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Abstract 
The slagging/fouling due to the accession of fireside deposits on the steam boilers 
decreases boiler efficiency and availability which leads to unexpected shut-downs. 
Since it is inevitably associated with the three major factors namely the fuel characte-
ristics, boiler operating conditions and ash behavior, this serious slagging/fouling 
may be reduced by varying the above three factors. The research develops a generic 
slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial 
Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% 
which makes this model fast in response and easy to be updated with lesser time 
when compared to single ANN. The comparison between predictions and observa-
tions is found to be satisfactory with less input parameters. This should be capable of 
giving relatively quick responses while being easily implemented for various furnace 
types. 
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1. Introduction 

The complex process of combustion for the purpose of energy production consists of 
consecutive reactions of both homogeneous and heterogeneous [1]. One of the com-
mon problems of fossil fuels is combustion deposits in the production of heat and elec-
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trical energy. During the complex process of combustion, the adequate amounts of 
mineral impurities present in fossil/biomass fuel are transformed into ashes and they 
are transported aerodynamically through the boiler as fly ash. The sediments accumu-
late as insoluble layers and the increase in deposits arrest and awkwardly corrupt 
pipes/other machinery in the hopper. Due to the discrepancy in deposition structures, 
two types of high temperature ash deposition schemes namely slagging and fouling are 
defined. The process generates a huge extent of ash that creates practical problems in 
boilers namely slagging, fouling, erosion, corrosion, abrasion, clinkering, sintering, and 
so on [2]. Especially, components in the boiler or the deposits on the heat transfer sur-
face tubes that are regimented to convection are termed as fouling. While they are re-
gimented to radiation are termed as slagging [3].  

Thus slagging/fouling due the accession of fireside deposits on the steam boilers de-
creases heat transfer which is directly associated with reduction in boiler efficiency and 
performance degradation and in turn leads to unexpected shut-downs. Slagging/fouling 
not only impacts the steam production, but also outgrowth other relevant effects on 
boiler performance. The high development of incombustible volatiles associated to 
many fossil/biomass components due to the slagging/fouling is detailed [4]. The con-
densation vapours incombustible volatiles over the superheaters tubes forms a layer for 
the solid soot particles and this growth of the layer decreases heat transfer and ob-
viously steam production and boiler efficiency [5] [6]. Thus the complete awareness of 
the complex combustion process is the primary step against the slagging/fouling. The 
survey shows various prediction models are proposed regarding statistic particle colli-
sion, slagging/fouling, ash melting and heat transfer through the layers. Ash formation, 
transport and slagging/fouling have been proposed [7]. They assimilate formation, boi-
ler aerodynamics, transport systems and adherence of the particles deposited to the 
surface [8]. A deposit model based on Monte Carlo methods is detailed and simulated 
deposit growth under slagging/fouling circumstances [9]. A deposit model was devel-
oped at the University of Stuttgart. Recently, the nature of steam boilers shows a serious 
propensity to a slagging/fouling that reduce the boiler capacity [10]. Hence, serious ac-
tion should be taken towards the development of boilers and the broad use of the fossil/ 
biomass in the production of electricity. Due to the intrinsic complications of the slag-
ging/fouling, the issue has not been wholly settled.  

Primarily, fouling and slagging curtail heat transfer with the heat exchanger surfaces, 
and they stimulate corrosion and erosion on their surfaces. Thus decreased exchange 
efficiency and an increased maintenance costs of propensity results [11]. The major 
portion to fouling comes from the inorganic chemical composition of the fuel used in 
combustion. Empirical correlations are adapted to ashes behaviour within the boiler 
and as a consequence, the empirical correlations are developed for slagging/fouling 
based on its chemical analysis [12]. As part, the alkali index is employed to illustrate the 
fouling risk [13]. Yet, these correlations are not hypothesized for all types of biomass 
and do not take into account frequently other chemical components that increases the 
slagging/fouling trend. This is the reason, the empirical correlations are only recom-
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mended for fuel selection but not for slagging/fouling control. Hence the slagging/ 
fouling aspects within the boiler are caused by other mechanism than coal [14]. In any 
circumstances, software is required externally for calculation and simulation. Commer-
cial products are available boiler monitoring, particularly for slagging/fouling strategies 
[15], but there is a lack of knowledge about the internal behaviour of these applications. 
Essentially, alkali metals such as Na and K combined with Si, S, and Cl, are responsible 
for the above problems, and hence, they are a major portion of fouling. Calculation of 
different deposition indices based on the inorganic composition of the ash is one of the 
ways to resolve the fouling and slagging proficiency of a fuel. This is the fundamental 
step to removing them. Therefore Ash fouling of heat transfer surfaces is invariably one 
of the main viable affairs in coal-fired power plant utility boilers. The review shows that 
there are 1% of losses of energy efficiency and availability occurs in thermal power 
plants due to these problems [16]. The Electric Power Research Institute (EPRI) survey 
on ash fouling [17] showed 7% of units face continual fouling and 40% address random 
problems, by the whole of pulverized-coal utility boilers. In recent decades, there is ex-
tensive development of research proposed in this area. Consequently, there is still a lack 
of awareness about slagging/fouling nature in fossil/ biomass utilization, particularly in 
boilers [18]. So it is one of the signs to build up the technology and attain a broad de-
velopment of fossil/biomass utilization. With this goal, the enthusiasm lies not only in 
the slagging/fouling mechanisms, but also in the impact of slagging/fouling in boiler 
operation and the tools to control and minimize the fouling effects. 

A strain-gauge based measurement system is developed for slag deposits. It measures 
a load on the rods that suspend the pendant steam superheaters using strain gauges. 
The growth in deposits increases the weight and thereby the recorded strain increases 
[19]. Other strategies for monitoring and prediction of fouling in steam boilers are ex-
plained and they depend on the heat and material balances to implement heat transfer 
analysis in the furnace [20]. The calculated values needs to converge for the variation of 
the steam and its temperature, water flow rates, flue gas and the fouling level for a given 
steam boiler. Various researchers analyzed the slagging/fouling mechanisms in coal 
power plants including complex CFD simulations and chemical fuel analysis [21]. These 
traditional methods for steam boilers to reduce slagging/fouling are not applicable 
without an appropriate boiler evaluation. Large number of data is needed to develop 
correlations and to predict the desired parameters using mathematical methods like re-
gression analysis. The Artificial Neural Network (ANN) model is capable to predict the 
new data with the help of reasonable set of given input data with high speed and accura-
cy. Recently, many researchers applied ANN to heat exchangers. The Neural Networks 
(NNs) are introduced recently to solve problems dedicated to system modeling, fore-
casting, identification, optimization, control, energy and power systems [22]. The appli-
cation of the Neural Networks to renewable energies [23] and to the interpretation of 
slagging/fouling inside the boilers [24] also has been reported. But, not many researchers 
attempted ANN modeling in the determination of slagging/fouling using the fuel cha-
racteristics, boiler operating conditions and ash behavior. However, a hybrid control 
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technique that assesses the above performance of boiler depending on slagging/fouling 
and technique to control slagging/fouling has not been already developed. This paper is 
perceived as a contribution to this inquiry.  

The main goal of this paper is to present the application of a Hybrid System that 
combines NNs advantages with fuzzy clustering method to control slagging/fouling and 
optimize boiler performance, minimizing the effect slagging/fouling. Fuzzy cluster 
analysis finds its application in various engineering disciplines since it has great advan-
tage of filtering outliers/noisy data. The author investigated transmembrane pressure 
data based on principal component analysis (PCA) and fuzzy clustering (FC) [25]. A 
fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy 
clustering and subspace identification (SID) methods was developed [26]. A probabilis-
tic model to predict the effectiveness of soot-blowing based in Artificial Neural Net-
works and Adaptive Neuro-Fuzzy Inference Systems was developed [27]. A novel me-
thod based on cluster analysis for industrial process control is developed [28]. A selec-
tive algorithm for constructing neural network ensemble based on clustering is pro-
posed [29].  

Many researchers used the hybrid method of fuzzy logic and neural networks to 
achieve the satisfactory results than the conventional statistical method and single ANN. 
But the concentration of slagging/fouling forecasting based on all the three factors such 
as the fuel characteristics, boiler operating conditions and ash behavior is not yet pro-
posed. Hence the paper proposes hybrid method of fuzzy cluster and ANN for fore-
casting slagging/fouling. Figure 1 shows the overview of slagging/fouling forecasting 
system in three phases of determination of slagging/fouling using 1) the fuel characte-
ristics, 2) boiler operating conditions and 3) ash behavior. The proposed approach is 
established utilizing Fuzzy clustering method (using k-means and medoid) which al-
lows every data to belong to every cluster to a valid degree. In addition, FC extracts the 
clusters membership levels of each normalized data in all the clusters and finally each 
cluster will be fed as input to ANNs. The employed FCANN allows the clusters to be 
larger which thereupon increases the accuracy of the proposed forecasting system. The 
simulation shows energy saving between hybrid FCANN outputs and real data obtained 
from steam boiler.  

2. Brief Description of Methodology 

This section briefs the ANN, Fuzzy clustering (FC) and hybrid FCANN used in this re-
search to forecast the slagging/fouling level in bolier furnaces. 

2.1. Fuzzy Clustering (FC) 

Fuzzy clustering normalizes segregated clustering methods by admitting an individual 
object to be moderately classified into conjointly one cluster. Segregated/partition clus-
tering methods are k-means and medoid. In fuzzy clustering, the membership is disse-
minated by all clusters. Here 𝑚𝑚 clusters and a set of variables 1 2 ,, ,i i imx x x  are de-
fined for classification. The variables 1 2 ,, ,i i imx x x  represent the probability that object  
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Figure 1. Overview of slagging/fouling forecasting system. 

 
i is classified into cluster m. The variable imx  ranges between zero and one, with the 
restriction that the sum of their values is one. This denotes “fuzzification” of the cluster 
configuration. The advantage of fuzzy clustering is that it does not compel every object 
into a particular cluster. The fuzzy algorithm [30] claims to minimize the objective 
function, “O” given in Equation (1), made up of cluster memberships and distances.  
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where imx  represents the unknown membership of the object i in cluster m and is the 
contrariety between objects i and j. The memberships are restricted to be non-negative 
and that the sum of memberships for a single individual must be one. Dunn’s partition 
coefficient ( pcD ) given in Equation (2) measures the closeness of the fuzzy response to 
the corresponding hard response (classify each object into the largest membership 
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cluster) and thereby measures the “fuzziness” in a solution.  
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pcD  may be normalized as in Equation (3) so that it varies from 0 (fuzzy) to 1 (hard 
cluster).  
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Another partition coefficient ( cP ) [31] given in Equation (4) ranges from 0 (hard 
clusters) to 1-1/M (completely fuzzy). cP  may be normalized as in Equation (5).   
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Both pcD′  and cP′  provide a valuable implication of an admirable number of clus-
ters. The cluster M should be chosen that pcD′  is large and cP′  is small.  

2.2. Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) is duplication techniques that recreate a few biolog-
ical behaviors or mimic some human functions, i.e. training and course imitation. Si-
mulation and prediction are contemplated as the best applications of ANN and there-
fore, they reduce the fouling problem. According to the particular type and objectives, 
ANN is built by a limited number of layers connected with distinct computing elements 
named neurons. The structure built is multilayer feed forward ANN having that the in-
formation is fed from the input layer to the output layer with intermediate layers in a 
single forward direction and there is no backward feeding. Intermediate/hidden layers 
incorporate sigmoid neurons with a view to conveniently reproduce non linear nature, 
and the output layer is formed with linear neurons to reproduce tasks without interrup-
tion. The number of neurons in the hidden layer is selected twice that of the number of 
input neurons in the input layer. Thus, n = 6, 10 and 2 respectively in Figure 2. A 
three-layer feed-forward neural network is constructed for this modeling. Initially, all 
data are normalized so that the size of data reflects the output; weights are randomly 
initialized before training the networks. The learning rate is set at 0.1 and momentum 
rates is also set at 0.1, and the iteration should be stopped when mean squared error 
reduces by less than 0.000001 or the model reaches 2000 iterations. As a result, the 
process gives information about significant rate of each input variable. Once the model 
has been satisfactory trained (no need of precise/noise-free data), the developed ANN  
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Figure 2. Block diagram of ANN model employed in three phases of prediction. 
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structure has been able to reproduce a boiler and monitoring fouling level of the heat 
exchanger. This ANN structure and input data mimics the authentic thermal simula-
tion. The iterative process of training procedure ranks the most important variables 
focusing to minimize the number of input variables needed to reproduce a measured 
output. Comparisons of historical data of fouling level in super heaters with that of the 
predicted data ANN model shows good agreement with complex results of thermody-
namic equations and the developed ANN reproduces satisfactorily the behavior of 
thermal boiler. Almost 70% of the data was used for training, and the rest 30% was used 
for testing. Figure 2 shows the block diagram of ANN models employed in three phases 
of determination of slagging/fouling using 1) the fuel characteristics, 2) boiler operating 
conditions and 3) ash behavior.  

2.3. Development of FCANN Model 

The proposed FCANN architecture is shown in Figure 3. The proposed approach is 
established utilizing Fuzzy clustering (FC) method (using k-means and mediod) and 
ANN which allows every data to belong to every cluster to a valid degree. In addition, 
FC extracts the clusters membership levels of each normalized data in all the clusters 
and finally each cluster will be fed as input to ANNs. The employed FCANN allows the 
clusters to be larger which consequently increases the accuracy of the proposed fore-
casting system. 

3. Determination of Fouling Index (FI) in Three Phases 

Ash formation in boilers is a very complicated problem. It requires the keen grasping of  
 

 
Figure 3. The architecture of FCANN model. 



M. Sathya Priya et al. 
 

4054 

the cause of solid deposition which comprises the awareness of fuel characteristics, ash 
behavior, and boiler operating conditions. Therefore fouling index (FI) is determined 
in three phases using ANN involving 1) the fuel characteristics, 2) boiler operating 
conditions and 3) ash behavior. 

3.1. Determination of Fouling Index Using Fuel Characteristics 

Viscous temperatures of the ash/fly ash, alkali concentrations in the fuel, and sulfate 
formation propensity are some indexes of potential slagging or fouling problems. The 
fly ash ticklishness in a sulfur or chlorine-free fuel can be predicted by differential 
thermal analysis [31]. But sulfur is present in most biomass fuels. When they are fired, 
they are dependent upon physical state changes and post-combustion reactions and the 
melting temperatures cannot be predicted by laboratory enactment. Hence, it is essen-
tial to learn the elements in the fuel and their reaction in the boiler. various coals are 
classified proximate to fouling/slagging comprise the calculation of the weight in alkali 
oxides (K2O + Na2O) per heat unit, kg/GJ (lb./million Btu) in the fuel using the higher 
heating value (HHV). The detailed review based on plant expertise have shown that a 
risk of fouling/slagging increases above 0.17 kg/GJ to 0.34 kg/GJ (0.4 ib. to 0.8 1b. 
MMBtu). Above 0.34 kg/GJ (0.8 lb./MMBtu) the fuel is pretty near certain to slag and 
foul to a hysterical degree. Evaluation of the impact of a fuel on a particular boiler is 
done by combining field experience and boiler operating conditions with this informa-
tion. fouling index of boilers which are co fired with bark, coal and oil is developed that 
indicates the tendency of fouling based on alkali and alkaline earths [32]. Alkali con-
centrations for many biofuels are shown in Figure 4. The proportion of water soluble 
sulfate forming compounds (CaO + MgO + Na2O + K2O) is represented as a percent of 
total ash in the fuel fed to the boiler. It is found that fouling tendency could be reasona-
ble when sulfur is present in water soluble alkali. Since some straws have more chlorine 
than sulfur, chlorine content is also necessarily being intended as a reasonable measure 
of fouling tendency. Yet, the slagging tendency of a boiler cannot be predicted in terms 
of fuel properties only. While the slagging tendency commonly increases with alkali 
content, other inorganic components together influenced with boiler operating condi-
tions and boiler design. The data in phase I prediction of slagging/fouling having Alkali, 
sulfur and chlorine concentration in fuel both in kg/GJ (lb./million Btu) are shown in 
Figure 4. The dataset shows twelve kinds of fuels namely Yard Waste, Wood-Straw, 
Wood-Almond, Wood-Ag Pit, Demolition, Urban waste, Forest Residuals, Wood-Ag 
Blend, Hybrid Poplar, Urban waste, WiIlow Butt and Red Oak respectively. 

3.2. Determination of Fouling Index Based on Boiler Operating  
Conditions 

Ash fouling of heat transfer surfaces enduringly has been one of the prime operational 
interests in coal-fired power plant boilers. Monitoring of ash fouling mainly requires 
learning the behaviors of the boiler. The boiler efficiency reduction is one of the para-
mount impacts of ash fouling. On-line computation invariably uses the conventional  
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Figure 4. Data Records showing Fuel characteristics in Kg/GJ and lb./million 
Btu. 

 
method (log-mean-temperature-difference approach [32]) for the calculation of the 
heat absorption of heat transfer surfaces. Commercial ash fouling boiler monitoring 
tools are also available, but the internal concerns of these functions are ambiguous. 
Furthermore, the internal concerns of ash fouling by means of fouling index (FI) meas-
ures the ash fouling degrees of heat transfer surfaces and thermal efficiency. A 300 MW 
coal fired utility boiler is considered for the analysis [33]. Sample data from the litera-
ture as shown in Figure 5 is taken for forecasting in this section. In Figure 5, TPA de-
notes primary air temperature, ξ denotes secondary air flow rate, Ψ denotes coal mass 
flow rate, ζ denotes primary air flow rate, TFW denotes feed water temperature and FI 
denotes fouling index. 

Comprehensive research is required to find out the cause-effect relation in boiler in-
put and output variables. Required input parameters were initially selected on the basis 
of expert knowledge and previous experience for the ANN and FCANN model shown 
in Figure 2 and Figure 3 respectively. From the detailed review, it is noted that, the re-
sponse of boiler is most sensitive to variations in the parameters of primary air flow 
rate ζ (m3/h), coal mass flow rate Ψ (kg/s), and load demand (MW). From the expert 
knowledge, the variation of coal mass flow rate has the data of the changeable MW. It is 
also reviewed that the primary air temperature (TPA (˚C)) is a significant factor affecting 
the combustion in furnace. Thus, boiler efficiency η (%) is obviously directly influenced  
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Figure 5. Data records of boiler operating parameters. 

 
by TPA, and it is also mostly influenced by the feed water temperature TFW (˚C), primary 
air flow rate ζ (m3/h) and secondary air flow rate ξ (m3/h). Thus the fouling index of the 
heating surfaces is significantly influenced by ζ, TPA, ξ, TFW, and Ψ. The developed 
model is envisioned to be absolutely satisfactory more applicable for “on-line” applica-
tions and with less number of input parameters [33] in the determination of FI and 
boiler efficiency.  

3.3. Determination of Fouling Based on Ash Behavior 

Slagging and fouling are very complicated outcome which rely on many factors corre-
lated with the nature of fuel, boiler operation and its design. In case of coal combustion 
the ash behavior in boilers is predominantly governed by coal minerals which go 
through in flame conversion and melting whereas for the biomass fuels, the ash-form- 
ing vapors are the main sources for slagging and fouling. The present section is focused 
on the forecasting fouling deposits produced during the combustion of coal in experi-
mental boilers. The sample data with ash contents such as SiO2, Al2O3, Fe2 O3, TiO2, 
CaO, MgO, Na2O, K2O, Mn2O3, P2O5, SO3 and S taken for prediction is shown in Figure 
6. The oxide ash content is a primitive measure of ash quality which confers the as-
sessment of the composition of mineral content as well as approximates the slagging/ 
fouling propensity of fuels with the employment of empirical correlations. 

Indices used to predict slagging/fouling tendency of coals have been advanced since 
the 1960s. And they are normally constructed based on the analyses of the viscosity, ash 
fusion and ash chemistry. The most commonly applied indices are defined in Equations. 
Reviews on various ranges of these indices were carried out [34]. Most of the slagging/ 
fouling indices have been carried out for coal combustion and are limited to the variety 
of coals considered. Several theoretical indices that predict fouling and slagging beha-
vior of a fuel were calculated. The review shows that the sodium content in the coal was 
identified as the dominant factor influencing fouling (e.g. (B/A) × Na2O). And the sul-
fur content signals the quantity of pyretic iron in the mineral matter and it impacts the 
degree of oxidation of iron in the foul/slag, affecting its fouling/slagging tendency.  
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Figure 6. (a) Data records of Ash content. (b) Calculation of B/A, SI, SR and 
FI. 

 
Increase in the basic oxides concentrations of iron, calcium and magnesium lower the 
ash viscosity and increase the slagging tendency. Generally the deposition behavior is 
predicted by the base-to-acid ratio B/A, where “Base” and “Acid” are directly the 
weighted sums of the percentages of the basic and acidic oxides (combining Equations 
(6) and (7) to obtain Equation (8)). It is also found that slagging or fouling tendency 
was low or medium when B/A < 0.4 or B/A > 0.7 and high or severe when B/A is 0.4 - 
0.7 [33]. 

2 3 2 2Base Fe O CaO MgO Na O K O= + + + +                  (6) 

2 2 3 2Acidic SiO Al O TiO= + +                        (7) 

Baseratio
Acidic

B
A

=                             (8) 

Slagging index (SI) is given by B S
A
×  in Equation (9). It is also noted from literature  

that slagging propensity was low when SI < 0.6 or medium when SI is 0.6 - 2.0, high or 
severe when SI = 2.0 - 2.6 and extremely high when SI > 2.6. [35]. 
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( )Slagging index SI ratioB S
A

= ×                     (9) 

Slag ratio (SR) is given by equation 10. SR > 72 indicates low slagging, 72 ≥ SR > 65 
indicates medium slagging and SR < 65 indicates high slagging. 

( ) 2

2 2 3

SiO 100Slag ratio SR
SiO Fe O CaO MgO

×
=

+ + +
            (10) 

Fouling index (FI) is given by Equation (11). FI is low when it is ≤ 0.6, high when 0.6 < 
FI ≤ 40, extremely high when FI > 40. FI > 40 tends to sintering of deposits. 

( ) ( )2 2Fouling Index FI ratio Na O K OB
A

= × +             (11) 

The fouling phenomena caused by slagging and ash deposits are heavily affected by 
the variety of coal used. Which in turn affect the lifetime of the boiler superheaters. 
Therefore the determination of slagging/fouling in order to reduce its effect leads to 
reduction in emissions, operational and maintenance costs and increase in thermal effi-
ciency. Prediction by numerical estimation and online detection of slagging/fouling as-
sist to increase plant availability, optimize plant operation, and reduce the need for 
maintenance related action.  

4. Results and Discussion 

This section discusses the simulated results obtained using ANN and FCANN methods.  

4.1. Simulated Results of FC Method 

The clusters formed by FC method are given as input to the ANNs and finally the out-
put responses are aggregated to get the predicted FI in all the three phases. Table 1 
shows the summary of simulation results obtained in three phases namely fuel charac-
teristics, boiler operation and ash content using FC method. From Table 1, the appro-
priate number of clusters are selected that maximizes the Average Silhouette and pcD′  
while minimizing cP′ . From the thorough analysis of Table 1, it is seen that 2 clusters 
can be selected for Fuel Characteristics (Phase I) since the highest value of Average Sil-
houette is 0.85 and minimum value of cP′  is 0.02 (Table 1), 2 clusters can be selected 
for Boiler internal operation (Phase II) since the highest value of Average Silhouette is 
0.45 and minimum value of cP′  is 0.35 (Table 1), 2 clusters can be selected for Ash 
Content (B/A) (Phase III) since the highest value of Average Silhouette is 0.89 and 
minimum value of cP′  is 0.02 (Table 1), 2 clusters can be selected for Ash Content (SI) 
(Phase III) since the highest value of Average Silhouette is 0.80 and minimum value of 

cP′  is 0.07 (Table 1), 2 clusters can be selected for Ash Content (SR) (Phase III) since 
the highest value of Average Silhouette is 0.71 and minimum value of cP′  is 0.10 
(Table 1) and 2 clusters can be selected for Ash Content (FI) (Phase III) since the high-
est value of Average Silhouette is 0.80 and minimum value of cP′  is 0.12 (Table 1). In 
Table 1, Average Distance shown is the value of the average dissimilarity and Average 
Silhouette is the average of the silhouette values of all rows. The Silhouette statistic is  
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Table 1. Summary of FC simulation results obtained in three phases. 

Fuel Characteristics (Phase I) 

Number Clusters 
Average  
Distance 

Average  
Silhouette pcD  pcD′  cP  cP′  

2 0.34 0.85 0.89 0.78 0.01 0.02 

3 0.19 0.49 0.66 0.49 0.12 0.17 

4 0.14 0.43 0.59 0.45 0.16 0.21 

5 0.10 0.43 0.60 0.50 0.14 0.17 

Boiler Internal Operation (Phase II) 

2 727.11 0.45 0.61 0.23 0.18 0.35 

3 475.06 0.40 0.45 0.18 0.28 0.42 

4 354.76 0.31 0.34 0.12 0.44 0.58 

5 283.33 0.28 0.27 0.09 0.55 0.69 

Ash Content (B/A) (Phase III) 

2 7.65 0.89 0.76 0.52 0.08 0.02 

3 2.17 0.70 0.85 0.77 0.01 0.16 

4 1.61 0.81 0.78 0.70 0.04 0.05 

5 1.27 0.69 0.68 0.59 0.08 0.11 

Ash Content (SI) (Phase III) 

2 10.07 0.80 0.77 0.53 0.09 0.07 

3 4.61 0.76 0.76 0.64 0.06 0.09 

4 3.00 0.64 0.73 0.65 0.05 0.19 

5 2.57 0.53 0.63 0.54 0.15 0.18 

Ash Content (SR) (Phase III) 

2 247.02 0.71 0.76 0.52 0.05 0.10 

3 117.17 0.70 0.73 0.60 0.08 0.12 

4 80.30 0.70 0.70 0.60 0.09 0.12 

5 58.86 0.68 0.66 0.57 0.10 0.13 

Ash Content (FI) (Phase III) 

2 247.13 0.73 0.80 0.60 0.06 0.12 

3 135.66 0.65 0.73 0.59 0.10 0.16 

4 81.71 0.70 0.72 0.62 0.09 0.13 

5 59.15 0.70 0.70 0.62 0.10 0.13 

 
used to aid in the search for the appropriate number of clusters by selecting the number 
of clusters that maximizes this value. Depending on pcD , pcD′ , cP , and cP′ , the 
number of clusters are searched that maximizes pcD′  and minimizes cP′ .  

Simulation using fuzzy clustering (Table 2) gives the medoid of the nearest hard  
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Table 2. Cluster medoids in three phases. 

Fuel Characteristics (Phase I) 

Variable Cluster 1 Cluster 2 

Alkali 0.49 0.17 

Sulfur 0.30 0.03 

Chlorine 0.18 0.02 

Actual_foul 2 1 

Row 1 9 

Boiler Internal Operation (Phase II) 

TPA (˚C) 106.15 121.54 

ξ (m3/h) 875.98 1081.76 

Ψ (kg/s) 29.98 20.58 

ζ (m3/h) 200.92 167.97 

TFW (˚C) 262.27 250.39 

Boiler efficiency 88.03 87.7 

FI 0.55 0.06 

Row 1 39 

Ash Content (B/A) (Phase III) 

B_A_ratio 0.21 0.58 

Level_of_fouling 1 3 

Row 3 55 

Ash Content (SI) (Phase III) 

SI 0.41 2.24 

Level_of_fouling 1 3 

Row 5 60 

Ash Content (SR) (Phase III) 

SR 71.87 27.80 

Level_of_fouling 2 3 

Row 34 42 

Ash Content (FI) (Phase III) 

FI 0.57 74.33 

Level_of_fouling 1 3 

Row 1 56 

 
cluster configuration in all the three phases. Cluster medoids recognize and interpret 
cluster. The last row of the Table 2 gives the row number designated in the given data-
base of the each cluster’s medoid. Once the clusters are selected (Table 1), the corres-
ponding cluster medoids in all the three phases for the given dataset are obtained 
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(Table 2). And the given dataset are grouped into selected number of clusters (Figure 
7). Each row with the designated label of each individual database is sorted by Sil-
houette Value within cluster. Fuzzy clustering method (using k-means and medoid) al-
lows every data to belong to every cluster to a valid degree. In addition, FC extracts the 
clusters membership levels of each normalized data in all the clusters. Cluster specifies 
the number of the cluster into which this row was classified. The outliers stand out on 
this report using Silhouette bar and are easily removed. Cluster Membership specifies is 
the maximum of the memberships. Sum of Squared Memberships specifies the square 
and sum of all memberships. Its value is one when a row is completely assigned to a 
single cluster and 1/M when the row is equally likely to be classified into each cluster. 
Hence, rows with high values here are near the center of a cluster. Rows with low values 
here are outliers. Silhouette Amount gives the value of the silhouette. Its value should 
be positive and most rows should be greater than 0.50. Figure 7(a) shows the Phase I 
simulation of given dataset shown in Figure 4. Figure 7(b) shows the Phase II simula-
tion of given 52 dataset that includes TPA, ξ, Ψ, ζ and TFW and FI of Figure 5. Figure 
7(c) shows the Phase III simulation (B/A) of given 60 dataset that includes ash contents 
shown in Figure 6(a) and corresponding B/A prediction shown in Figure 6(b). Figure 
7(d) shows the Phase III simulation (SI) of given 60 dataset that includes ash contents 
shown in Figure 6(a) and corresponding SI prediction shown in Figure 6(b). Figure 
7(c) shows the Phase III simulation (SR) of given 60 dataset that includes ash contents 
shown in Figure 6(a) and corresponding SR prediction shown in Figure 6(b). Figure 
7(c) shows the Phase III simulation (FI) of given 60 dataset that includes ash contents 
shown in Figure 6(a) and corresponding FI prediction shown in Figure 6(b). 

4.2. Simulated Results of ANN and FCANN Methods 

Once the FC method (using k-means and medoid) is established, every data is allowed 
to belong to every cluster to a valid degree. Thus FC extracts the clusters membership 
levels of each normalized data in all the clusters and finally each cluster will be fed as 
input to ANNs. The employed FCANN allows the clusters to be larger which thereupon 
increases the accuracy of the proposed forecasting system.  

Figure 8 shows the simulation of FCANN and very good fitting with real data com-
pared to single ANN method. Figure 8(a) shows the prediction of FI and thereby foul-
ing level (FL) in phase I based on fuel characteristics shown in Figure 4 and according 
to Table 3. Figure 8(b) shows the prediction of FI and thereby fouling level (FL) in 
phase II based on boiler operating parameters shown in Figure 5. Figures 8(c)-(f) also 
shows the prediction of FL in phase III based on Ash contents and related calculations 
of B/A, SI, SR and FI are shown in Figure 6. Figure 8(c) show the prediction of B/A 
ratio, and its corresponding level of fouling (FL) predicted using both FCANN and 
ANN. Figure 8(d) show the prediction of slagging index (SI) and its corresponding 
level of fouling (FL) predicted using both FCANN and ANN. Figure 8(e) show the 
prediction of slagging ratio (SR) and its corresponding level of fouling (FL) predicted 
using both FCANN and ANN. Figure 8(f) show the prediction of fouling index (FI)  
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Figure 7. (a) Phase I simulation of given dataset. (b) Phase II simulation of given 
dataset. (c) B/A (Phase III) simulation of given dataset. (d) SI (Phase III) simulation 
of given dataset. (e) SR (Phase III) simulation of given dataset. (f) FI (Phase III) si-
mulation of given dataset. 
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Figure 8. (a) Prediction of FL in phase I. (b) Prediction of FL in phase II. (c) B/A prediction of 
FL. (d) SI Prediction of FL. (e) SR Prediction of FL. (f) FI Prediction of FL. 

 
and its corresponding level of fouling (FL) predicted using both FCANN and ANN. 
The simulation shows energy saving between hybrid FCANN outputs and real data  
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Table 3. Assignment of FI and fouling classification according to fuel concentration. 

S. No. 
Concentration in Fuel 

Lb/MBtu 
Concentration in Fuel 

Kg/GJ 
FL FL Classification 

1 Less than 0.4 Less than 0.17 1 No Foul 

2 Between 0.4 - 0.8 Between 0.17 - 0.34 2 Probable Foul 

3 Greater than 0.8 Greater than 0.34 3 Certain Foul 

 
obtained from steam boiler. 

4.3. Comparison of Results 

In this section, the mean absolute percentage error (MAPE), the root mean square error 
(RMSE) for all the three phases and both the models ANN and FCANN are analyzed 
using the Equations (12) and (13). The simulated data are used to make comparison a 
between both the models ANN and FCANN. According to the prediction ability of the 
models the MAPE and RMSE using real plant data are analyzed and tabulated in Table 
4. Where my  is the experimentally measured value, cy  is estimated or calculated 
value, t m ce y y= − , is the predicted error or residual used to analyze the accuracy of 
the estimates and n is the number of onsite experimental data.  

MAPE

n m c
i n

m

y y
y

n

=

−

=
∑

                       (12) 

2

RMSE
n

m ci n
y y
n

=
−

= ∑                       (13) 

Fuzzy and neural network was performed to predict fouling in condenser [35]. 
Another work reviews the available techniques and methods for minimising deposition 
problems in boiler [36]. The Neurofuzzy technology was employed to relate process 
data to the cleanliness status of the boiler heat transfer sections [37]. An embedded 
based automation technique is designed in the laboratory using ARM7 platform with 
only stack temperature is used as the criteria for controlling the soot blower [38]. These 
works not concentrated on slagging/fouling forecasting based on all the three factors 
such as the fuel characteristics, boiler operating conditions and ash behavior.  

From the previous results (Table 3), it is obvious that: 
-FCANN model has smaller RMSE than ANN in all the three phases. 
-FCANN model has smaller MAPE than ANN in all the three phases. 
It is evident from the analysis that FCANN gives the minimum error amongst the 

two prediction models (ANN and FCANN) and hence it should be selected. The signi-
ficance of using FCANN method mainly lies on predicting responses when inputs are 
bulky and multicollinear in nature. The goal of this study is to prove the enhancement 
in prediction by most appropriate FCANN method over the FC or ANN when adapted 
to predict the slagging/fouling in a steam boilers of any variable capacity. 
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Table 4. Performance indicator between ANN and FCANN models. 

Methods 
Performance Indicator 

MAPE RMSE 

ANN (Phase I) 23.01 0.27 

ANN (Phase II) 21.17 0.08 

ANN (Phase III) 

B/A 0.18 0.35 

SI 0.10 0.19 

SR 0.13 0.23 

FI 0.11 0.21 

FCANN (Phase I) 7.84 0.10 

FCANN (Phase II) 10.12 0.04 

FCANN (Phase III) 

B/A 0.06 0.13 

SI 0.08 0.16 

SR 0.09 0.17 

FI 0.07 0.15 

5. Conclusions 

The primary target of this paper was to develop a reliable slagging/fouling predictive 
tool which should facilitate in a comparatively short time the optimization of the coal/ 
biomass fuel blends, boiler operating conditions and ash behavior to minimize slag-
ging/fouling.  
• The simulation of proposed hybrid fuzzy clustering and artificial neural networks 

(FCANN) method has shown a good performance of the systems that characterize 
the above three factors, with satisfactory comparisons with experimental values 
compared to traditional, quantitative model-based approaches, yielding very good 
results with the accuracy rate of 99.85% in the pattern recognition used within the 
prediction paradigm.  

• After attaining suitable training, the FCANN network is ready to be used on-line for 
diagnostic tasks which alerts operators budding anticipated fouling problem, iden-
tify conflicting practice of boiler firing that increases the fouling tendency, fore-
warns the variation of essential operational parameters to help in diagnostics of 
fouling event and keeps a historical record of forewarns for consequent analysis.  

Irrespective of the selected method, an adequate format is needed in order to be read 
by a Graphical User Interface (GUI) which provides information about warning levels 
plots and diagnostic messages regarding slagging/fouling. 
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