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Abstract 
Rain gauge data suffers from spatial errors because of precipitation variability 
within short distances and due to sparse or irregular network. Use of interpo-
lation is often unreliable to evaluate due to the aforementioned irregular 
sparse networks. This study is carried out in the Nette River catchment of 
Lower Saxony to alleviate the problem of using gauge data to measure the 
performance of interpolation. Radar precipitation data was extracted in the 
positions of 53 rain gauge stations, which are distributed throughout the 
range of the weather surveillance radar (WSR). Since radar data traditionally 
suffers from temporal errors, it was corrected using the Mean Field Bias 
(MFB) method by utilizing the rain gauge data and then further used as the 
reference precipitation in the study. The performances of Inverse Distance 
Weighting (IDW) and Ordinary Kriging (OK) interpolation methods by 
means of cross validation were assessed. Evaluation of the effect of the gauge 
densities on HBV-IWW hydrological model was achieved by comparing the 
simulated discharges for the two interpolation methods and corresponding 
densities against the simulated discharge of the reference precipitation data. 
Interpolation performance in winter was much better than summer for both 
interpolation methods. Furthermore, Ordinary Kriging performed marginally 
better than Inverse Distance Weighting in both seasons. In case of areal preci-
pitation, progressive improvement in performance with increase in gauge 
density for both interpolation methods was observed, but Inverse Distance 
Weighting was found more consistent up to higher densities. Comparison 
showed that Ordinary Kriging outperformed Inverse Distance Weighting only 
up to 70% density, beyond which the performance is equal. The hydrolog-
ical modelling results are similar to that of areal precipitation except that for 
both methods, there was no improvement in performance beyond the 50% 
gauge density. 
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1. Introduction 

Hydrological modelling to simulate historical discharges and to forecast future 
runoff is extensively used as a tool to understand catchment processes and to 
optimize water allocation and management. The gauge network is a key driver in 
hydrologic modelling to characterize discharge [1]. A real time rainfall estima-
tion helps to predict groundwater recharge estimations under different hydro-
logical conditions and plays even a vital role in agriculture water management 
(e.g. [2] [3]). Rain gauges provide rainfall measurements at individual points but 
different uncertainties are associated with the use of gauge data to estimate rain-
fall with appropriate temporal and spatial scale variation at basin scale [4]. Even 
if rain gauges are equipped with real-time rainfall information at very fine tem-
poral resolution under the help of automatic rainfall recording equipment, it is 
still a challenge to characterize the spatial variation of rainfall without a network 
of well-defined rain gauges in the catchment [5]. Accuracy of precipitation data 
input has a direct bearing on the performance of models. In many countries, the 
choice of the location of rain gauges is not planned nationally but rather is an 
ad-hoc localized process. This leads to irregular and inefficient allocation of 
gauges. To provide information in ungauged locations, physically- or statistical-
ly-based hydrological models are popular estimation tools [6] [7]. Due to the 
sparse or irregular location of the station, inherent error when carried forward 
to the hydrological process may lead to inaccurate hydrological modelling re-
sults. To anticipate spatial inaccuracies of gauge data, it was thought that with 
the introduction of precipitation measuring radar, continuous spatial informa-
tion of precipitation could lead to more accurate measurements. Drop size and 
type of precipitation plays a major role as radar measures the precipitation on 
the basis of rainfall reflection rate intensities. Although radar provides precipita-
tion information at longer ranges, higher temporal resolution and continuous 
spatial information also suffers measurement errors among which include clut-
ter, bright band effect (a dark region in range height indication (RHI) scans due 
to melting of precipitation as it descends) and volume errors [8].  

Methods have been developed in several studies which either merge or inter-
polate data from the two measurement methods or correct the data using infor-
mation from either measurement method. Merging or interpolation methods 
can either be univariate or multivariate. The common univariate methods are 
Nearest Neighbour, Thiessen Polygon and Inverse Distance methods, Ordinary 
Kriging (OK) and Indicator Kriging (IK) while the multivariate methods are 
Kriging with external Drift (KED) [9]. A review by Goudenhoofdt and Delobbe 
[10] discussed other methods such as Mean Field Bias Correction, Range de-
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pendant adjustment, Brandes Spatial Adjustment, Static local bias correction and 
range dependent adjustment (SRD), Ordinary Kriging, Conditional Merging and 
Kriging with external drift. To acquire spatially continuous precipitation infor-
mation where only point data is available requires interpolation of the point data 
using the aforementioned methods. The accuracy of interpolation is usually de-
termined using the cross validation method. However, if the distribution of the 
gauge stations is irregular or if they are too few, the results of the cross validation 
method become irrelevant because of non-representativeness [11]. In this situa-
tion, the determination of the interpolation accuracy can be evaluated by using 
the interpolated data as an input in a hydrological model. A study by Amin 
Daghighi [12] tested two machine learning techniques by using Stepwise Multi-
ple Regression (SMR) and Genetic Programming (GP), to forecast monthly 
harmful algal blooms (HAB) indicators in Western Lake Erie from July to Octo-
ber. The SMR models showed a correlation coefficient increase from 0.71 to 0.78 
when extending the training period. The GP models followed a similar trend in-
creasing the overall correlation coefficient from 0.82 to 0.96. A study by Gascon 
et al. [13] used the data produced by a very dense rainfall network covering the 
Ouémé catchment in Benin and studied the impact of varying the spatial and 
temporal resolution of input rain fields on the output produced by DHSVM 
(Distributed Hydrology Soils and Vegetation Model), thus representing the 
resolution induced errors associated with using satellite rainfall input for physi-
cally based models. Result of this sensitivity analysis showed that the model 
output is more sensitive to the temporal resolution than to the spatial resolution, 
at least for this region and for the range of resolutions tested. A study by Buy-
taert et al. [14] in the Ecudarian highlands showed OK performed better than 
Thiessen Polygon. Goovaert [15] compared multivariate Kriging methods with 
additional elevation information against univariate IDW, Thiessen polygon and 
OK methods with the two deterministic methods performing worst. However 
other studies such as Otieno et al. [16] in a British catchment showed that OK 
and IDW performed similarly well. Study compared the influence of three dif-
ferent gauge densities on performance of a geostatistical and deterministic in-
terpolation methods and found progressive improvement in performance with 
every increase in gauge density. Dirks et al. [17] compared Kriging method with 
IDW, Thiessen and Areal mean method in a catchment with dense gauge net-
work and the results showed IDW performed best. The influence of precipita-
tion interpolation methods on hydrological modelling results show mixed re-
sults. A study using the Hydrostrahler model in a West African catchment by 
Ruelland et al. [18] showed that the IDW method performed much better than 
OK and Thiessen methods. Haberlandt and Kite [19] using the SLURP model 
compared geostatistical and deterministic methods found the former performing 
better. A similar study by Villarini et al. [20] evaluated the effect of both tempo-
ral resolution and gauge density on the performance of remotely sensed precipi-
tation products and the results showed progressive improvement with increasing 
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density. Similar studies with similar results were carried out by Berndt et al. [21] 
which compared among other things the influence of temporal resolution and 
gauge density on variety of interpolation methods. Duncan et al. [22], using only 
Thiessen interpolation method, evaluated the effect of gauge density on a hy-
drological model with results indicating performance improves with increase in 
density by a power law. The results were not so definitive in a study by Krajewski 
et al. [23] where two models and temporal resolution of precipitation input and 
the gauge density were compared. Results showed that the higher the gauge 
counts the better the simulation accuracy and improvement was not dramatic 
between low and high densities. From the foregoing, it is apparent that studies to 
determine the best methods of merging radar and rain gauge precipitation data, 
the accuracy of rainfall interpolation methods, the influence of gauge density on 
hydrological models have been carried out. However, studies to evaluate the in-
fluence of rain gauge density and interpolation methods on the performance of 
hydrological models are missing.  

This study is based in the Nette River catchment in the Lower Saxony state of 
Germany. It is a small catchment of approximately 300 km2 within the range of 
the Hannover weather radar which covers a radius of 128 km. The precipitation 
data of the period between 2006 and 2010 from the radar station was interpo-
lated after being extracted at the locations of the rain gauge stations, totalling 53, 
within its coverage. To reduce the temporal inaccuracies inherent in radar data 
before the extraction of the radar data, it was corrected using the Mean Field 
Bias (MFB) method and aggregated from five minute to hourly precipitation. 
The extracted and corrected radar data was then used as the reference precipita-
tion data against which the performance of the interpolated data was compared. 
The performance of two interpolation methods, Ordinary Kriging (OK) and In-
verse Distance Weighting (IDW), were compared by means of Cross Validation 
method. The problem of non-representativeness is avoided because the interpo-
lated data is compared against the spatially continuous radar. As the use of radar 
for precipitation measurement is influenced by the drop size, seasonal variation 
of precipitation type in summer and winter affects accuracy of measurement. 
Therefore, the effect of seasons on interpolation was examined. The rain gauge 
densities chosen for this study were 25%, 50%, 70%, 80%, and 100%. For each 
density, the equivalent number of gauges was randomly picked ten times so that 
each interpolation method had 41 data series. This was then used to calculate 
areal precipitation for the study area and eventually hydrological modelling us-
ing the HBV-IWW model.  

The HBV-IWW hydrological model is a conceptual, semi-distributed hydro-
logical model. It is partitioned into snow, soil and response routine. The inputs 
required in the model include surface temperature, areal precipitation, potential 
evapotranspiration, actual evapotranspiration and soil moisture content. Re-
quired parameter includes soil field capacity, soil runoff threshold, wet snow 
melt factor (wsmf), threshold temperature, and shape response parameter. For 
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the river routing routine, the Muskingum method is used. Usually evaluating 
model performance involves comparing actual observed discharge against the 
simulated discharge. This process involves calibration and validation of the pa-
rameters to best describe modelled catchment conditions. In contrast, this study 
used previously determined optimum parameters and no calibration or valida-
tion carried out. This is because the comparison was not against actual measured 
discharge but against the discharge from the reference precipitation data. This 
means that for every sub-catchment, the only input or parameter that changed is 
the precipitation data. The simulated discharge from modelling using precipita-
tion data from the two interpolation methods and the different gauge densities 
were therefore compared with those from the reference precipitation data to 
evaluate the main objective of the study. 

2. Materials and Methods 
2.1. Location, Climate, Hydrology and Topography 

The basin area under study is the Nette River catchment. It is located in the 
Northern part of Germany in the state of Lower Saxony as illustrated in Figure 1 
(left). It is part of the larger Wesser River system and covers an area of 49,000 
km2. The main tributary of the Wesser River system is the Aller River, of which 
the Leine River is a major tributary. 

The Aller/Leine River basin is located in the South-Eastern part of Nieder-
sachsen with an area of over 15,803 km2. The elevations in the basin range be-
tween 5 masl near the outlet to the North Sea to 1140 masl at the headwaters in 
the Harz Mountains. Land use at the headwaters is mainly forestation. The annual 
precipitation is high and is characterised by frost in winter the season. Agricul-
ture uses approximately 58.2% of the land while forests cover another 32.5% [24]. 
Nette River basin lies between the Northing 5,743,100 and 5,773,700 and Easting 
3,571,200 and 3,586,900 (Deutsces_Hauptdreiecksnetz_Transverse_Mercator 
coordinate system). The basin has an area of approximately 300 km2 measured at 
the Derneburg river gauging station (No. 4886156). The mean basin elevation is 
206 masl. The highest elevation of the basin is approximately 621 masl and 92 
masl at the lowest location shown in Figure 1 (right). The Nette basin climate 
characteristics are of a typical temperate oceanic with pronounced winter and 
summer seasons. Mean annual precipitation and mean monthly temperature is 
872 mm and 9.29 degrees Celsius respectively [25]. The climate graph of the 
nearby Hannover City in Figure 2 shows increased precipitation in the summer 
months, high frost and relative humidity in winter and near equal average wind 
speed throughout the year. 

2.2. Description of the Data 
2.2.1. Precipitation  
There are 53 rain gauge stations and one radar station data used in the study. 
The radar coverage range is 128 km, and all the gauge stations are within the  
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Figure 1. Location of the Nette River basin (left) and Nette River basin topography (right). 

 

 
Figure 2. Hannover city climate graph [26]. 
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circumference, as shown in Figure 3, with data for a period of five years 
(2006-2010). Both sets of data are of 5-minute temporal resolution, although this 
was later aggregated to hourly resolution during analysis. Only one rain gauge 
station is located within the study basin. The rain gauge information is only used 
to extract the radar precipitation data. 

2.2.2. Correction of Radar Data 
Radar precipitation data is prone to errors such as ground clutter, anomalous  
 

 
Figure 3. Rain gauge and radar location. 
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propagation, non-precipitation signals and bright band effects (due to melting of 
precipitation as it descends). During the same precipitation event, the drop size 
distribution within the storm can vary. This phenomenon introduces random 
multiplicative bias in the radar precipitation measurement. Satellite-based quan-
titative precipitation estimate (QPE) is associated with various uncertainties 
such as the errors in bias correction processes, observation and satellite retrieval 
[27]. The quality of satellite-based QPEs not only affects the precipitation dis-
tribution accuracy, but also effects the hydrologic outputs through interaction 
with the hydrologic processes in hydrologic models ([28] [29]). Because of the 
multiplicative errors inherent in radar data, it causes underestimations and 
overestimations. To correct this, two methods can be applied: merging it with 
gauge data sets or using the gauge data to correct it. To merge the two datasets, 
methods such as Co-Kriging, Kriging with External Drift [9], Conditional 
Merging [21] have been used to transform the radar data according to gauge da-
ta, Box-Cox transformation, Q-Q transformation [30]. In this study, the Mean 
Field Bias Correction method advanced by Chumchean et al. [31] was used. 

2.2.3. Mean Field Bias Correction (MBF) 
Rain gauge precipitation data often suffers from spatial inaccuracies while radar 
data suffers from temporal errors. A study by Berndt et al. [21] compared the 
performance of gauge only data and merged gauge-radar precipitation data. The 
results showed that smoothed/merged data performed much better than the 
gauge only data. Before the merging of radar and rain gauge data, the radar data 
has to be adjusted using rain gauge data as the reference. Even before merging, 
preliminary treatment of the radar data includes correction for occultation, clut-
ter, attenuation and range effects [32]. According to Chumchean et al. [31], the 
improvement or correction of radar precipitation data can be summarized in the 
three steps: correction of range dependant errors, the correction of the reflectivi-
ty-rainfall/precipitation (Z-R) and finally Mean Field Bias Correction. The first two 
steps are usually carried out at the source of the radar data by the measuring agency. 

MFB correction method is defined by the assumption that there is a systemat-
ic multiplicative difference between measured rain gauge data and radar data at 
a specific location. It therefore estimates this difference as shown in Equation (1) 
by summing up the gauge and radar readings and dividing to measure the un-
derestimation or over-estimation coefficient: 

1
MFB

1

Ns
i
Ns
i

Gi
C

Ri
=

=

= ∑
∑

                          (1) 

where, 
Gi—The rain gauge rainfall values (Daily); 
Ri—The uncorrected radar rainfall raster values (Daily); 
Ns—The number of gauge stations; 
CMFB—The resulting co-efficient.  
The values less than one show underestimations by the radar while values 
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higher than one show overestimations. The calculation is carried out by sum-
ming up the daily precipitation values in both data sets in the location of rain 
gauge stations. The subsequent ratio from the calculation is then used to mul-
tiply and therefore correct the radar raster data which was in five-minute resolu-
tion for the applicable day as shown in Equation (2): 

corrected MFBR C Ri= ×                        (2) 

where, 
Rcorrected—The corrected radar data (5 minute); 
CMFB—The MFB correction coefficient (Daily); 
Ri—The uncorrected radar data (5 minute). 
The MFB (CMFB) coefficient calculation can result into unrealistically high and 

low values because of extreme errors. This necessitates restriction to a certain 
range hence the three scenarios which were tested in the project. 

2.2.4. Mean Field Bias Options 
The MFB correction does not correct all errors. Indeed, Chumchean et al. [31], 
discusses some errors which are not rectifiable by MFB such as radar range er-
rors, sampling errors and those due to electrical operation of the radar machines 
such as electrical calibration and quantification. Because of the uncorrected er-
rors, the resulting MFB corrections coefficients can result in the errors being 
carried forward and this has the potential of lowering the accuracy of the cor-
rected data. The MFB coefficient was used to correct the radar data which was 
then used as the reference precipitation data. This means that if the coefficient is 
unrealistic and therefore wrong, the error would be transferred to the corrected 
radar data (reference precipitation data) which would eventually affect the per-
formance of the interpolation methods, mostly negatively. In order to alleviate 
this, the optimum MFB coefficient ranges have to be chosen by restricting the 
ratio within certain ranges. Therefore, three MFB co-efficient scenarios were 
created to test the significance of this effect by restricting the coefficients within 
a certain ranges. The three scenarios were: 

Scenario 1: No restriction (0.0005 - 1000); 
Scenario 2: Removal of outlier coefficients in Scenario 1 (0.5 - 8); 
Scenario 3: Smallest range (0.5 - 3). 
The test was done by randomly selecting and comparing three rain gauges and 

extracted radar stations for goodness of fit. After choosing Scenario 2, all the re-
sulting MFB coefficients were restricted within the range (0.5 - 8) even if they 
were higher or lower than this. The coefficients were then applied to the radar 
data by multiplication in all the time steps. After the bias correction, the radar 
data was aggregated from five minute resolution to hourly resolution in order to 
match it with the other data which was used in the hydrological modelling 
process such as temperature and evaporation. The corrected and aggregated data 
was then designated the reference precipitation data and considered as the actual 
ground precipitation measurements.  
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2.2.5. Extraction of Radar Data 
In order to evaluate the performance of the two interpolation methods under 
consideration in the study, the reference data was extracted into specific points 
before later interpolating the same data. The extraction process was done by us-
ing the rain gauges locations shown in Figure 3. For every location of 53 rain 
gauges, the precipitation data in the reference radar pixels were extracted, and it 
was now in point format just as the rain gauge data.  

2.3. Interpolation Methods 

The methods which have been used to interpolate precipitation in past studies 
can be broadly classified as univariate and multivariate. The common univariate 
methods are Nearest Neighbour, Thiessen Polygon and Inverse Distance me-
thods, Ordinary Kriging (OK) and Indicator Kriging (IK) while the multivariate 
methods are Kriging with external Drift (KED) [9]. In this study, the extracted 
radar data was interpolated by using only the univariate methods of Inverse 
Distance Weighting (IDW) and Ordinary Kriging (OK), which can also be clas-
sified as deterministic and geostatistical methods respectively. The interpolation 
was carried out for the whole area covered by the stations. After interpolation, 
the performance of the two interpolation methods of IDW and OK was deter-
mined using cross validation. It is carried out by dropping the observed or ref-
erence data, re-estimating using the interpolation method chosen (OK or IDW) 
and comparing the estimated and the original data using the objective functions 
i.e. the Leave One Out method. This is done for all the gauge stations without 
replacement. The cross validation results for both seasons were compared 
vis-à-vis the interpolation methods. For each interpolation method, the refer-
ence data was compared with station densities of 25%, 50%, 70%, 80%, and 100% 
which means the number of gauges in comparison were 14, 27, 38, 43, and 53 
respectively. The specific gauge stations in each density scenario were randomly 
selected, and each scenario had ten random selections in order to avoid any bias. 
This means that each interpolation method had 41 selections including the 100% 
scenario. Aerial precipitation was carried out only on the delineated catchment 
of Nette River. The precipitation was allocated on the ten sub-basins of the cat-
chments. As part of the evaluation, aerial precipitation was calculated for IDW 
and OK interpolated precipitation. This was then evaluated with that of refer-
ence precipitation for goodness of fit. 

2.4. HBV-IWW Model Setup 

In order to set up the hydrological model and to evaluate both areal precipita-
tion and hydrological model performance, the Nette River basin was delineated 
using the ArcMap 10 terrain processing function. The open source digital terrain 
models (DTM) i.e. SRTM90 were used as the elevation input. Once the whole 
basin was delineated, it was divided into ten sub-basins of roughly equal areas as 
shown in Figure 4. Table 1 shows the areas of all ten sub catchments in the 
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Nette River basin.  
Initial meteorological conditions differ for all the sub-catchments. This would 

have an effect on the output discharge from the model. This necessitated the 
preparation of an artificial training period. It was simply done by duplicating the 
year 2006 inputs so that the model starts to run from the artificial year of 2005. 
This resulted into steady state conditions for all the sub-basins when the year 
2006 simulation started. 

2.5. Performance Measurement 

Traditional goodness of fit evaluation is used to measure the ability of a model to 
reproduce historical observed discharges, compare performance during calibra-
tion or to compare present performance against past performance [33]. In addi-
tion to the hydrological model performance assessment, efficiency criteria used 
are Nash and Sutcliffe (NSE), Root Mean Square Error (RMSE), Co-efficient of 
determination (R2) and Percent Bias (Pbias). Table 2 shows the efficiency criteria  
 

 
Figure 4. Nette River basin sub-catchments. 
 
Table 1. Nette basin sub-catchment areas. 

Sub-basin 1 2 3 4 5 6 7 8 9 10 

Area (km2) 36.26 30.37 18.6 25.96 38.38 28.48 25.68 38.53 24.24 34.47 
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used to measure each objective. 

3. Results and Analysis 
3.1. Mean Field Bias 

The results in Figure 5 show that the restriction of MFB coefficients has negligible 
effect on the accuracy of the correction process. Scenario 1 (range 0.0001 - 1000) 
and Scenario 2 (range 0.005 - 8) perform similarly while Scenario 3 (range 0.5 - 3), 
which is the narrowest, was marginally worse. It can be concluded that although 
the effect is negligible, it is advisable to leave the range to be as wide as possible 
and not restrict it. 

3.2. Interpolation and Cross Validation 
Variograms 
The first step in variogram analysis was to test for anisotropy by calculating ex-
perimental variograms for the extracted radar data and varying the azimuthal 
angles. The directional bands are defined by azimuth and dip angles considering 
the area geology. A tilt may also be incorporated to rotate the tolerance parame-
ters about the calculation direction axis. The angles tested were 0 degrees, 45 de-
grees and 90 degrees. Figure 6 illustrates the results of two tests for anisotropy 
for a winter and summer period in the same year (2006). 
 
Table 2. Performance objectives and efficiency criteria. 

Measure NSE RMSE PBIAS R2 

Mean Field Bias options  √√  √√ 

Cross validation √√ √√ √√ √√ 

Aerial precipitation √√ √√ √√ √√ 

Hydrological model √√ √√ √√ √√ 

 

 
Figure 5. Performance of MFB scenarios. 
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Figure 6. Variogram plots of tests for anisotrop. 

 
Precipitation data shows isotropy so that the spatial co-relation is only de-

pendant on distance between the stations and not on the direction. After con-
firming isotropy, the 45 degree azimuth angle was chosen to calculate the expe-
rimental variograms for the whole time series (2006-2010). Different experi-
mental variograms were then calculated for specific summer and winter seasons 
for the whole time series. The summer season ran from April to September of 
the same year while winter was from October to March of the following year. 
Theoretical variograms were then fitted out manually on the experimental vari-
ogram using the exponential model for the different seasons. An example of fit-
ting a theoretical variogram to an experimental one for the first two seasons in 
2006 of the time series is shown in Figure 7. 

3.3. Cross Validation 

To determine the accuracy of interpolating methods, the cross validation me-
thod was applied seasonally. A comparison was made on the performance be-
tween the winter and summer seasons. The performance of OK method is shown 
in Figure 8, while IDW method performance is shown in Figure 9. 

The analysis shows a clear trend by season for both interpolation methods. 
The different objective functions give similar but different results. In case of 
RMSE, OK performance in winter season was better than summer seasons across 
the board. A similar performance is observed for IDW. PBIAS gives contrary 
results to the other three functions as it shows better performance in summer 
rather than winter for both OK and IDW methods. NSE winter season performance 
was better than summer for both interpolation methods. R2 performance was 
better in winter season than summer season throughout the study series for both 
OK and IDW. Figure 10 combines the performances of both interpolation methods 
into one seasonal box plot and compares summer (S1, S2, …etc.) and winter 
(W1, W2, …etc.) season performance. Naturally the results are similar to the 
previous analysis, and winter performance is better than those of summer season.  
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Figure 7. The fitting of a theoretical variogram on an experimental variogram. 

 

 
Figure 8. Performance of OK method by cross validation. 
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Figure 9. Performance of IDW method by cross validation. 

 

 
Figure 10. Seasonal performance of interpolation. 
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A box plot comparison of the performance of the two interpolation methods 
was done and resulted that, in the case of RMSE, OK method performs margi-
nally better than IDW in both winter and summer season. PBIAS, the IDW me-
thod performed better than OK in winter and with a slight difference in sum-
mer. This contradicts the results of other objective functions. While in case of 
NSE, the OK method performed marginally better than IDW in winter but per-
formed much better in summer. R2, the OK method performed marginally better 
than IDW in both winter and summer season. Figure 11 below shows the com-
parison of the interpolation methods by season. 

3.4. Areal Precipitation Performance  

Station density interpolation was carried out by taking different number of sta-
tions of the extracted interpolated radar data and the reference data and calcu-
lating the areal precipitation of the sub-basins of the delineated Nette River ba-
sin. 

For the OK interpolation method, the following conclusions resulted, as illu-
strated in Figure 12, that in case of RMSE, there is a marked performance im-
provement from 25% to the other densities. Between 50% density and 80% density  
 

 
Figure 11. Comparison of the interpolation methods by season. 
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Figure 12. Performance by gauge density of OK. 

 

 
Figure 13. Performance by gauge density of IDW. 
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there is a marginal progressive improvement. However, the 100% density breaks 
the trend and shows significant increase. PBIAS performance results are similar 
to the previous measure except for the 100% density showing dramatically lower 
performance. NSE 25% density shows low performance followed by a significant 
and progressive increase for 50%, 70%, and 80%. The 100% density performs 
better than the middle three. R2 shows similar performance as RMSE and NSE 
objective functions. 

In evaluating IDW as shown in Figure 13, RMSE shows graduated perfor-
mance so that 25% has the worst performance which significantly improves for 
50% and 60% and a further significant improvement for 80%, and 100%. PBIAS 
showed different performance with almost equal performance for 25%, 50%, and 
70%. The 80% has the best performance, marginally better than the 100% densi-
ty. NSE performance with 25% at the bottom, 50% and 70% with similar per-
formance and 80%, and 100% performing at the same level. R2, performance is 
similar to NSE function. The conclusion to be drawn from the IDW analysis is 
that the higher the gauge density the higher the performance. However, it also 
indicates that there is marginal performance improvement between 50% & 70% 
density and 80% & 100% densities. An evaluation to determine the performance 
of the two interpolation methods was carried out vis-à-vis the station gauge den-
sity and as the results are represented in Figure 15. 

Figure 14 showed a clear superior performance of the OK method over the  
 

 
Figure 14. Comparison of areal precipitation performance of OK and IDW by density. 
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IDW over the gauge densities of 25%, 50% and 70%. However, there is equal 
performance at gauge densities of 80% and 100%. It can be therefore that for 
sparsely gauged catchments, OK method is the better interpolation method 
while for well-gauged basins either method can be used without loss of accuracy. 

3.5. Hydrological Modelling Performance 

Influence of both the gauge density and interpolation methods on the perfor-
mance of the HBV-IWW hydrological model when compared to the runoff from 
the reference precipitation. The analysis for the OK method shows similarity 
with results of the areal precipitation as evidenced by Figure 15. All the objec-
tive functions are show similar results with the 25% density showing the worst 
performance and a marginal graduated improvement in performance of the 
other densities. Although the 100% density shows the best performance, it can 
be concluded that for hydrological modelling, there is no marked improvement 
in accuracy between 50% and 100% gauge density. 

The results obtained for IDW interpolation method are almost similar to 
those of OK. The only difference is that whereas the OK method had marginal 
differences for the higher densities, the IDW show little difference between 50%, 
70%, 80% and 100%. It can be concluded that higher densities more than 50% do 
not improve model performance. This is represented in Figure 16. 

A direct comparison of the two interpolation methods shown in Figure 17, 
indicates that OK performs better than IDW for all the gauge densities and by all  
 

 
Figure 15. Discharge performance of OK by density. 
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Figure 16. Discharge performance of IDW by density. 

 

 
Figure 17. Comparison of model runoff performance of OK and IDW by density. 
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the objective functions. This differs from the areal precipitation results where for 
the higher densities, the performance of both interpolation methods the same by 
all the objective functions was.  

4. Conclusions and Recommendations 

In correcting the radar data using gauge data by means of the Mean Field Bias 
(MFB) Correction method, in theory, if the calculated coefficients are extremely 
high, would affect the accuracy of correction. However, results showed that there 
is no discernible effect on the accuracy of correction. In fact, the opposite is true; 
that if the coefficients are restricted to narrower smaller values, the correction is 
much worse. On the seasonal variation of performance of precipitation interpo-
lation method: 1) The performance in winter was better than in summer for 
both OK and IDW. This can attribute to the precipitation type difference as 
snow particles leads to better radar measurements in winter than summer; 2) 
OK performed better than IDW method in both summer and winter.  

On the performance with different rain gauge density scenarios: 1) For OK, 
the performance improved significantly from gauge density of 25% to 50% and 
minimal improvement for higher densities; 2) For IDW, the performance im-
proved significantly from gauge density of 25% to 80% and marginally thereaf-
ter; 3) When direct performance comparison was made between OK and IDW, 
the OK performed better than IDW for gauge densities between 25% - 70%. It 
can be concluded therefore that OK is the recommended interpolation technique 
for lower densities and the simpler IDW for higher densities.  

The results for hydrological modelling show similar results as interpolation 
performance. The optimum gauge density for modelling is 50% as higher densi-
ties do not improve performances. The OK method is the best interpolation 
method for good model simulation compared to IDW. Since this study was car-
ried by comparing the performance of interpolation methods against a reference 
precipitation data, future studies can be designed to test for interpolation per-
formances against actual discharge measurement. 
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