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Abstract 
In cryptography, the Triple DES (3DES, TDES or officially TDEA) is a sym-
metric-key block cipher which applies the Data Encryption Standard (DES) 
cipher algorithm three times to each data block. Electronic payment systems 
are known to use the TDES scheme for the encryption/decryption of data, and 
hence faster implementations are of great significance. Field Programmable 
Gate Arrays (FPGAs) offer a new solution for optimizing the performance of 
applications meanwhile the Triple Data Encryption Standard (TDES) offers a 
mean to secure information. In this paper we present a pipelined implementa-
tion in VHDL, in Electronic Code Book (EBC) mode, of this commonly used 
cryptography scheme with aim to improve performance. We achieve a 48-stage 
pipeline depth by implementing a TDES key buffer and right rotations in the 
DES decryption key scheduler. Using the Altera Cyclone II FPGA as our plat-
form, we design and verify the implementation with the EDA tools provided 
by Altera. We gather cost and throughput information from the synthesis and 
timing results and compare the performance of our design to common im-
plementations presented in other literatures. Our design achieves a through-
put of 3.2 Gbps with a 50 MHz clock; a performance increase of up to 16 
times. 
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1. Introduction 

In cryptography, the Triple DES (3DES, TDES or officially TDEA) is a symme-
tric-key block cipher [1] which applies the Data Encryption Standard (DES) ci-
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pher algorithm [2] three times to each data block. Electronic payment systems 
are known to use the TDES scheme for the encryption/decryption of data, and 
hence faster implementations are of great significance [3] [4]. Mail applications, 
such as Microsoft Outlook, make use of this scheme as well [5]. 

This paper focuses on increasing the performance of TDES, in Electronic Co-
debook (ECB) mode [6], by implementing a 48-stage pipelined depth design. In 
[7], a common design to increase the computational power (performance) of 
TDES is evaluated by implementing a 3-stage pipelined design. The pipeline 
stages are placed after each DES process and each DES process consists of one 
Feistel Function round. The input string must loop the one-round 16 cycles be-
fore the next input string can be fed. This implementation is common where 
cost constrain requirements are present. 

Our approach to increase the performance consists on implementing a 
48-stage pipeline TDES design. To do so, 3 different DES components, consist-
ing of 16 Feistel Function rounds, are required. Each DES process must be pipe-
lined at every round to make a 16-depth pipeline. Pipelining each DES compo-
nent allows us to increase the depth to 48 stages and yield a higher throughput. 
An input string can be fed at every cycle and, as a consequence, a processed 
string will output at every cycle. To achieve the coherency between the 3 input 
keys and the data, as it traverses the stages, we design a key bank. This key bank 
properly buffers the keys to match each DES stage. The last design modification, 
for coherency, is incurred in the DES decryption key scheduler: the key schedu-
ler performs right rotations instead of left rotations. 

The structure of this paper is as follows: In Section 2, we detail the modifica-
tions made, to the TDES scheme presented in the NIST SP 800-67, which cohe-
rently pipelines TDES in ECB mode. Section 3 contains the performance and 
cost results as portrayed by the EDA tools and calculations based on the Cyclone 
II technology. We include a comparison subsection of the performance yield by 
the pipelined method implemented in [7] and the pipelined method imple-
mented here. Lastly, Section 4 contains our conclusion. 

2. TDES Pipelined Design 

To pipeline our TDES design we take advantage of the 16 Feistel function 
rounds in DES. We pipeline after every Feistel function round. The pipeline is 
also applied to the key schedulers. A key bank buffers the 3 input keys so that, as 
the data traverses the stages, the proper keys and sub keys are fed. The pipeline 
depth of our DES design is 16 stages and the depth of our TDES design is 48 
stages. The TDES scheme is designed as presented in [1]. Our modification to 
the scheme is the addition of registers after every Feistel Function round in DES, 
the right rotations in the DES decryption scheduler and the TDES Key Bank. 

2.1. DES Algorithm 

A coherent DES pipelined design is necessary for implementing the pipelined 
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TDES. The full description of the DES algorithm is presented in [2]. In this sec-
tion, we show the pipeline at every stage in the DES algorithm. 

The DES scheme is conformed of two permutations and 16 rounds of Feistel 
Functions. To pipeline DES, we add registers after every round and one last reg-
ister following the final permutation. The DES component contains 16 stages in 
the pipeline. Seen in Figure 1 are the 30 32-bit registers after every Feistel Func-
tion round (L1 through L15 and R1 through R15). The final register, following 
the final permutation, is the 64-bit buffer (cypher buffer). Both, the encryption 
and decryption components for DES are identical. The main difference between 
the encryption and decryption DES schemes are the order in which the 16 
sub-keys, generated in the key schedulers, are inserted in the Feistel Function 
rounds. 

2.2. DES Decryption Key Scheduler 

The coherency requirement for the pipelined TDES involves applying buffers in 
the key scheduler. As the input data string traverses the rounds, the buffers en-
sures each round encrypts with the proper sub key. 16 sub keys are generated in 
the key scheduler. We apply 15 buffers in the schedulers. These 15 56-bit regis-
ters can be seen in Figure 2 (Reg1, Reg2, Reg3… Reg15). The registers contain 
the left (cn) and the right (dn) halves. The key scheduler shown in Figure 2 is 
employed in the DES decryption component. The main difference between the 
DES encryption scheduler and DES decryption scheduler is that the encryption  

 

 
Figure 1. DES Encryption Pipeline. 
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Figure 2. Key Scheduler Pipelined Design for Decryption. 

 
Table 1. Key Scheduler Rotations. 

DES Encryption Sub Key Left Rotation DES Decryption Sub Key Right Rotation 

K1 1 K16 No Shift 

K2 1 K15 1 

K3 2 K14 2 

K4 2 K13 2 

K5 2 K12 2 

K6 2 K11 2 

K7 2 K10 2 

K8 2 K9 2 

K9 1 K8 1 

K10 2 K7 2 

K11 2 K6 2 

K12 2 K5 2 

K13 2 K4 2 

K14 2 K3 2 

K15 2 K2 2 

K16 1 K1 1 

 
scheduler performs left rotations while the decryption scheduler performs right 
rotations. These rotations are executed in the cn and dn halves. 

In Table 1 we show the positions by which the encryption and decryption 
schedulers perform the left and right rotations. Generating the 16 sub keys, by 

https://doi.org/10.4236/cs.2017.89016


E. D. Rosal and S. Kumar 
 

 

DOI: 10.4236/cs.2017.89016 241 Circuits and Systems 
 

performing right rotations in the decryption scheduler and feeding them in or-
der, is equivalent to generating the sub keys by performing left rotations and 
feeding the keys to the decryption rounds in reverse order as specified in [2]. For 
pipelining, it is convenient to maintain the data and key coherency by inserting 
the sub keys in top to bottom order instead of bottom to top order. 

2.3. Key Bank 

TDES consists of 3 different DES components: DES encryption (DES1 e), DES 
decryption (DES2 d), DES encryption (DES3 e) for TDES encryption and DES 
decryption (DES1 d), DES encryption (DES2 e), DES decryption (DES3 d) for 
TDES decryption. TDES encryption is performed as follows: DES1 e (Key 1), 
DES2 d (Key 2) and DES3 e (Key 3). TDES decryption is performed as follows: 
DES1 d (Key 3), DES e (Key 2) and DES d (Key 1). 

One difficulty faced with linking three pipelined DES components is that the 3 
input keys (Key 1, Key 2, Key 3) don’t map to the data as it traverses the DES 
components. The keys need to be properly buffered before they are inserted into 
their respective DES component. Otherwise DES2 d and DES3 e components 
will begin processing the incorrect data as soon as they are fed. 

The concept behind our key bank is that the keys be buffered the proper cycles 
count until the output of the previous DES component reaches the input of the 
DES component for which the key was meant. See Figure 3. 

For the TDES encryption we have Key 1, Key 2 and Key 3. Key 1 is inserted in 
to the encryption key scheduler and begin processing. There is no need to buffer 
Key 1 because the data enters the DES1 e component right away. However, Key 
2 and Key 3 cannot begin processing right away. Key 2 waits until the 

 

 
Figure 3. Key Bank. 
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Figure 4. TDES Pipelined Design. 

 
DES1 e component is done processing. As otherwise stated in Figure 4, Key 2 is 
buffered, 15 cycles, until data reaches cypher 1. This is done by implementing 15 
registers (key2 1 ... key2 15) in the Key Bank. In the 16th cycle, Key 2 enters the 
decryption key scheduler just as cypher 1 enters DES2 d. Key 3 must wait 15 
more cycles after that to begin processing. Key 3 is buffered, 15 cycles, from cy-
pher 1 to cypher 2: a total of 31 cycles from data to cypher 2. This is done by im-
plementing 31 registers (key3 1 ... key3 31) in the Key Bank. In the 32nd cycle, 
Key3 enters the encryption key scheduler just as the processed data enters DES3 
e. A 64-bit encrypted string is output in the 48th cycle. 

3. TDES Design Evaluation 

We make use of the EDA tools provided in the Altera’s website to evaluate our 
design. These tools, Quartus II Web Service Pack 1 edition and the Altera Uni-
versity Program Simulator [8], allow the code to be built, compiled, synthesized, 
simulated and finally programed into the DE2 hardware.  

In this work we use the Altera’s Cyclone II DE2 Board EP2C35F672C6 plat-
form. The technology in Cyclone II was released in 2005 [9]. The density, of 
model EP2C35F672C6, is 33,216 LEs and the technology is 90 nm. It contains an 
internal 50 MHz clock [10]. This development board is available in Terasic’s 
website [11].  

3.1. Performance 

The performance results are retrieved from Altera’s U.P. Simulator. The simula-
tions were performed using the 50 MHz internal clock. The throughput calcula-
tions are based on this internal clock signal. In Table 2 we compare the propa-
gation times and throughputs of the non-pipelined and pipelined designs.  

The non-pipelined design reflects a high propagation delay. TDES’s propaga-
tion delay is 245 ns. Clocking an input string every 260 ns should process the 
string free of violations.  

Non-Pipelined Throughput = 64 bits/(260 ns) = 237 Mbps 

https://doi.org/10.4236/cs.2017.89016


E. D. Rosal and S. Kumar 
 

 

DOI: 10.4236/cs.2017.89016 243 Circuits and Systems 
 

Table 2. Non-Pipelined VS Pipelined Performance Comparison. 

 
TDES Encrypt/Decrypt 

(Non-Pipelined) 
TDES Pipelined Encrypt/Decrypt 

Propagation Delay 245 ns 960 ns* 

Clock Period 260 ns 20 ns 

Throughput 237 Mbps ≈3.2 Gbps 

*There’s an 8 ns delay after the clock event. The 960 ns propagation is the initial delay. 
 

 
Figure 5. TDES Pipelined Timing Diagram. 
 

Our TDES pipelined design has an initial 48-cycle propagation delay: 960 ns. 
However, passed the initial propagation delay, TDES outputs a processed string 
of 64 bits every 20 ns. The throughput achieved is approximately 64 bits × 20 ns 
= 3.2 Gbps. See Figure 5.  

3.2. Performance Comparison 

As mentioned earlier, a common TDES pipelined design is presented in [4]. In 
this sub section, we compare the performance of our design against this com-
mon design and other designs presented in [12] [13] [14] [15] & [16]. We use 
the 50 MHz clock (20 ns period) to normalize the calculations for all designs.  

Each DES component in the designs, mentioned in the literature above, 
achieved an increase in performance by implementing a 16-stage pipeline. 
Common ways to implement TDES are by either feeding 3 keys to 1 DES com-
ponent, or by inserting 3 keys to 3 DES components. When 3 keys are processed 
via 1 DES component, a 64-bit string output is processed every 48 cycles. When 
3 keys are processed via 3 DES components, a 64-bit string output is processed 
every 16 cycles.  

Using a 50 MHz clock, when TDES outputs a processed string of bits every 48 
cycles, the performance achieved is 66.67 Mbps.  

Throughput (1 DES component) = 64 bits/(20 ns × 48) = 66.67 Mbps 

Using a 50 MHz clock, when TDES outputs a processed string of bits every 16 
cycles, the performance achieved is 200 Mbps.  

Throughput (3 DES components) = 64 bits/(20 ns × 16) = 200 Mbps 

In [17] the author’s achieved performance is 860.66 Mbps with a maximum 
clock frequency of 215.165 MHz using Xilinx Virtex4 series technology.  
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The throughput yield of the design presented in this work is as follows: 

Throughput = 64 bits/20ns = 3.2 Gbps 

The performance of our TDES pipelined design is 48 and 16 times greater 
than the common TDES implementations, 3.6 times greater than the perfor-
mance shown in [16] and 13.5 times greater than our TDES Non-Pipelined de-
sign.  

3.3. Cost 

The parameter of interest for discussion, from the Quartus II software, is the 
number of Total Logic Elements (LEs). The Analysis and Synthesis results from 
Quartus II yield the values seen in Table 3. The total hardware space available in 
the Cyclone II EP2C35F672C6 platform is 33,216 LEs.  

The table contains the number of logic elements for the non-pipelined and 
pipelined TDES designs. Our non-pipelined TDES implementation requires 
12,285 LEs while our TDES pipelined design requires 13,915 LEs. The increase in 
the cost is due to the additional registers we added in the key schedulers, the 
Feistel Function rounds, and the Key Bank.  

4. Conclusions 

In this paper, a design to increase the performance of TDES ECB mode in 
VHDL using Alteras Cyclone II technology was evaluated. With a clock speed of 
50 MHz, the throughput achieved is 3.2 Gbps for our TDES design. The cost of 
implementing our TDES pipelined design is 13,915 LEs. We achieved this by 
making three modifications to the TDES scheme. Piplining each DES compo-
nent and Key Schedulers was the first modification. The second modification 
involved implementing right rotations to the decryption key scheduler. This 
helps maintain coherency between the sub keys and the data as it traverses the 
Feistel Function rounds. The third modification was the Key Bank that buffers 
the keys for 15 and 31 cycles.  

We observe that to increase the performance, more stages must be imple-
mented. However, more stages yield a higher cost. A higher clock speed also 
yields a higher throughput and does not affect the cost. However, as the number 
of logic elements, a string of bits must traverse, increases, the propagation delay  

 
Table 3. Non-Pipelined VS Pipelined Cost Comparison. 

  

TDES 
Encrypt./Decrypt 
(Non-Pipelined) 

TDES Pipelined 
Encrypt./Decrypt. 

Total Number 
Of Items 
Available 

ALTERA DE2 BOARD 
(EP2C35F672C6) 

HARDWARE COST 

Total Logic 
Elements 

12,285 13,915 33,216 

increases, and the clock frequency required for proper operation decreases. Pipe-
lining increases the throughput by decreasing the output time of a processed 
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