlling water infiltration and runoff of 
the van Genuchten-Mualem analytic model were estimated from three flood-
plain soil types using HYDRUS-1D model. A two-step inversion approach was 
used to estimate optimal parameter values for a two-layered surface horizon dis-
cretised at 0 - 50 mm and 50 - 250 mm depths. Inversion of time dependent soil 
water contentinfiltration measurements from the high, medium and low rainfall 
simulated experiments were satisfactory from all soil types with the Nash-Sutcliffe 
model efficiency coefficient (NSE) of not less than 0.99. Overestimation of run-
off rates (NSE; 0.27) and accumulative runoff (0.53 ≤ NSE ≤ 0.98) was suggestive 
that inclusion of transient water infiltration data was insufficient for the water 
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infiltration-runoff inverse problem. Inclusion of additional data to define the 
inverse problem such as ponding and surface water-storage parameters would 
require more computational time but considerably improve inverse solution and 
agreement between measured and predicted runoff data.  

The upper surface horizon had highly optimised and variable parameters es-
pecially θs and Ks. Higher soil-surface bulk density (≥1.69 g·cm−3) had optimal 
Ks values lower by at least one order of magnitude to the double ring infiltro-
meters. This finding showed soil surface compaction and sedimentary crust to 
be important factors of influence for saturated hydraulic parameters, which also 
determined floodplain soil-type infiltration and runoff characteristics. Consid-
ering longer rainfall simulation, periods to attain saturation and steady state 
conditions would therefore improve model prediction of floodplain soil-types 
water infiltration and runoff. Significant differences (P < 0.05) in soil-types infil-
tration rates and accumulative infiltration under the simulated high rainstorm 
confirmed that surface crusting and sealing was an important factor in dryland 
floodplain water infiltration-runoff characteristics. Optimal parameter values 
were typical of fine textured, compacted sands and uniformly course textured for 
the respective Addo (Greysols), Augrabies (Ferralsols), Brandvlei (Cambisols) 
soil types. 
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List of Notation and Symbols  

The following symbols are used in this paper: 
ai = auxiliary variable; 
α = air entry value also referred as bubble pressure; 
β = parameter vector; 
βj = specific parameter; 
P < 0.05 = probability at 5% level of significance 
≥ = greater than or equal to; 
≤ = less than or equal to;  
∂ = partial differential; 
ɸ = objective function; 
cosα = angle between the flow direction and the vertical axis; 
ej = jth unit vector; 
h = metric suction potential; 
hA = minimum pressure head; 
hS = maximum pressure head; 
H = is the soil-water pressure head relative to atmospheric pressure; 
K(h) = matric suction based unsaturated hydraulic conductivity; 
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K(θ) = water content based unsaturated hydraulic conductivity; 
Ks = saturated or steady state hydraulic conductivity; 
l = pore-connectivity parameter assumed; 
m = empirical parameter 
N = number of observations; 
n = pore size distribution parameter; 
θ = volumetricwater content; 
θave = average soil water content; 
θr = residual soil water content; 
θs = saturated soil water content; 
θi* = observed soil water contents; 
θi = predicted soil water contents; 
q = water flux through a specified flow domain also depicted; 
Rp = shortest significant ranges; 
rp = tabular values of significant studentized ranges; 
S = sink; 
s = variance; 

ds−  = standard error of the mean difference; 
t = time; 
W = weight by standard deviation; 
z = depth; and,  
Z = vertical down wide direction or gravitational potential. 
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