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Abstract 
In this paper a real-time peak detection method based on modified Auto-
matic Multiscale Field Detection (AMPD) algorithm and Field Programma-
ble Gate Arrays (FPGA) technologies of a time series data is studied, and op-
timum scaling is highlighted after testing several scales. To validate the re-
sults obtained from modified algorithm, they are compared with the results 
of original AMPD method. As data of this study, three-phase voltage values of a 
power station are used. A detail detective sensitivity analysis of phase-to-phase 
voltage values is tried at different scales. Moreover, the original algorithm is 
tested regarding the off-line mode to obtain optimum scaling for real-time 
peak point detection. It is concluded that the peak detection of minimum and 
maximum points of data series achieved by modified algorithm is very close 
to the results of original AMPD algorithm.  
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1. Introduction 

Peak detection of any time series data is always a hot topic in many engineering 
fields including chemistry, biology, biomedical, optics, astrophysics and energy 
systems. So these fields often require real-time peak detection. As the environ-
ment noises can affect the signals somehow, a robust peak detection, in this case, 
is a challenging topic. To obtain a successful peak detection method, several 
methods have been proposed, including automatic multiscale-based peak detec-
tion [1], window-threshold techniques [2] [3] [4], wavelet transform [5]-[11], 
techniques using entropy [12], and artificial neural networks [13] [14]. Particu-
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larly, each method was investigated in terms of the detection method employed 
and the detection performance achieved. Drawbacks of the peak detection algo-
rithms available in the literature are that many free parameters such as the win-
dow length of a threshold value have to be used in order to apply the algorithm 
to the signal, and to make the algorithm applicable. Generally, the algorithms 
with fewer parameters are restricted for use in specific applications like the de-
tection of R-peaks in electroencephalography (ECG) signals and to obtain an 
adaptive and time-efficient R-peak detection algorithm for ECG processing as 
well as reduce the size and noise of ECG signals [15]-[20]. In addition, noise in 
analyzed signal is a challenge for many peak detection algorithms. 

On the other hand, periodic and quasi-periodic signals are the most difficult 
ones to detect the peak points. However, AMPD method is suitable for all types 
of peak point detecting. Thus, the automatic multiscale-based peak detection 
(AMPD) method [1] has been introduced as an effective method. In this re-
search, we used the off-line and online terms to show the scale. Off-line algo-
rithm means to fix the scale, then analysis all input data with using stable scale 
for each clock. On the other hand, online algorithm means to vary the scale for 
each clock. However, these software methods are not suited for real-time 
processing but emphasized off-line sophisticated data analysis.  

The use of FPGAs provides a promising approach to real-time peak analysis 
[21] [22]. FPGAs do not run a program stored in the program memory because 
they are reprogrammable chips and include a lot of logic gates, which are inter-
nally connected to form a complex digital circuitry. FPGAs are not processors 
and are entirely different from CPUs, GPUs, and DSP. However, they offer var-
ious opportunities for efficient real-time signal processing by making the best 
use of pipelined structure in computing. Furthermore, in previous work, we ap-
plied AMPD method on an FPGA as off-line by changing its bite size and scales 
and then analyzed it in terms of speed, cost and memory [23]. Eventually, we 
realized that changes in bit size did not affect the peak detection. 

This paper introduces a novel approach for robust and real-time peak detec-
tion by using the AMPD algorithm and the FPGA technology. It highlights the 
modification of the original AMPD algorithm to be an off-line method, and how 
it can be implemented on an FPGA so that a pipelined structure in computing is 
extracted on hardware. Thus, the optimum scaling for the off-line peak detection 
is obtained, and results compared with the original AMPD method are found 
very promising.  

2. Overview of Algorithm 
2.1. AMPD Method 

The AMPD method [1] is a technique especially to find the peak points of peri-
odic and quasi-periodic noisy signals on-line. It calculates all input data by using 
matrix equation to find the peak points. Also, AMPD determines the local 
maxima points in different time periods, each of which is named scale and is the 
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number of compared data at a time. AMPD is divided into 4 different stages: 
Local Maxima Scalogram (LMS) calculation, Row-Wise summation of the LMS, 
LMS rescaling, and peak detection. Figure 1 shows the flowchart about the 
original algorithm. However, to enable off-line processing on an FPGA, 
Row-Wise summations of the LMS and LMS rescaling are skipped to obtain op-
timal scale decision and LMS rescaling, which is possible to perform in advance 
in a calibration phase. Number of combinations to create scale pattern like 33, 
65, 129, 257, 513 and 1025 for make a simple and efficient pipeline to implement 
on FPGA. Fixed scales are then chosen and, based on them, the sensitivities of 
the peak points are analyzed. 

2.1.1. LMS Calculation 
Essentially, LMS calculation means analysis of all input values  
( 1 2 3 4, , , , , nx x x x x x=  ) by using the moving window approach to fill in the Z 
matrix given in Equation (1) below that also indicates the size of the Z matrix. In 
Z matrix, k denotes the number of rows while i denotes the columns. The rela-
tion between n and L can be defined as shown in Equation (1): 

( )
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Figure 1. AMPD algorithm flowchart. 
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When all numbers denoted by xi are analyzed, the previous value should be 
(Xi-1) and the next value (Xi+1) is checked and compared using the window ap-
proach, which is called distance between all the points. Furthermore, the win-
dow approach scale depends on the L. 
where; 

n denotes total column number 
L denotes total row number 

( )2 1L n= −                         (2) 

At the same time k is changed from 1 to L in Figure 2, which shows the com-
parison mechanism of input values. 

Elements of Z matrix can be calculated by Equation (3). 
( ) ( )1 1 1 1

,

0, if
, otherwise

i i k i i k
k i

x x x x
z

r
− − − − + − > ∧ >= 


             (3) 

where 
r denotes random number between 1 and 2. 
If this condition point ( ix ) is provided, 

1i ix x −>  and 1i ix x +> , 

Then, new diagonal element zL,n value assigned to ,k iz  is zero in the Z matrix, 
or else, a random number (r) assigned to ,k iz  is generated at every time by a 
random generator. The range of random numbers is between 1 < r < 2. In this 
way, the whole Z matrix is obtained by analyzing each element of it. 
 

 
Figure 2. Compare mechanism. 
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2.1.2. Positive Edge and Negative Edge Peak Points Detection 
The target of this study is to detect peak points by applying the variance formula. 
After completing the formation of the Z matrix, the zero points are detected by 
applying the variance formula to each column. In some cases this value may not 
be zero due to noises; however, detection is done when the value is smaller than 
a minimal threshold value. Thus, if sigma (σ), in Equation (4) is found to be ze-
ro, then this point is interpreted to correspond to the peak value. If sigma is dif-
ferent from zero, this point does not correspond to the peak value, 

1
2 2

, ,
1 1

1 1
1i k i k i

k k
z z

λ λ

σ
λ λ= =

  = −  −    
∑ ∑                  (4) 

where, for { }1,2,3, ,i n∈   then, lambda in Equation (4) should be denoted as 
L so that all zero points of Z matrix given in Equation (4) are detected. 

3. Implementation 
3.1. Overview of the System 

In the original AMPD algorithm, the best scale is automatically found by using 
four calculation steps Local Maxima Scalogram (LMS) calculation, Row-Wise 
summation of the LMS, LMS rescaling, and peak detection. On the other hand, it 
is necessary to reduce the amount of memory used in this AMPD algorithm 
while applying it to the FPGA in order to make a simple and effective pipeline 
design. The reason is that using more steps in application will increase memory 
usage and low latency. Original and modified algorithm flowcharts were given in 
Figure 1 and Figure 4 respectively. It was also mentioned that original algo-
rithm flowchart in Figure 1 is more complex and has more steps than modified 
algorithm flowchart in Figure 4. In modified algorithm, step size is reduced and 
therefore the memory size is also reduced. If the time complexity (O) of algo-
rithm is analyzed in terms of the flowchart given in Figure 3, total time com-
plexity is found as ( )22O n . 
 

 
Figure 3. Time complexity of off-line algorithm flowchart. 
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Since the main target of this study is to apply AMPD algorithm to FPGA, a 
new algorithm has been proposed where the number of steps of AMD algorithm 
have been reduced. Figure 4 shows the flowchart about the off-line algorithm. 
Therefore, there are only two steps in the proposed algorithms: Local Maxima 
Scalogram and peak detection for the best off-line calculations of peak points. 
The proposed system cannot straightforwardly calculate the peak points auto-
matically with the low memory of FPGA. When the AMPD algorithm is applied 
on an FPGA, it can be reprogrammed for desired applications so that a logical 
gate is needed to make a process. Nevertheless, applying the deviation formula 
generates the LMS matrix and then all values are kept in registers. Figure 5 
shows the hardware design of the overview of implementation where k is the 
window scale. 

In this design, a different element of the matrix in every clock cycle is com-
pared and generated. Matrix generators with input X and output Z are serially 
connected to take advantage of the pipelining. After completion of generating all 
values, a basic peak flag is used to determine if a value corresponds to a zero 
point, that is, if a peak point is detected. Matrix generators are used to shift data 
sequentially, with the data for each matrix generator being compared with newly 
sampled data. In this manner, matrix elements of each scale are generated. In  
 

 
Figure 4. Off-line algorithm flowchart. 
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Figure 5. Overview of the algorithm flowchart. 

 
one clock cycle, an element of the matrix will be generated, and as a result the 
summation and square summation are calculated sequentially. Finally, a division 
is performed to obtain an average and a squared average. 

In the original AMPD algorithm, the standard deviation formula is utilized for 
detecting peak points. This involves rather complex arithmetic such as square 
root. To improve performance and efficiency of the FPGA implementation, the 
process is modified to use variance instead of standard deviation. The formula 
used in this design is in Equation (5), which shows the matrix designed by ap-
plying the variance formula to each column. Although both Equation (4) and 
Equation (5) are suitable for applying the variance, Equation (5) is used in this 
study due to its easy representation in hardware design.  

                  (5) 

3.2. Matrix Generator and Decision Mechanism 

Figure 6 depicts a Matrix Generator block diagram that is a decision mechanism 
to generate a matrix by using LMS calculation. It is also a critical part of the LMS 
calculation. The Matrix Generator requires a decision part for comparing values, 
which constitutes the major design of the matrix generator module. This module 
generates a matrix of one scale. The data generated by matrix generator for 
comparison reason is reduced to store and fed into the shift. The length of the 
shift register depends on the shift register’s scale.  

The input data is stored into the register and the data it is to be compared 
with will be inputted into the comparator in every clock cycle. Figure 7 is the 
expanded detailed hardware of the selector section of Figure 6 and it is the deci-
sion giving section on the achievement of positive and negative peak detections.  

4. Results and Discussion 

In this section, the original AMPD algorithm and the modified algorithm are 
evaluated in detail by comparing their detections of peak points of the same data  
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Figure 6. Matrix Generator system design. 

 

 
Figure 7. Selector circuit. 

 
series. First of all, simulation results of both algorithms are given and then com-
pared with each other. Later on, both original and modified algorithms are eva-
luated at different scales. After that, the sensitivity equation below is applied to 
each design to find their peak sensitivities. 

                    (6) 

where; 
TP = True Positive. 
FN = False Negative. 

4.1. Simulation of the Original AMPD Algorithm 

In this section, the peak points obtained from the original AMPD method as 
on-line have been introduced. A simulation has been performed with input data 
of the phase-to-phase effective voltage values of a medium-voltage transformer 
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located in the Organized Industrial Zone used for the period from October 1 to 
October 31, 2015. The corresponding dataset contains 4470 data points recorded 
at 10-min intervals for each L3-L2, L2-L1 and L1-L3 phase-to-phase effective 
voltages. L1, L2 and L3 denote the power line in order in a 3-phase power sys-
tem. The daily maximum and minimum peak points detected by the original 
AMPD method are shown in Figures 8(a)-(c) for L3-L2 (VL3-L2), L2-L1 (VL2-L1) 
and L1-L3 (VL1-L3) line voltage values, respectively. When these figures are com-
pared in detail, the original AMPD method detects the daily maximum peak 
points with the sensitivities of 93.75% for VL3-L2, 96.96% for VL2-L1 and 90.90% for 
VL1-L3. Thus, high numbers of the daily maximum peak points are observed at the 
time of 06:20, 06:30, 06:50, 07:00, 07:10 and 07:50. Moreover, it detects the daily 
minimum peak points with the sensitivities of 93.75% for VL3-L2, 96.77% for VL2-L1 
and 93.75% for VL1-L3. In addition, identification of most of the daily minimum 
peak points are done at the time of 10:40, 11:00, 11:10, 17:30 and 19:00. Never-
theless, it should be noted that the original AMPD method introduced in this 
section has been designed in C Programming Language and it has been run as 
on-line. Max-Peak Sensitivities and Min-Peak Sensitivities concerning the line 
voltages are shown in Table 1. 

4.2. Simulation of the Modified Off-Line Algorithm 

In this section, a similar simulation as in 4.1 has been repeated for the designed 
Verilog algorithm using the same data. Hardware Description Language (HDL) 
simulations were performed with a Cadence NC-Verilog simulator. Figures 
9(a)-(c) and Figures 10(a)-(c) illustrate the real data in red color with plus sign 
and modified Verilog algorithm data in green color with a star sign. However, in 
this case simulation results are obtained from the Verilog design algorithm as 
off-line. 

The daily maximum and minimum peak points detected by the modified 
AMPD method are depicted in Figures 9(a)-(c) for scale 33 for L3-L2 (VL3-L2), 
L2-L1 (VL2-L1) and L1-L3 (VL1-L3) line voltage values, respectively.  

The daily maximum and minimum peak points detected by the modified 
AMPD method are depicted in Figures 10(a)-(c) for scale 1025 for L3-L2 
(VL3-L2), L2-L1 (VL2-L1) and L1-L3 (VL1-L3) line voltage values, respectively.  

Table 2 represents the positive edge sensitivities at different scales. When the 
scale was increased, the sensitivities of L3-L2 line voltage were reduced gradu-
ally, but positive edge sensitivity of 87.87% was obtained at scales 33, 65 and 129 
for L2-L1 line voltage values. Furthermore, the sensitivities of L2-L1 line voltage  
 
Table 1. Max-peak sensitivities and min-peak sensitivities concerning the line voltages. 

Phase-to-Phase Effective Voltages Max-Peak Sensitivities Min-Peak Sensitivities 

L3-L2 line voltage values 93.75% 93.75% 

L2-L1 line voltage values 96.96% 96.77% 

L1-L3 line voltage values 90.90% 93.75% 
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(a) 

 
(b) 

 
(c) 

Figure 8. (a) Daily maximum and minimum peak points detected by the original AMPD 
method for L3-L2 line voltage values; (b) daily maximum and minimum peak points de-
tected by the original AMPD method for L2-L1 line voltage values; (c) daily maximum 
and minimum peak points detected by the original AMPD method for L1-L3 line voltage 
values. 
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(a) 

 
(b) 

 
(c) 

Figure 9. (a) Daily maximum and minimum peak points detected by the modified 
AMPD method for L3-L2 line voltage values; (b) daily maximum and minimum peak 
points detected by the modified AMPD method for L2-L1 line voltage values; (c) daily 
maximum and minimum peak points detected by the modified AMPD method for L1-L3 
line voltage values. 
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(a) 

 
(b) 

 
(c) 

Figure 10. (a). Daily maximum and minimum peak points detected by the modified 
AMPD method for L3-L2 line voltage values; (b) daily maximum and minimum peak 
points detected by the modified AMPD method for L2-L1 line voltage values; (c) daily 
maximum and minimum peak points detected by the modified AMPD method for L1-L3 
line voltage values. 
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Table 2. Positive edge sensitivities for different scales and line voltages. 

Sensitivities 
(Positive edge) 

L3-L2 
Line Voltage Values 

L2-L1 
Line Voltage Values 

L1-L3 
Line Voltage Values 

Scale 33 84.37% 87.87% 81.81% 

Scale 65 81.25% 87.87% 81.81% 

Scale 129 78.125% 87.87% 81.81% 

Scale 257 78.125% 75.75% 75.75% 

Scale 513 12.5% 21.21% 21.21% 

Scale 1025 6.25% 9.09% 9.09% 

 
and L1-L3 line voltage remain constant for scales 33, 65 and 129. Nevertheless, 
they are also reduced at scales 257, 513 and 1025 because of the low frequencies 
of compared data at these scales. Finally, it is seen that maximum sensitivities 
are obtained at scales 33 and 65 for all line voltage values. They give almost the 
same results as the original algorithm. 

Table 3 shows the negative edge sensitivities at different scales. As the scale is 
increased from 33 to 1025, the big changes in sensitivities have been observed for 
L1-L3 line voltage values. On the other hand, it was seen that maximum sensi-
tivities of 93.54% were obtained at scales 33 and 65 for L2-L1 line voltage values 
that were almost the same as the original algorithm results. The sensitivities of 
L2-L1 line voltage values remain constant for scales 33 and 65. However, they 
are also reduced for the scales 129, 257, 513 and 1025 due to the low frequencies 
of compared data at these scales. Nevertheless, the sensitivities of L3-L2 line vol-
tage values are constant for the scales 33, 65, 129 and 257, but they are also re-
duced for the scales 513 and 1025. Lastly, it is seen that negative edge sensitivi-
ties are obtained at scales 33 and 65 for all line voltage values. Almost the same 
results were obtained at scales 33 and 65 as the original algorithm. 

Finally, sensitivities of all line voltages of L3-L2, L2-L1 and L1-L3 at higher 
scales were found very low due to very high sampling periods so that it caused 
missing the detection of peaks. This can also be explained simply by looking at 
Equation (1) and Figure 2, where it was seen that, when the scale is increased, 
the number of detected points are reduced due to an increased number of L in Z 
matrix. In another case, the sensitivity is also decreased at higher scales due to 
availability of noises in the signal. 

4.3. Evaluation Environments and Method  

In this section, the aforementioned hardware designed in Verilog HDL is ex-
plained and then device utilization and performance of the modified algorithm 
on the Kintex-7 XC7K325T [24] FPGAs are evaluated. As a mapping tool, a Vi-
vado 2016.3 tool was used. Furthermore, the analog-to-digital converters 
(ADCs) transform analog electrical signals, generally the voltage amplitude, into 
a sequence of discrete values for data processing purposes. In this study, it was 
preferred to use a DC919af ADC with 100 MHz maximum system frequency  
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Table 3. Negative edge sensitivities for different scales and line voltages. 

Sensitivities 
(Negative edge) 

L3-L2 
Line Voltage Values 

L2-L1 
Line Voltage Values 

L1-L3 
Line Voltage Values 

Scale 33 75% 93.54% 87.5% 

Scale 65 75% 93.54% 84.37% 

Scale 129 75% 90.32% 78.125% 

Scale 257 75% 67.74% 43.75% 

Scale 513 21.87% 22.58% 25% 

Scale 1025 12.5% 9.6% 12.5% 

 
(sampling rate) and it was implemented on the FPGA board. The main target in 
this study was to increase the scale to observe and analyze the latency, memory 
usage and performance of the FPGA board. Therefore, different window lengths 
at various scales were designed to implement and analyze them on the FPGA 
board. Firstly, the bit size factor was fixed at 12 because there are many ADC 
compatible with 12 bits. Then the scale of input data was varied such as 33, 65, 
129, 257, 513 and 1025 scales for comparison of resource usage, the result of 
which is shown in Table 4. 

As seen in Table 4, when the scale is increased, an increase is detected directly 
from some slice logic utilization such as the number of slice LUTs, BRAMs, FFs, 
and DSP48E1 blocks, as well as the latency. In addition, design algorithm uses 
on-chip memory blocks (BRAMs) since the entire process is mapped on a pipe-
lined structure based on shift registers. In terms of performance, the latency of 
peak detection was 23 clock cycles for the scale of 33. When each input data 
element has 12 bits, the maximum clock frequency is 144.927 MHz in Table 4. 
Furthermore, the maximum frequency was adjusted to 126.438 MHz in Table 4 
by using scale 1025 input sources. 

4.4. Evaluation of the AMPD Method with an FPGA Board 

An evaluation of the AMPD method with an FPGA board is done in this section. 
Table 5 gives information on the performance of latency at 100 MHz timing 
constraint for two different scales. To state the purpose of detecting the peak 
points efficiently, the approach in this study achieves the real-time peak detec-
tion based on AMPD algorithm on an FPGA. When implementing AMPD algo-
rithm on the FPGA board, bit size was chosen as 12, which was compatible with 
the ADC and 100 MHz maximum system frequencies.  

Figure 11 shows the overview of the experiment system. First, FPGA sends 
the starting signal to the ADC. Then ADC sends 12 bits input data and 100 MHz 
system clock signal to the FPGA. Finally, the designed algorithms successfully 
detect all peak points as illustrated in Figure 14 and Figure 15. In particular, 
two different AMPD algorithms were designed with scales 65 and 33 due to 
having best sensitivities. Although the system can successfully detect peak points 
at both scales, the latency is taken into account for the performance. When scale  
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Figure 11. Overview of the proposed system. 
 
Table 4. Resource usage with different scales. 

Scale 
Number of  
Slice LUTs 

Number  
of BRAMs 

Number of 
Flip-Flop 

Number of 
DSP48E1 

Max Frequency 
(MHz) 

Latency 
(clock cycle) 

33 2151 52 2910 22 144.927 23 

65 3148 52 4370 32 145.50 40 

129 5143 52 7306 64 156.66 73 

257 9141 52 13,182 128 147.57 138 

513 15,625 52 24,938 256 125.54 267 

1025 31,467 52 48,454 512 126.438 524 

Available 203,800 445 407,600 840 - - 

 
Table 5. Performance of different scales. 

Scale 
Bit 
Size 

Upper Limit 
Frequency 

System Clock 
Frequency 

Latency Measure from 
Figure 9 and Figure 10 

33 12 6 MHz 100 MHz 320 ns 

65 12 3 MHz 100 MHz 502 ns 

 
33 is selected, the latency is around 320 ns. This latency is a combination of ADC 
latency and algorithm calculation latency. When scale 65 is selected, total latency 
becomes around 502 ns because the window scale increases. Accordingly, the 
more the scale increases, the less the upper limit frequency becomes. The upper 
limit frequency is obtained by increasing the frequency from signal generator up 

Function 
GeneratorTLC

2207

SMA

SMA

SMA

FMC Connector

LMS
Calculation

Standard
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to losing output signal. 
Table 5 provides information on latency and maximum upper limit frequency 

for different scales with a fixed bit size and system clock frequency. This table 
shows the evaluation result of the two different scales of 33 and 65. Furthermore, 
upper limit frequencies indicated the maximum time step of execution of the 
algorithm.  

While the system is operating, the delay time is composed of two critical parts 
as algorithm calculation and converter as well as transmitting wire. For instance, 
when we implemented scale 65, we detected 502 ns total latency time from the 
oscilloscope screen depicted in Figure 14. To calculate its component for the 
calculation of algorithm, latency clock cycle at scale 65 in Table 4 is divided by 
constraint system clock frequency (100 MHz) first so that algorithm calculation 
time is found as 40/100 = 0.4 [μs] = 400 [ns]. Then, it was subtracted from the 
total latency time, 502 ns, read from the oscilloscope in Figure 14, in order to 
calculate the converter and transmitting wire part as 502 [ns] - 400 [ns] = 102 
[ns]. Figure 12 shows detail about latency for scale 65. 

This calculation is repeated for the scale 33 to make the distribution of latency 
time clearer and understandable. At scale 33, total latency time is measured as 
320 ns from the oscilloscope screen in Figure 15. From Table 4, algorithm cal-
culation time is found by dividing the latency clock cycle by constraint system 
clock frequency (100 MHz). So it is calculated as 23/100 = 0.23 [μs] = 230 [ns]. 
After that, when this time is subtracted from total latency measure, converter 
and transmitting wire part can be calculated as 320 [ns] - 230 [ns] = 90 [ns]. 
Figure 13 shows detail about latency for scale 33. 

Figure 14 and Figure 15 are snapshots of experimental results with different 
scales on FPGA by using an oscilloscope. These results prove that a designed  
 

 
Figure 12. Latency of scale 65. 

 

 
Figure 13. Latency of scale 33. 
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Figure 14. Peak detect with 3.005 MHz sinusoidal signal. 

 

 
Figure 15. Peak detect with 6.148 MHz sinusoidal signal. 

 
algorithm can effectively detect all peak points on the positive edge. Figure 14 
illustrates that designed algorithm can fully detect all peak points on the positive 
edge. This algorithm produces the peak points with synchronized 3.00 MHz si-
nusoidal signals. This implementation result shows scale 65, 12 bit size and 
around 502 ns total latency time and a maximum frequency of around 3 MHz. 
Figure 15 shows all of the peak points on positive edge with synchronizing 6.148 
MHz sinusoidal signal. This implementation result shows scale 33, 12 bit size, 
around the 320 ns latency time and a maximum frequency of around 6 MHz. 

5. Conclusions 

In this paper, a novel modified AMPD method was implemented on an FPGA. It 
was highlighted that the modified AMPD mechanism could be implemented as a 
pipelined hardware on an FPGA, and that fast detection latencies (320 ns and 
502 ns for scales 33 and 65) could be achieved with a reasonable amount of 
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hardware resources by slightly modifying the original on-line algorithm to fit the 
off-line processing. It was also demonstrated that the modified AMPD mechan-
ism detects peak points from noisy time series data of the phase-to-phase effec-
tive voltage values of a medium-voltage transformer located in the Organized 
Industrial Zone. 

Thus, modified AMPD algorithm has been proposed and evaluated by using 
different scales on an FPGA board. The proposed approach has achieved 
real-time peak detection based on AMPD algorithm on an FPGA. The latency 
was also presented at different scales from 33 to 1025. The codes written in real 
time were implemented and results were compared with simulation results to 
achieve the main target of this study. Although both scales can effectively detect 
the peak points, the latency was taken into account for the performance on the 
ADC and algorithm calculating time. So peak sensitivities obtained from on-line 
original AMPD were compared with the sensitivities obtained from off-line 
modified algorithm using the same data. It was observed that scales 33, 65, 129 
and 257 produced more or less successful results. In terms of the peak sensitivi-
ties, scales 33 and 65 produced similar results as the original AMPD that was 
proposed in this study. That means the proposed novel mechanism can be used 
as an off-line robust and real-time peak detection algorithm by combining the 
AMPD algorithm and the FPGA technology. 
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