
Computational Water, Energy, and Environmental Engineering, 2017, 6, 243-268 
http://www.scirp.org/journal/cweee 

ISSN Online: 2168-1570 
ISSN Print: 2168-1562 

DOI: 10.4236/cweee.2017.63017  June 27, 2017 

 
 
 

Spatial Variability of Ground Water Quality 
Using HCA, PCA and MANOVA at Lawspet, 
Puducherry in India 

N. Suresh Nathan, R. Saravanane, T. Sundararajan 

Department of Civil Engineering, Pondicherry Engineering College, Puducherry, India 

           
 
 

Abstract 
In ground water quality studies multivariate statistical techniques like Hierarchical 
Cluster Analysis (HCA), Principal Component Analysis (PCA), Factor Analysis 
(FA) and Multivariate Analysis of Variance (MANOVA) were employed to 
evaluate the principal factors and mechanisms governing the spatial variations 
and to assess source apportionment at Lawspet area in Puducherry, India. 
PCA/FA has made the first known factor which showed the anthropogenic 
impact on ground water quality and this dominant factor explained 82.79% of 
the total variance. The other four factors identified geogenic and hardness 
components. The distribution of first factor scores portray high loading for 
EC, TDS, Na+ and Cl− (anthropogenic) in south east and south west parts of 
the study area, whereas other factor scores depict high loading for 3HCO − , 
Mg2+, Ca2+ and TH (hardness and geogenic) in the north west and south west 
parts of the study area. K+ and 2

4SO −  (geogenic) are dominant in south eastern 
direction. Further MANOVA showed that there are significant differences 
between ground water quality parameters. The spatial distribution maps of 
water quality parameters have rendered a powerful and practical visual tool 
for defining, interpreting, and distinguishing the anthropogenic, hardness and 
geogenic factors in the study area. Further the study indicated that multivariate 
statistical methods have successfully assessed the ground water qualitatively 
and spatially with a more effective step towards ground water quality   
management. 
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1. Introduction 

Water covers 78% of the earth’s surface, yet its availability for human use is limited. 
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Ground water is the primary source of drinking water, and it plays a fundamental 
role in human life and development. Safe potable water is absolutely essential for 
healthy living. It is ultimate and most suitable fresh water resource for human 
consumption in urban as well as rural areas. In many areas, ground water is the 
only available source for drinking purposes. Further it is a finite resource, essential 
for agriculture, industry and human existence and it plays a key role in meeting 
the water needs of various user-sectors in India. To sustain and maximize the 
benefit of this resource, knowledge about the natural hydro-geological and 
geo-chemical processes, as well as associated human effects on the ground water 
resource is a must for a comprehensive and complete scientific understanding of 
the vulnerability of the aquifers to pollution. In this context, rapid increase in 
human population coupled with expanding urbanization and industrialization 
has led to a greater imbalance between water availability and demand [1]. As 
worldwide extraction of ground water is accelerated to meet increasing demand, 
the significance of the chemical quality of ground water also increases relative to 
its economic value and usefulness. In recent years, ground water contamination 
has become an important environmental issue especially in urban areas. Ground 
water contamination is always the result of human activity in areas where population 
density is high and human land use is intensive [2]. Virtually any activity 
whereby chemicals or wastes released to the environment either intentionally or 
accidentally, has the potential to pollute ground water. When once aquifer becomes 
contaminated, it is very difficult, expensive and time consuming affair to clean up 
and may remain unusable for decades. Deterioration of ground water quality due 
to different geogenic and anthropogenic activities is of great concern, especially in 
an alluvial aquifer in a coastal area like Puducherry, India [3] [4]. Against this 
background at Lawspet area in Puducherry, India, the following two human 
induced activities play a critical role in the ground water contamination scenario 
[5]. 

1) Unscientific and indiscriminate Municipal Solid Waste (MSW) dumping 
and 

2) Partially treated or Secondary Wastewater (SWW) land application. 
The urban and peri urban areas of Puducherry have been divided into various 

zones for comprehensive water supply schemes. Being a coastal town, Puducherry 
entirely depends on ground water for its water supply, as there are no surface 
water sources. The Puducherry District population was around 9.50 lakhs as per 
2011 census and nearly 70% of this population lives in the urban areas and the 
population growth was close to 28.08% between 2001 and 2011. Presently the 
population explosion and urbanisation are at peak in Puducherry. 

Over drawl of ground water is the only result consequent to these two social 
events. Due to over exploitation of ground water, all the coastal borewells had 
been affected and abandoned. Of late Lawspet area in Puducherry which is at a 
higher elevation, has been identified as a potential source to meet the future water 
supply requirements. But on the contrary, it is feared that the above said two 
anthropogenic activities viz., in discriminant MSW dumping and SWW land 
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application may make the ground water unsuitable for domestic purposes in 
Lawspet area. 

Hence it is pertinent to examine the spatial and temporal variations of ground 
water attributes and to interpret the results of the same to determine the factors 
affecting the hydro-geochemistry of ground water, so that suitable remedial 
measures could be suggested to conserve and sustain ground water resources. 

2. Study Area and Current Status 

The study area is bounded by latitude 11˚58'16"N and longitude 79˚48'11"E and 
is located at Karuvadikuppam in Lawspet on the northern part of Puducherry, 
India. Location map of study area is shown in Figure 1. The ground falls from 
53 m to 6 m (Figure 1) within a radial distance of 2.5 km. Alluvial aquifer is 
probably, the dominant type of aquifer in the study area. Lawspet area receives 
its major rainfall from the north east monsoon (65%), and also gets some rainfall 
from south west monsoon (35%). The rainy season is from October to December. 
The study area receives an annual rainfall of about 1200 mm [5].  

The existing Sewage Treatment Plant (STP) at Karuvadikuppam, consists of 
four facultative oxidation ponds connected in series and the treatment efficiency is 
about 65%. After treatment the partially treated 12.5 MLD, SWW is discharged 
directly into a recharge pond located inside STP campus for the past 35 years. 
Besides, a portion of STP is used as a MSW dump site for the past 10 years. Here 
MSW has been dumped indiscriminately and unscientifically in an irregular 
fashion. So it can be said that in the study area, co-disposal of MSW and partially 
treated SWW are taking place simultaneously within the same campus [5]. The 
present work therefore focuses  

1) To understand the process of controlling components which govern the 
chemical constitution of ground water; 

2) To distinguish the ground water quality evolution process; 
3) To determine the spatial variability of ground water quality using Multivariate 

Statistical Analysis like Hierarchical Cluster Analysis (HCA), Principal Component 
Analysis (PCA), Factor Analysis (FA) and MANOVA. 

3. Methodology 
3.1. Sampling and Testing 

Due to spatial and temporal variations in ground water chemistry, a monitoring 
programme that will provide a representative and reliable estimation of the 
quality of ground water is necessary. So to accurately represent the groundwater 
quality, a sampling strategy was designed to cover a wide range of borewells at 
the key locations. Nearly 125 water supply and agrarian borewells are located 
within a radial distance of 2.5 Km from STP and MSW landfill. Out of which, 20 
Public Works Department (PWD) borewells supply drinking water to Muthialpet 
and Lawspet areas. The remaining are private domestic borewells or agricultural 
borewells. 
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Figure 1. Elevation and location of borewells in study area. 
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Totally 68 borewells (GPS points) were identified in solid waste dump area, 
recharge pond area, sewage farm area (existing) and peripheral area (private & 
Govt.) in order to study the seasonal and spatial variations, as detailed below and 
depicted in Figure 1.  

1) Solid Waste Dump area  2 borewells (newly sunk); 
2) Recharge Pond area  5 borewells (newly sunk); 
3) Sewage Farm area   3 borewells (existing); 
4) Peripheral area   58 borewells (private & Govt.). 
All the 68 borewells had been considered for investigation and water samples 

were collected from the borewells after pumping for 15 minutes. The samples 
were analysed in the Public Health Laboratory, PWD, Puducherry, India. In 
Toto 1065 water samples were collected and tested for 17 physio-chemical and 4 
bacteriological parameters viz. EC, pH, TDS, Alkalinity, Bicarbonate, Total 
Hardness, Calcium, Magnesium, Iron, Chloride, Sulphate, Nitrate, Sodium, 
Fluoride, Potassium, Phosphate, Silica, B.O.D, C.O.D, total coliforms and faecal 
coliforms. Eventhough the water samples were tested for all physio-chemical and 
bacteriological parameters, the study was confined to the pollution aspects of ten 
significant physio-chemical parameters only viz., EC, TDS, 3HCO − , TH, Ca2+, 
Mg2+, Cl−, 2

4SO − , Na+, and K+ [5]. 

3.2. Multivariate Statistical Analyses 

The sampling and testing strategyso designed involved frequent water samplings 
and examination of large number of physicochemical parameters, thereby producing 
a large data matrix, which needs a complex data interpretation. The application 
of different multivariatestatistical approaches for the interpretation of these complex 
data matrices offers a better comprehension of water quality and ecological status 
of the studied systems, and it allows the detection of the possible factors/sources 
that control the ground water systems and suggests a useful tool for dependable 
supervision of water resources as well as quick solutions to pollution related 
problems. The basic aim of such an analysis is to study the hydro-geochemistry of 
an aquifer using various statistical methods and to assess and ascertain the  
deterioration of ground water quality [6] [7]. Further these multivariate statistical 
techniques also verify the spatial and temporal variations which are brought out 
by natural and anthropogenic factors. 

In the present study an effort has been made to carry out detailed and systematic 
investigation of hydro geochemical parameters and spatial variability of the 
ground water quality using multivariate statistical methods like HCA, PCA/FA, 
and MANOVA without losing important information [8]-[18].  

3.2.1. Hierarchical Cluster Analysis (HCA) 
The object of HCA technique is to group ground water samples into clusters 
based on their squared Euclidean distance which is used most commonly as the 
adopted measure of distance, samples of the same cluster are characterized by 
high homogeneity whilst samples belonging to different clusters are characterized 
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by high heterogeneity between them [19] [20] [21] [22]. The levels of the 
similarity at which observations are merged, are used to construct dendrogram. 
The dendrogram provides a visual summary of clustering process, presenting a 
picture of groups and their proximity, with a dramatic reduction in dimensionality 
of the original data. The most important ten hydro-chemical parameters viz., 
EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+, and K+, for 68 borewells, 
were chosen for HCA in the study area. 

3.2.2. Principal Component Analysis (PCA) and Factor Analysis (FA) 
PCA and FA have been widely used in environmental sciences and hydro   
geochemical research and it is a multivariate statistical technique that embodies 
linear combinations of variables through a correlation-centred approach. PCA 
and FA are both variable reduction techniques. The PCA is used when variables 
are highly correlated and reduces the number of observed variables to a smaller 
number of principal components which account for most of the variance of the 
observed variables whereas, the FA is a variable reduction technique which identifies 
the number of latent factors and the underlying factor structure of a set of  
variables. It also, estimates factors which influence responses on observed variables. 
The PCA extracts the eigenvalues and eigenvectors from the covariance matrix 
of original variables. The eigenvalues of the PCs are the measures of their associated 
variance, the participation of the original variables in the PCs is given by the 
loadings, and the coordinates of the objects are called scores. In other words, 
PCA includes correlated variables with the purpose of reducing the numbers of 
variables and at the same time it explains the same amount of variance with 
fewer variables (principal components), while FA estimates factors, i.e. underlying 
structure that cannot be quantified directly. 

The purpose of FA is to ascertain the minimum number of new variables  
necessary to replicate various attributes of the data by cutting down the original 
data matrix from one having (n) variables necessary to describe the (N) samples 
into a matrix with (m) factors (m < n). It also aims at converting the variables so 
that the axes become orthogonal, which then admits new independent variables. 
By this way, the first factor is selected to account for the total variance of the  
observations to the maximum extent, the second factor to describe the maximum 
possible residual variance, so on and so forth. In other words, the first factor is 
evaluated such that the sum of squares of the projections of the points on the 
factor is highest (factor loadings). Next, to specify the second factor, the points 
are projected on a plane orthogonal to the first factor and so on for the other 
factors, each exhibiting less and less of the total variance. On the other hand, the 
sum of squares of the factor loadings for each variable is the communality and it 
deliberates the proportion of the total variability of each variable accounted for 
by the factoring. FA follows three main measures 1) extraction of initial factors 
2) rotation of factors and 3) calculation of each factor scores [23] [24] [25]. In 
this research work PCA/FA are implemented to the hydro-chemical data in the 
study area to extract principal factors analogous to different sources of variation 
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in the data and to detect the possible source of contamination spatially. 

3.2.3. Multivariate Analysis of Variance (MANOVA) 
As the ground water samples were collected at various locations and at different 
points of time, as the borewells are wide spread radially in all directions, as the 
borewells are positioned within a radial distance of 2.5 kms from the anthropogenic 
sources and as the ground level drastically falls for more than 47 m, the analysis 
on the spatial variability was considered very important. Hence, MANOVA was 
carried out to evaluate the significant effects of spatial differences (variability) on 
mean concentration of selected physio-chemical variables of ground water [26] 
[27]. The intention of performing MANOVA is to address the following queries: 

1) What are the influences of independent variables (observation spots/clusters) 
on the dependent variables (mean concentrations of physio-chemical parameters 
including EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+, and K+)? 
2) What are the interactions among the independent variables?  
To execute MANOVA the following procedure is to be adopted: 
1) Descriptive analysis covering average, standard deviation, minimum and 

maximum values for EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2
4SO − , Na+, and 

K+, is to be carried out. 
2) MANOVA test using Pillai’s Trace, Wilks’ Lambda, Hotelling’s Trace and 

Roy’s Largest Root are to be performed. The aim is to test whether there are  
differences in the average levels of physio-chemical compounds in ground water 
samples between the clusters at α = 5%. 

The model for MANOVA with one factor is: Xij = μ + τI + €ij 

where 
X = vector of dependent variable (physio-chemical parameters); 
µ = overall mean vector;  
τ = factor effect/spatial variability vector; 
€ = error vector; i = level of effect, i = 1, 2, ···, I; j = the replication, j = 1, 2, ···, J. 
The F and p values from the results of the MANOVA are used for testing of 

significance and Ho is rejected if F > F(df1, df2, α) or p value < α. In this research the 
dependent variables are EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+, 
and K+. The factor is cluster i.e. the independent variables are Clusters 1, 2 and 3. 

4. Results and Discussion 
4.1. Descriptive Statistics 

As the borewells are wide spread in all directions and as the ground level difference 
is more than 47 m in the study area, the data about hydro-geochemistry of the 
parameters, is very important. As such during this study selected physiochemical 
properties of the borewells were acquired and considered. Eventhough, the main 
aim of the study was to statistically establish the spatial variability of ground water 
quality, it is significant to detail the current status of ground water quality so 
that the study will be worthwhile to the authorities who are in charge of ground 
water management and control. Vital physio-chemical attributes viz., EC, TDS, 
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3HCO − , TH, Ca2+, Mg2+, Cl−, 2
4SO − , Na+, and K+ affected by MSW and SWW 

exercises, taking into consideration the geology and environmental conditions, 
were statistically evaluated and documented in Table 1. Correlation Co-efficient 
matrix has also been generated in order to identify the inter-parameter relationships 
and presented in Table 2. 

4.2. Spatial Similitude and Clustering 

HCA was performed on borewells as well as on the selected ten physio-chemical 
parameters, to determine the spatial similarities and qualitative affinity among 
the parameters. Elements belonging to the same cluster are likely to have originated 
 
Table 1. Descriptive statistics of chemical parameters. 

Statistic EC TDS TH 3HCO −  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ 

Borewells 68 68 68 68 68 68 68 68 68 68 

Minimum 155 97 60 45 17 7 13 16 6 1 

Maximum 2176 1356 464 459 517 126 318 109 68 11 

Range 2021 1259 404 414 500 119 305 93 62 10 

1st Quartile 432.8 276 155.3 114.3 42.8 25.8 35.3 42.5 15.8 2 

Median 1016.0 640 244.5 208.5 202 61 123 59.5 25 3 

3rd Quartile 1320.3 830.5 319.8 289 274.8 69 186.3 71 36.3 4 

Mean 969.6 610.9 243.3 217.3 189.9 53.2 119.8 57.1 26.5 3.7 

Variance (n) 312,728 123,456 10,724 12,283 22,275 721 7539 384 202 4 

SD (N) 559.2 351.4 103.6 110.8 149.2 26.9 86.8 19.6 14.2 2 

Skewness 0.4 0.4 0.2 0.3 0.5 0.1 0.5 −0.1 0.5 1.9 

Kurtosis −0.8 −0.8 −0.8 −0.9 −0.9 −0.5 −0.9 −0.4 −0.2 3.6 

SE of  
variance 

54,838 21,648 1881 2154 3906 126 1322 67 35 1 

Note: EC, µS/cm, all other parameters, mg/L. 

 
Table 2. Correlation matrix between the variables. 

Variables EC TDS TH 3HCO −  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ 

EC 1 
         

TDS 0.999 1 
        

TH 0.893 0.891 1 
       

3HCO −  0.729 0.728 0.820 1 
      

Cl− 0.979 0.979 0.816 0.616 1 
     

2
4SO −  0.830 0.831 0.721 0.445 0.803 1 

    
Na+ 0.979 0.979 0.812 0.666 0.982 0.819 1 

   
Ca2+ 0.814 0.811 0.947 0.793 0.732 0.629 0.724 1 

  
Mg2+ 0.916 0.915 0.955 0.822 0.851 0.734 0.855 0.855 1 

 
K+ 0.806 0.806 0.715 0.600 0.784 0.665 0.789 0.616 0.715 1 
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from a common source. The R-mode HCA (parameter clustering) retains four 
main clusters for analysed parameters. Cluster 1 includes EC and TDS which 
may be explained by a combination of point sources like MSW dumping and 
SWW land application. Cluster 2 includes parameters like TH and 3HCO −  and 
this cluster reflects hardness component indicating the influence of SWW land 
application. Cluster 3 consists of Na+ and Cl− which represents the anthropogenic 
activities viz., MSW dumping and SWW land application. Cluster 4 involves  
parameters like Ca2+, Mg2+, K+ and 2

4SO −  indicating the geogenic nature of 
ground water and this may be interpreted as due to weathering of rocks and 
dissolution of minerals. The resulted parameter dendrogram is shown in Figure 2. 

The Q-mode HCA (borewell clustering) has been employed to discover the 
spatial hydro-chemicalresemblance among the borewells. The borewells which 
are grouped in a particular cluster share similar characteristics in relation to the 
investigated parameters. The resulted borewell dendrogram (Figure 3) grouped 
all the 68 borewells into three statistically significant clusters. The cluster wise 
designated borewells, the regional distribution of borewells and the profile plot 
of clusters are presented in Table 3, Figure 4 and Figure 5. Cluster 1 consists of 
28 borewells and falls in the “polluted” category. Cluster 2 includes 8 borewells 
and can be termed as “highly polluted” and the balance 32 borewells are incor-
porated in Cluster 3 and this cluster is “non polluted”. 

In Clusters 1 & 2, on the basis of overall chemical composition, characterised 
by the ion abundances the order of anions and cations is Cl− > 3HCO −  > 2

4SO −

= Na+ > Ca2+ > Mg2+ > K+. Cl− and Na+ dominate these two clusters and the dis-
tribution of borewells lies in South-East and South-West directions of the study 
area. In Cluster 3, the order of affinity in ground water is 3HCO −  > Cl− > 

2
4SO −  = Ca2+ > Na+ > Mg2+ > K+. 3HCO −  and Ca2+ dominate this cluster  

 

 
Figure 2. Parameter dendrogram. 
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Figure 3. Borewell dendrogram. 

 

 
Figure 4. Borewell locations in different clusters. 

 
and the source of 3HCO −  and Ca2+ is geogenic and attributed to natural 
processes suchas dissolution of carbonate minerals in the presence of soil CO2. 
This cluster shows spatial variation in North-East, North-West, South-East,  
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Figure 5. Parameter profile plot. 
 
Table 3. Cluster classification. 

Cluster 
No. 

Borewell Designation 
Borewell 

Nos. 
Location Remarks 

C1 
1, 5, 14, 15, 40, 41, 42, 43, 47, 48,  
49, 51, 52, 53, 54, 57, 58, 59, 60, 

62, 63, 67, 68, 69, 70, 71, 72 and 78 

28 
(41%) 

Solid waste dump 
area, Recharge pond 
area and south-east 
and south-western 
parts of study area 

Polluted 

C2 7, 8, 9, 10, 11, 13, 44 and 45 
8 

(12%) 

Solid waste dump 
area, Recharge  
pond area and 

south-western parts  
of study area 

Highly 
Polluted 

C3 

17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 30, 32, 35, 36, 37, 38, 
39, 46, 50, 55, 64, 75, 76, 77, 79, 

80, 81, 82, 84 and 85 

32 
(47%) 

North-east, 
north-west and 
south-east and 

south-western parts  
of study area 

Non 
polluted 

 
South-West parts of study area. 

4.3. Sampling Adequacy and Bartlett’s Sphericity Test 

Before FA, the Kaiser Meyer Olkin (KMO) and Bartlett tests were carried out to 
determine the applicability of the data for FA. KMO is a measure of sampling 
adequacy and it shows the proportion of variance reflected by the underlying 
factors. The size of KMO value is not statistically critical, however larger the 
KMO value more factors are suitable for FA. KMO value > 0.8 is very good and 
the value < 0.5 is not suitable for FA. Similarly Bartlett’s test denotes whether 
correlation matrix is an identity matrix which would imply that the parameters 
are unrelated. In a nutshell, it provides the presence of a common factor between 
relevant matrixes of the parent population, and its statistical significance tests 

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10
0

500

1000

1500

2000

2500
Profile plot

1 2 3
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the suitability of the data for FA. The KMO and Bartlett’s test results are presented in 
Table 4 and interpreted as follows: 

Test interpretation: 
H0 : There is no correlation significantly different from 0 between the variables. 
H1: At least one of the correlations between the variables is significantly   

different from 0.  
As the KMO value is >0.8 and the computed p-value (Bartlett’s test) is lower 

than the significance level α = 0.05, the null hypothesis H0 is rejected and the 
alternative hypothesis H1 is accepted. So FA is effective in reducing the  
dimensionality. 

4.4. Source Identification of Ground Water Contamination 

PCA/FA has been used to determine the interdependence among different sets 
of ground water physio-chemical data and for identifying different sources 
which are responsible for ground water contamination and to condense the data 
with a minimum loss of information. PCA estimates the amount of variation in 
each parameter explained by the factors. PCA/FA was performed using XLSTAT 
version 2014 software. 

Eigenvalues are the amount of variance explained by each factor, each parameter 
had a variance of 1 with a total variance of 10 (for the selected ten variables) for 
the entire data set. Factor with eigenvalue > 1 explains more total variation in 
the data than individual parameter, and factor with eigenvalue < 1 explains less 
total variation. Therefore only factors with eigenvalue >1 are retained for the 
interpretation and the retained factors are subjected to varimax rotation. Varimax 
rotation is an orthogonal rotation method that minimizes the number of variables 
that have high loading on each factor. The VariFactor (VF) coefficient greater 
than 0.75 is considered to be strong and indicates high proportion of variance 
explained by the factor, between 0.50 and 0.75. It is considered as moderate 
loading while 0.30 - 0.50 as weak significant factor loading, indicating much of 
that attribute’s variance remains unexplained and it is less important. 

Primarily R-mode PCA/FA was applied for all the borewells as a whole in the 
study area. The scree plot (Figure 6) has been utilized to distinguish the number 
of PCs to be employed to comprehend the rudimentary parameters’ structure. 
The computed percentage of variance with cumulative percentage explained by 
each factor together with factor loadings after varimax rotation are listed in Table 5 
and Table 6. The positive scores demonstrate that all the water samples are 

 
Table 4. KMO measures and Bartlett’s test of Sphericity. 

Kaiser Meyer Olkin measure of sampling adequacy, 0.862 

Bartlett’s Sphericity Test 

Chi-square distribution 

DF 

p-value 

α 

−1628.583 

−45 

−<0.0001 

−0.05 
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Figure 6. Scree plot. 

 
substantially influenced by the presence of extracted loads on a specific component. 
Only one factor with eigenvalue > 1 has been extracted from the ground water 
data matrix, which represents 82.79% of the total variance (Table 5) i.e. the first 
principal component (PC1) explains more than 82.79% of the total variance. 
VF1 is loaded with EC, TDS, Na+ and Cl− (Table 6). The parameters Na+ (0.797) 
and Cl− (0.822) are heavily loaded and this factor represents the human induced 
activities, such as MSW dumping and SWW application on land. In all other 
components the eigenvalues are <1 indicating that these components are less 
significant. Consequently all the parameters except Na+ and Cl− do not contribute 
much to the hydro-chemistry of the study area. However, it may be seen from 
Table 5 and Table 6 that PC2 explains 7.94% of the total variance with VF2 
showing strong loading for 3HCO −  (0.848) and moderate loading for  
Mg2+ (0.524) indicating the geogenic nature of the groundwater and PC2 can be  
designated as geogenic component. PC3, PC4 and PC5 together contribute only 
7.97% of the total variance and VF3, VF4 and VF5 are associated heavily with  
K+ (0.811), 2

4SO −  (0.787) and Ca2+ (0.800), showing that these factors are 
geogenic in nature. Further VF5 exhibits moderate loading with TH (0.672) 
reflecting the geogenic and hardness components. 

The scatter plot between VF1 and VF2 of the variables and the score plot between 
VF1 and VF2 of the borewells is presented in Figure 7. 

As the borewells are located within a radial distance of 2.5 kms. from the 
polluting sources and as ground elevation falls from 53 m to 6 m, it was decided 
to perform cluster wise PCA/FA in order to study the inherent characteristic 
structure of the polluting parameters. R-mode PCA/FA was employed to Clusters 
1, 2 and 3 and PCAs, whose eigenvalues > 1 were chosen for study purposes. The 
variance and cumulative variance of the principal components in all three clusters 
are presented in Table 7. Similarly after varimaxrotation, the factor loadings of 
the significant factors of all the three clusters are given in Table 8. In Cluster 1, 
the first PC explained 51.46% of the total variance. From Table 8 for 
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Table 5. Principal component analysis for 68 borewells (R-mode). 

 
PC1 PC2 PC3 PC4 PC5 

Eigenvalue 8.280 0.794 0.375 0.252 0.170 

Variability (%) 82.798 7.937 3.749 2.516 1.704 

Cumulative % 82.798 90.735 94.485 97.000 98.705 

 
Table 6. Factor loadings after varimax rotation for 68 borewells (R-mode). 

 
VF1 VF2 VF3 VF4 VF5 

EC 0.723 0.343 0.312 0.334 0.386 

TDS 0.724 0.343 0.313 0.336 0.381 

TH 0.415 0.450 0.258 0.302 0.672 

3HCO −  0.274 0.848 0.215 0.078 0.378 

Cl− 0.822 0.214 0.304 0.280 0.321 
2

4SO −  0.489 0.110 0.239 0.787 0.260 

Na+ 0.797 0.301 0.303 0.321 0.260 

Ca2+ 0.338 0.388 0.190 0.203 0.800 

Mg2+ 0.511 0.524 0.223 0.327 0.498 

K+ 0.425 0.246 0.811 0.227 0.222 

 
Table 7. Principal component analysis (cluster wise R-mode). 

 
Cluster 1 Cluster 2 Cluster 3 

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 

Eigenvalue 5.146 2.405 1.168 4.776 2.463 1.339 6.204 2.317 

Variability 
(%) 

51.464 24.053 11.683 47.759 24.634 13.394 62.041 23.172 

Cumulative % 51.464 75.518 87.200 47.759 72.394 85.787 62.041 85.214 

 

 
Figure 7. Scatter plot of VF1 vs. VF2. 
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Cluster 1, it can be seen that the Varifactor 1 (VF1) is heavily loaded with 
EC(0.937), TDS (0.932), Na+ (0.892) and Cl− (0.934) indicating the anthropogenic 
nature of component/factor. VF2 is heavily loaded with TH (0.954) and Ca2+ 
(0.972) and moderately loaded with 3HCO −  (0.703) and Mg2+ (0.734). So VF2 
can be designated as geogenic component. VF3 is represented with K+ 
(0.987) and can be regarded as geogenic in nature. In Cluster 2, the first 3 com-
ponents explained 85.787% of the total variance (Table 7) and from Table 8, it 
can be seen that VF1 is loaded heavily with EC (0.803), TDS (0.783), TH 
(0.932) and Mg2+ (0.816) and moderately loaded with Cl− (0.703). In VF1 the 
human induced activities and hardness play a crucial role and VF1 can be thought 
of a combination of anthropogenic and hardness components. VF2 and VF3 are 
loaded with 3HCO −  (0.822) and K+ (0.975) which are geogenic in nature. 

In Cluster 3, first 2 components accounted for 85.214% of the total variance 
(Table 7). VF1 (Table 8) is described heavily with TH (0.945), 3HCO −  (0.815), 
Ca2+ (0.967) and Mg2+ (0.894), here geogenic and hardness components play a 
significant role. However, VF2 is loaded with Na+ (0.929) and Cl− (0.944) which 
reflects human induced activities in ground water contamination. 

4.5. Spatial Change Detection 

Q-mode PCA/FA was implemented for the selected ten variables as a whole in 
the study area to investigate the spatial variability of ground water quality   
particularly to examine and locate the borewells which contribute to the ground 
water contamination and to find out the contaminant movement direction [28] 
[29] [30] [31]. The factor scores after varimax rotation are furnished in Table 9. 
As discussed earlier, VF1 (Table 6) corresponds to anthropogenic component in 
which Na+ and Cl− are the contributing parameters to the ground water  
contamination and when correlated to factor scores of VF1 (Table 9) it may be 

 
Table 8. Factor loadings after varimax rotation (cluster wise R-mode). 

 

Cluster 1 Cluster 2 Cluster 3 

VF1 VF2 VF3 VF1 VF2 VF3 VF1 VF2 

EC 0.937 0.307 0.028 0.803 0.465 0.108 0.673 0.644 

TDS 0.932 0.317 −0.013 0.783 0.515 0.147 0.645 0.662 

TH 0.211 0.954 0.133 0.932 −0.176 0.019 0.945 0.096 

3HCO −  0.287 0.703 −0.123 0.179 0.822 0.306 0.815 −0.027 

Cl− 0.934 0.111 0.099 0.703 0.021 −0.476 −0.033 0.944 

2
4SO −  0.408 −0.060 0.122 0.052 0.387 0.037 0.151 0.352 

Na+ 0.892 −0.058 0.030 0.343 0.188 0.109 0.146 0.929 

Ca2+ 0.015 0.972 0.008 −0.018 −0.830 0.077 0.967 0.173 

Mg2+ 0.503 0.734 0.169 0.816 0.117 −0.313 0.894 0.121 

K+ 0.050 0.092 0.987 −0.035 0.122 0.975 0.316 0.498 
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Table 9. Factor scores after varimax rotation (Q-mode). 

Bore-well VF1 VF2 VF3 VF4 VF5 Bore-well VF1 VF2 VF3 VF4 VF5 

BW 1 0.201 −1.264 0.395 0.763 1.939 BW44 2.158 −0.196 −1.165 −0.555 1.533 

BW 5 0.539 −1.012 1.176 0.069 1.014 BW45 2.351 2.335 −2.145 1.884 −0.554 

BW14 −0.256 1.776 −0.570 0.484 0.787 BW17 −0.511 −0.562 0.338 −1.238 0.015 

BW15 −1.730 0.384 −0.001 −0.469 4.109 BW18 −0.443 −0.651 −0.082 −0.365 −1.594 

BW40 0.844 0.647 −0.595 0.266 0.367 BW19 −2.204 2.474 0.438 −0.903 1.501 

BW41 1.669 0.433 −1.570 0.038 0.476 BW20 −1.287 1.730 −0.788 −1.011 0.612 

BW42 1.146 0.587 −1.334 −0.047 0.706 BW21 −0.913 0.507 −0.305 −0.361 −1.074 

BW43 1.109 0.154 −1.038 0.028 0.118 BW22 −0.623 −0.453 −0.109 −1.212 −0.484 

BW47 0.218 −0.861 0.200 0.269 0.354 BW23 −0.349 −0.403 −0.902 −0.962 −0.628 

BW48 0.841 0.687 −1.143 0.397 −0.141 BW24 −0.629 −0.874 −0.270 −1.235 0.572 

BW49 0.804 0.192 −1.006 0.150 0.292 BW25 −0.268 −0.649 −0.122 −1.539 −0.520 

BW51 0.903 0.769 −0.560 0.032 0.215 BW26 −0.336 −0.942 −0.192 −1.202 −0.125 

BW52 1.024 0.849 −0.376 −0.308 −0.483 BW27 −1.042 0.511 −0.412 −0.607 −0.225 

BW53 0.909 0.134 −0.952 0.126 0.000 BW28 −1.202 0.585 −0.399 −0.999 0.498 

BW54 0.438 0.046 −0.159 0.093 0.374 BW30 −0.346 −0.753 −0.138 −0.806 −0.963 

BW57 0.811 −1.098 −0.024 0.357 0.147 BW32 −1.953 2.428 −0.338 1.613 −0.806 

BW58 0.649 0.316 −0.189 0.453 −0.604 BW35 −0.943 −0.001 −0.263 −1.255 0.195 

BW59 0.233 −0.555 0.078 0.662 0.005 BW36 −0.888 1.245 −0.443 −1.201 −0.586 

BW60 0.203 −0.222 −0.575 0.339 0.105 BW37 −0.585 0.003 −0.188 −1.407 −0.480 

BW62 0.307 −0.560 0.090 0.143 0.378 BW38 −1.157 1.678 −0.913 −0.491 0.436 

BW63 −0.165 −0.731 0.184 0.856 0.330 BW39 −0.074 −0.475 0.028 −1.393 −1.854 

BW67 1.317 −0.002 −0.023 0.303 0.277 BW46 −1.676 1.242 0.731 −0.104 0.044 

BW68 0.984 −0.465 −0.499 0.336 0.830 BW50 −0.052 −1.352 0.144 0.364 −0.892 

BW69 −0.108 −0.467 0.939 −0.017 0.427 BW55 0.001 −1.287 0.673 0.173 −0.428 

BW70 0.081 −0.431 0.782 0.276 0.193 BW64 −0.445 −1.037 −0.158 0.218 −1.448 

BW71 0.188 −0.034 0.157 0.062 −0.116 BW75 −2.484 −1.891 −0.149 3.558 2.205 

BW72 0.204 −0.909 −0.557 1.083 0.118 BW76 −0.893 −0.720 0.068 0.761 −0.017 

BW78 0.779 −0.367 −0.059 0.047 −0.200 BW77 0.148 −1.276 −0.300 0.816 −0.078 

BW7 1.512 1.478 1.032 0.279 −0.774 BW79 −0.349 −0.534 −0.049 −0.753 −1.622 

BW8 1.249 −0.410 2.537 −0.045 1.012 BW80 −0.343 −0.799 −0.304 −0.138 −1.020 

BW9 1.008 0.554 1.668 0.523 0.683 BW81 −1.466 −0.842 −0.578 2.834 −0.836 

BW10 1.393 0.796 3.257 −1.817 0.864 BW82 −0.811 −0.693 −0.263 0.718 −1.271 

BW11 −0.185 2.534 3.713 2.891 −2.285 BW84 0.016 −0.406 0.261 −0.504 −1.597 

BW13 0.821 0.066 2.840 −0.684 0.883 BW85 −0.344 −0.954 0.476 −0.631 −0.910 

 
seen that many borewells in Clusters 1 and 2 are affected by excess Na+ and Cl−.  

Even though all the five vari factors in Table 9 were considered for study 
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purposes, only VF1 is reckoned to be important from the point of view of % 
variance explained and eigenvalue > 1. In Cluster 1, out of 28 borewells, 23 
borewells (82%) in VF1 show positive scores and are affected by the anthropogenic 
activities viz., MSW dumping and SWW land application. Similarly in Cluster 2, 
7 borewells (88%) in VF1 are affected out of 8 borewells. Again in Cluster 1 the 
worst affected borewells whose positive scores > 0.75 are BW40, BW41, BW42, 
BW43, BW48, BW49, BW51, BW52, BW53, BW57, BW67, BW68 and BW78 
(13 borewells). But in Cluster 2 all the 7 affected borewells show positive 
scores > 0.75, indicating that they are highly polluted. 

Next Q-mode VF2 (Table 9) is related to R-mode VF2 (Table 6) which  
demonstrate 3HCO −  and Mg2+ as geogenic component. The worst affected 
borewells are BW14 in Cluster 1, BW11 in Cluster 2, BW19, BW20, BW32, 
BW36, BW38 and BW46 in Cluster 3. Similarly VF3 (Q-mode) relates to K+ 
which is geogenic in nature. The borewells which are badly affected by this, are 
BW69 and BW70 in Cluster 1. VF4 (Q-mode) corresponds to 2

4SO −  and the 
borewells which are affected badly are BW75, BW76 and BW81 in Cluster 3. 
Lastly VF5 (Q-mode) reflects TH and Ca2+ and borewells like BW24 and BW35 
in Cluster 3 are affected to some extent. 

The results of PCA/FA for Q-mode (borewells) in comparison to R-mode 
(parameters) are summarized in Table 10, which exhibits the overall picture of 
the borewells that are affected by excess chemical components. The very purpose 
of using PCA/FA is to address the following questions: 
 

Table 10. Spatial variability of borewells with positive factor scores. 

Cluster 
No. 

Borewell Designation 
(affected) 

Borewell 
Nos. 

Vari 
Factor 

Parameters Location/Direction Remarks 

1 

1, 5, 40, 41, 42, 43, 47, 
48, 49, 51, 52, 53, 54, 
57, 58, 59, 60, 62, 67, 

68, 71, 72 and 78 

23 VF1 Na+ and Cl− 
Solid waste dump area, Recharge  

pond area and south-east and  
south-west parts of study area 

Anthropogenic 

2 7, 8, 9, 10, 13, 44 and 45 7 VF1 Na+ and Cl− 
Solid waste dump area, Recharge pond 
area and south-west parts of study area 

Anthropogenic 

1 14 and 15 2 VF2 3HCO −  and 
Mg2+ 

Solid waste dump area 
Anthropogenic 
and Geogenic 

2 11 1 VF2 3HCO −

 and 
Mg2+ 

Recharge pond area 
Anthropogenic  
and Geogenic 

3 
19, 20, 21, 27, 28, 32, 

36, 38 and 46 
9 VF2 3HCO −

 and 
Mg2+ 

North-west and south-west  
parts of study area 

Geogenic 

1 63, 69 and 70 3 VF3 K+ South-east parts of study area Geogenic 

3 17, 50, 55 and 85 4 VF3 K+ 
North-east and south-east  

parts of study area 
Geogenic 

3 64, 75, 76, 81 and 82 5 VF4 2
4SO −  South-East parts of study area Geogenic 

3 24 and 35 2 VF5 TH and Ca2+ 
North-west and south-west  

parts of study area 
Hardness and 

Geogenic 
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1) Which chemical component is responsible for contamination?  
2) What are the borewells that are badly affected?  
3) How the contaminated borewells are distributed? and 
d) What is the direction of the contaminant movement? 
Table 10 answers all the above questions. 

4.6. Sources of Contamination 

Conclusively PCA/FA had been applied to the parameters as a whole in the 
study area and also cluster wise, further different PCs/VFs were investigated and 
many factors viz., 1) Anthropogenic 2) Geogenic and 3) Hardness responsible 
for ground water contamination were identified. Next thing is to find out the 
source of the contamination based on these PCs and VFs. Consequently the  
following reasons may be attributed to the sources of contamination.  

4.6.1. Anthropogenic Component 
The excess Cl− in ground water is generally considered as an index of ground water 
contamination and is mainly due to anthropogenic activities in the study area viz. 

1) Non-engineered and unplanned Municipal Solid Waste (MSW) dumping 
and 

2) Partially treated or Secondary Wastewater (SWW) application on land.  
From the field observations it was ascertained that mean Cl− in MSW leachate 

and SWW are 1350 mg/L and 639 mg/L. Similarly the mean Na+ is 838 mg/L in 
MSW leachate and 232 mg/L in SWW. 

Also from the correlation analysis it can be seen that a very good correlation 
exists (r = 0.982) between Na+ and Cl−. From this, it is observed that MSW 
dumping and SWW land application are the main causes for excess Cl− and Na+ 
in ground water in the study area. 

4.6.2. Geogenic Component 
• The primary source of 3HCO −  is the dissolution of minerals like calcite 

(CaCO3) and dolomite (CaMg (CO3)2). From Table 2, it can be seen that 
there is very good relationship between 3HCO −  and Ca2+ (r = 0.793), 

3HCO −  and Mg2+ (r = 0.822). So it can be concluded that excess 3HCO −  is 
due to calcite and dolomite dissolution, which is geogenic in nature. 

• A good correlation between 2
4SO −  and Ca2+ (r = 0.629) indicates that gyp-

sum (CaSO4·2H2O) and anhydrite (CaSO4) are major sources of excess Ca2+ 
which is geogenic in nature. 

• Also the “r” value of 0.734 between 2
4SO −  and Mg2+ suggests weathering of 

Mg-sulphate minerals. 
• Generally K+ is derived from K-feldspar. 
• The correlation between Na+ and 2

4SO −  (r = 0.819) indicates the dissolution 
of Na-sulphate minerals. 

4.6.3. Hardness Component 
Generally cations like Ca2+ and Mg2+ and anions such as 3HCO −  and 2

4SO −  
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are mainly responsible for the hardness of water. From the field study the 
following observations were reported. 

As discussed earlier there is very good correlation among 3HCO − , Ca2+ and 
Mg2+. Also there is good relationship among the variables 2

4SO − , Ca2+ and 
Mg2+. Further from Table 11 and correlation analysis it can be concluded that 
hardness of water in the study area is mainly due to human induced activities 
such as MSW dumping and SWW recharge in addition to leaching from minerals 
like calcite, gypsum, anhydrite and dolomite. 

Primarily it can be said that anthropogenic activities played a very critical role 
in deteriorating the ground water quality in the study area. Consequent to human 
induced activities, there is excess Cl− in many borewells and the contaminant 
movement is in the south east and south west directions following the ground 
profile. Secondly the variables like TH, 3HCO − , Ca2+ and Mg2+ played a significant 
role in the ground water chemistry in the north west and south west parts of the 
study area. Parameters like K+ and 2

4SO −  are predominant in the south eastern 
part of the study area. 

Conclusively it is observed that the anthropogenic component is significant in 
south east and south west directions following the ground elevation. The geogenic 
and hardness components play a major role in northwest and south west directions. 
Also one very important observation is that the ground water in north eastern 
part of the study area is generally not affected either due to anthropogenic    
activities or due to geogenic/hardness factors. 

4.7. MANOVA 

Firstly MANOVA was measured to establish the effects of three independent 
variables i.e. Clusters 1, 2 and 3 on the dependent variables (physio-chemical 
parameters). Relevant tests were done through tests like Pillai’s Trace, Wilks’ 
Lambda, Hotellings Trace and Roy’s Largest Root. 

The hypothesis used is: 
Ho: There are no significant differences in the mean values of physio-chemical 

parameters like EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2
4SO − , Na+ and K+ 

with respect to Clusters 1, 2 & 3. 
H1: There are significant differences in the mean values of physio-chemical 

parameters in relation to Clusters 1, 2 & 3. 
Decision making is the rejection of Ho if p value < 0.05 (α). It can be concluded, if 

Ho is rejected, then H1 is accepted indicating that there are differences in the 
mean values of EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+ and K+ 
between the clusters. The MANOVA test statistics are presented in Table 12  

 
Table 11. Characteristics of MSW and SWW. 

 Ca2+ Mg2+ 
3HCO −  2

4SO −  

MSW leachate 214 104 522 465 

SWW 101 63 383 216 

Note: All values are in mg/L. 
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and Table 13. To evaluate whether one way MANOVA was statistically significant, 
Wilks’ Lambda row needs to be examined along with significance column. 
Wilks’ Lambda test is an appraisal to show how well each function separates 
cases into groups. It is equal to the proportion of the total variance in the dis-
criminate scores not explained by difference among the groups. 

Smaller values of Wilks’ Lambda tests indicate greater discriminatory ability 
of the function. From Table 12, it can be seen that Wilks’ Lambda value is 0.042 
 
Table 12. MANOVA tests. 

Effect Value F Hypothesis df Error df Sig. 

INTERCEPT 

Pillai’s Trace 0.978 254.704 10.000 56.000 0.000 

Wilks’ Lambda 0.022 254.704 10.000 56.000 0.000 

Hotelling’s Trace 45.483 254.704 10.000 56.000 0.000 

Roy’s Largest 
Root 

45.483 254.704 10.000 56.000 0.000 

CLUSTER 

Pillai’s Trace 1.310 10.830 20.000 114.000 0.000 

Wilks’ Lambda 0.042 21.709 20.000 112.000 0.000 

Hotelling’s Trace 14.402 39.605 20.000 110.000 0.000 

Roy’s Largest 
Root 

13.794 78.628 10.000 57.000 0.000 

 
Table 13. Tests of between-subjects effects. 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Intercept 

EC 72276261.755 1 72276261.755 2275.637 .000 

TDS 28681433.224 1 28681433.224 2200.223 .000 

TH 3820268.960 1 3820268.960 997.717 .000 

3HCO −  3155532.280 1 3155532.280 432.768 .000 

Cl− 3234281.873 1 3234281.873 1708.628 .000 
2

4SO −  184782.739 1 184782.739 602.628 .000 

Na+ 1220693.053 1 1220693.053 1544.947 .000 

Ca2+ 188489.086 1 188489.086 1048.396 .000 

Mg2+ 50642.794 1 50642.794 804.893 .000 

K+ 1033.433 1 1033.433 849.477 .000 

CLUSTER 

EC 19201062.627 2 9600531.313 302.275 .000 

TDS 7547687.783 2 3773843.891 289.501 .000 

TH 480365.235 2 240,182.618 62.727 .000 

3HCO −  361264.573 2 180,632.287 24.773 .000 

Cl− 1391657.257 2 695828.629 367.597 .000 
2

4SO −  29107.043 2 14553.522 47.463 .000 

Na+ 461304.978 2 230652.489 291.921 .000 

Ca2+ 14445.546 2 7222.773 40.174 .000 

Mg2+ 9625.227 2 4812.613 76.489 .000 

K+ 186.145 2 93.072 76.505 .000 
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with a significance of 0.000 at p < 0.005 and F (20, 112) = 21.71. It implies that 
there is a statistically significant difference in the mean values of physio chemical 
parameters based on the formation of clusters. This shows that these physio 
chemical parameters have high variations in terms of spatial distributions in the 
study area. In other words spatial variability is significantly dependent on pa-
rameters like EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+ and K+, 
across all the three clusters and shows good discriminatory ability with the 
ground water quality parameters. 

To establish how the independent and dependant variables interact, the tests 
between the subjects effects, is given in Table 13. It can be seen from Table 13, 
that clusters (spatial distribution) has a statistically significant effect on all the 
physio-chemical parameters, for example for EC, F (2, 65) = 302.28, p < 0.005. 
Similarly for all other parameters it can be interpreted in the same manner based 
on the values in Table 13. Table 13 clearly indicates that there is significant in-
teraction effect of EC, TDS, 3HCO − , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+ and K+ 
in relation to various clusters (spatial distribution) as p values are <0.005. Further 
as the p values of all the parameters are <0.005, there is no need to perform 
post-hoc tests. 

Precisely the results of MANOVA indicate that there are significant differences 
exist in the mean values of physio-chemical parameters (dependant variables) in 
three location variables (clusters) spatially. This phenomenon can be explained 
in two ways. Firstly anthropogenic activities viz., 1) Indiscriminate MSW 
dumping and 2) Land application of SWW in the name of ground water recharge 
which are mainly responsible for the increase in the concentration of EC, TDS, 
Na+ and Cl−. Secondlygeogenic and hardness factors i.e. weathering of rocks and 
dissolution of rock minerals like calcite, dolomite, gypsum, anhydrite, feldspar 
etc., which are chiefly responsible for increase in the concentrations of parameters 
like Ca2+, Mg2+, 2

4SO − , K+, 3HCO −  and TH. 

4.8. Geo-Statistical Mapping 

Ordinary Kriging (OK) is an effective tool for initial decision making of ground 
water quality management. OK interpolation technique has been employed using 
ArcGIS (version 10.2) for developing spatial distribution maps of ground water 
data set (n = 68 borewells) based on PC/VF scores (Table 9). Spatial distribution 
of VF1 scores in Figure 8 reveals high scores (EC, TDS, Na+ and Cl−) in south 
east and south west parts of the study area. The high scores correspond to an-
thropogenic activities in and around STP. Spatial distribution of VF2 and VF5 in 
Figure 9 and Figure 10 shows high scores ( 3HCO − , Mg2+, TH and Ca2+) in 
northwest and south west parts of study area, indicating hardness and geogenic 
origin. Figure 11 and Figure 12 exhibit scores (K+ and 2

4SO − ) for components 
VF3 and VF4 in the south eastern part of the study area and the origin is geogenic. 
Thus the spatial distribution maps of water quality parameters (VF1 to VF5) 
have contributed a functional and robust visual tool for Environmental Engineers 
and hydro-geologists towards specifying and adoptive steps. 
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Figure 8. Spatial variability of Na+ and Cl−. 
 

 
Figure 9. Spatial variability of 3HCO −  and Mg2+. 

5. Conclusions 

Different multivariate statistical techniques like HCA, PCA/FA and MANOVA 
were applied in this research work to investigate the spatial variability of ground 
water quality and to detect the main factors and sources of contamination for 
effective ground water management at Lawspet area, Puducherry, India. HCA 
identifies 68 borewells into three well defined clusters reflecting different 
physio-chemical processes. Based on this information available, it is easy to 
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Figure 10. Spatial variability of TH and Ca2+. 
 

 
Figure 11. Spatial variability of K+. 
 
work out an optimal strategy to reduce the number of borewells (sampling 
points) and recurring costs. PCA/FA was used to examine the interdependence 
of the physio-chemical data and for distinguishing various sources which are 
accountable to ground water contamination and to summarize the data with 
least information loss. PCA/FA discloses that anthropogenic, geogenic and 
hardness factors are responsible for ground water pollution and these factors  
explained more than 82.79% of the total variance. The Q-mode PCA/FA identified 
the borewells which are badly affected by the pollution. In other words, the spatial 
variability of ground water quality has been established. Anthropogenic  
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Figure 12. Spatial variability of 2

4SO − . 

 
contamination due to increase in the concentration of EC, TDS, Na+ and Cl− is 
mainly due to MSW dumping and land application of SWW, which was dif-
ferentiated by high factor loading of EC, TDS, Na+ and Cl− in PCA/FA. Natural 
processes like weathering of rocks and dissolution of rock minerals (geogenic 
and hardness factors) such as calcite, dolomite, anhydrite, gypsum, feldspar etc., 
are accountable for higher concentrations in Ca2+, Mg2+, K+, 2

4SO − , 3HCO −  
and TH. 

Convincingly, it is established that anthropogenic operations affected the 
ground water sources in south east and south west parts of the study area, following 
the ground elevation. The geogenic and hardness factors affected the ground 
water in northwest and south west directions. By and large, the north eastern 
portion of the study area is unaffected. The one-way MANOVA test revealed 
that there are significant mean differences between EC, TDS, 3HCO − , TH, Ca2+, 
Mg2+, Cl−, 2

4SO − , Na+ and K+, at p < 0.005. The mean differences between Clusters 
1, 2 and 3 also show that they are significantly different for all physio-chemical 
parameters. 

The resulting spatial distribution maps based on Q-mode factor scores provide a 
beneficial and powerful visual tool for researchers and decision makers towards 
specifying adaptive procedures. This study contributes background information 
on physio-chemical parameters, polluting chemicals, contaminating factors, po-
tential sources and spatial variation in ground water quality at Lawspet, 
Puducherry, India. 
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