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Abstract 
Greenhouse system (GHS) is the worldwide fastest growing phenomenon in agricul-
tural sector. Greenhouse models are essential for improving control efficiencies. The 
Relative Gain Analysis (RGA) reveals that the GHS control is complex due to 1) high 
nonlinear interactions between the biological subsystem and the physical subsystem 
and 2) strong coupling between the process variables such as temperature and hu-
midity. In this paper, a decoupled linear cooling model has been developed using a 
feedback-feed forward linearization technique. Further, based on the model devel-
oped Internal Model Control (IMC) based Proportional Integrator (PI) controller 
parameters are optimized using Genetic Algorithm (GA) and Particle Swarm Opti-
mization (PSO) to achieve minimum Integral Square Error (ISE). The closed loop 
control is carried out using the above control schemes for set-point change and dis-
turbance rejection. Finally, closed loop servo and servo-regulatory responses of GHS 
are compared quantitatively as well as qualitatively. The results implicate that IMC 
based PI controller using PSO provides better performance than the IMC based PI 
controller using GA. Also, it is observed that the disturbance introduced in one loop 
will not affect the other loop due to feedback-feed forward linearization and de-
coupling. Such a control scheme used for GHS would result in better yield in pro-
duction of crops such as tomato, lettuce and broccoli. 
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1. Introduction 

The GHS consists of highly coupled subsystems: the greenhouse climate and the 
greenhouse crop. The greenhouse control problem is to create a favorable environment 
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for the crop in order to reach predetermined results for high yield, high quality and low 
costs. It is very difficult to control the GHS in practice, due to the complexity of the 
greenhouse environments such as high non-linearity, strong coupling between Mul-
ti-Input Multi-Output (MIMO) systems. 

There are several models available for the GHS. Some of them use white box (first 
principle model) [1] [2] and others use black box model [3]-[5]. The best benchmark 
climate model is presented by Albright et al. [1] for controlling the temperature and 
humidity. A model based on feedback-feed forward compensation technique used for 
linearization, decoupling and disturbance compensation is presented in [1] [2]. Multi-ob- 
jective optimization of greenhouse system using evolutionary algorithm is given in [6]. 

In this paper, a model of nonlinear thermodynamic laws between numerous system 
variables affecting the greenhouse climate is formulated and a feedback-feed forward 
approach to system linearization and decoupling is done. A conventional IMC based PI 
controller is designed based on the model. The IMC-PI controller parameters are opti-
mized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The 
performance measures are compared for servo and servo-regulatory systems. 

This paper is organized as follows: Section 2 briefs about a greenhouse system model. 
The control schemes are explained in Section 3 followed by closed loop analysis in Sec-
tion 4. Section 5 gives details about the quantitative comparison. Finally, conclusions 
are presented in Section 6. 

2. Greenhouse System Model 
2.1. Description of Greenhouse Model 

The three models for the greenhouse system include: cooling model, heating model and 
ventilating model. Ventilation is one of the most important components for a success-
ful greenhouse. If there is no proper ventilation, greenhouses and their plants become 
prone to problems. The main purpose of ventilation is to regulate the temperature at 
the optimum level, to ensure movement of air and also to ensure the supply of fresh air 
for photosynthesis and plant respiration. Heating model is essential, when the inside 
temperature of the greenhouse is very low during winter climate and at night time. 
Whereas, cooling model is required when the outside temperature is very high which 
may affect the plants during the summer mode at day time. The functional block dia-
gram of GHS is shown in Figure 1. 

A simple greenhouse heating-cooling-ventilating model can be obtained (as given in 
Equation (1)) by considering the diff erential equations, which govern sensible and la-
tent heat, as well as water balances on the interior volume [5] [6]: 
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where 
Tin/Tout: Indoor/outdoor temperature (˚C) 
Hin/Hout: Interior/exterior humidity (g[H2O/kg[dry air]) 
Qheater: Heat provide by the greenhouse heater (W) 
Qfog: Water capacity of fog system (g/s) 
VR: Ventilation rate (m3/s) 
The greenhouse system model parameters are shown in the Table 1. 
In general, the operating conditions of the ventilation/cooling process are rather 

dominated by solar radiation alone (i.e. 0Tβ = ), hence ( )T in tHβ  can be neglected. 
Suppose that 0 p TC C Vρ= , ( )HVα α λ′ = , max

fogQλ λ′ =  and max
H fogV V Q′ = . The con-

trol variables can be normalized as follows: max
,%R R RV V V= , max

,%fog fog fogQ Q Q=  and 
max

,%heater heater heaterQ Q Q= . 
 

 
Figure 1. Block diagram representing greenhouse system. 
 
Table 1. Greenhouse system model parameters. 

Description Values 

Heat transfer coefficient (UA) 29.81 (W/K) 

Air density (ρ) 1.2 (kg/m3) 

Specific heat of air (Cp) 1006 (J∙(kg−1∙K)−1) 

Latent heat of vaporization (λ) 2257 (J/g) 

Maximum ventilation rate ( )max
RV  20 air changes per hour 

Maximum water capacity of fog system ( )max
fogQ  26 g[H2O]s−1 

Maximum heating energy ( )max
heaterQ  150 W∙m−2 

Solar radiation (Si) 300 W∙m−2 

Outside Temperature (TOUT) 35 (˚C) 

Outside Humidity (HOUT) 4 g/Kg 
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In summer mode operation, Qheater is set to zero. The climate model provided have 
two variables to be regulated, namely the indoor air temperature (Tin) and the humidity 
ratio (Hin), through the process of ventilation VR,%(t) and fogging QR,%(t). After norma-
lizing the control variables, the differential equation for cooling model for greenhouse 
system is re-written as given in Equation (2) 

( ) ( ) ( ) ( ) ( ) ( )
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In order to express the GHS in state-space form, the inside temperature and absolute 
humidity are defined as the dynamic state variables, x1(t) and x2(t), respectively; the 
ventilation rate and the water capacity of the fog system as the control (actuator) va-
riables, u1(t) and u2(t), respectively; the intercepted solar radiant energy, the outside 
temperature, and the outside absolute humidity as the disturbances, vi(t), i = 1, 2, 3. The 
Equation (2) can alternatively be written in the following state-space form: 
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Relative Gain Array Analysis 
From the state-space form the values of A, B and C is given by: 
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In this case relative gains are positive values. If 0 < λ11 < 1, then an interactions exists. 
From the interaction analysis it is found that y1 is paired withu1 and y2 is paired withu2 
to form two loops with minimum interaction. However, the disturbances at one loop 
will affect responses of other loop due to coupling. Hence, decoupling is necessary for 
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GHS. The feedback-feed forward linearization technique is used for decoupling is dis-
cussed in the subsequent section. 

2.2. Feedback-Feed Forward Linearization and Decoupling 

One method for linearization and decoupling for systems with external disturbances is 
presented in [2] [3] which is based on the feedback-feed forward linearization tech-
nique proposed by Isidori [4]. In the particular case of GHS model expressed in Equa-
tions (3) and (4), the feedback-feed forward linearization and decoupling procedure 
described above is followed and compensator is designed. The compensator that deliv-
ers the process input control variables u(u1, u2), has the form given in Equations (5) and 
(6). 
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V C V C V C V C C
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where Q(t) must be anon-zero quantity. 
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where, 

1̂u →  temperature change; 

2û →  humidity change. 
The transfer functions derived from the linearized and decoupled GHS are as given 

in Equations (8) and (9) 

11
5.5988

1 13.7
G

s
=

+
                           (8) 

22
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1 6.068
G

s
=

+
                         (9) 

3. Design of IMC Based PI Controller 
3.1. Conventional IMC-PI Controller 

In the Internal Model Control (IMC) formulation, the controller, q(s), is based directly 
on that part of the process transfer function which can be inverted. The IMC formula-
tion generally results in only one tuning parameter, the closed loop time constant (λ, 
the IMC filter factor). The PI tuning parameters are then becomes a function of this 
closed-loop time constant. The selection of the closed-loop time constant is directly re-
lated to the robustness (sensitivity to model error) of the closed-loop system. 

The feedback controller ( )cg s  contains the internal model  ( )pg s  and internal 
model controller, q(s). Now, the IMC design procedure can be used to design a stan-
dard feedback controller. The standard feedback controller is a function of the internal 
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model, ( )  pg s  and internal model controller, q(s) as given in Equation (10). 

( ) ( )
( ) ( )1c

p

q s
g s

g s q s
=

−
 

For a given first-order process in Equation (10), the values of the PI tuning parame-
ters are obtained using Equations (11), (12). 
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The desired value for λ is defined as a trade-off between performance and robustness 
and its optimum value is obtained using genetic algorithm. The objective function con-
sidered here is Integral Square Error (ISE) and the decision variables obtained is λ, filter 
factor. 

The controller parameter values for IMC-PI are calculated by using trial and error 
method and the parameter values are tabulated in Table 2. 

 
Table 2. Controller parameter values for IMC-PI controller. 

Controller KC KI 

Temperature 0.8862 0.0987 

Humidity 0.9452 0.1176 

3.2. IMC-PI Using GA 

Although PI parameters obtained using conventional method gives a good response, it 
is not satisfactory. In order to meet the desired specification PI controller parameters 
are tuned using optimization technique [7] [8] namely Genetic Algorithm (GA). The 
various steps involved in the GA based optimization of PI controller are listed below. 

Step 1: Choose the string length, population size, probability of crossover, probability 
of mutation and number of generation. 

Step 2: Initialize the population size Kc and KI.. 
Step 3: Carry out selection operation. Check for acceptance criteria, if satisfied stop 

otherwise goto next step (Step 4). 
Step 4: Perform crossover operation. Check for acceptance criteria, if satisfied stop 

otherwise goto next step (Step 5). 
Step 5: Perform mutation operation. Check for acceptance criteria, if satisfied stop 

otherwise goto next step (Step 3). 
The GA parameters used for tuning GA based IMC- PI scheme are given in Table 3. 
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Table 3. GA parameters used for tuning GA based IMC-PI scheme. 

Parameters Values 

Population size 10 

Number of generations 20 

Probability of crossover 0.99 

Probability of mutation 0.01 

Selection procedure Ranking 

Crossover type Single point crossover 

Objective function ISE 

 
The desired PI parameters, around an operating point, are generated in random as 

the initial population. Each of these PI settings is applied to the system and the fitness 
of each chromosome is calculated. From that, the chromosomes with the best fit value 
are taken to the next iteration whereas the chromosomes with the worst fit are dis-
carded and are replaced with new chromosomes derived from the mutation and cros-
sover of best parent chromosomes. The function of the crossover operator is to gener-
ate new or “child” chromosomes from two “parent” chromosomes by combining the 
information extracted from the parents. Mutation operates individually on each indi-
vidual by probilistically perturbing each bit string. This process repeats until the desired 
performance index is met with. 

The objective function considered here is Integral Square Error (ISE) and the deci-
sion variables obtained are PI controller parameters namely KC and KI. The controller 
parameter values, thus obtained, for IMC-PI using GA are tabulated in Table 4. 

 
Table 4. PI controller parameter values for IMC-PI using GA (λ = 0.1107). 

Controller KC KI 

Temperature 1.6133 0.0877 

Humidity 1.6205 0.2671 

 
The IMC-PI parameters obtained using GA based optimization technique. This is re-

flected in the value of λ obtained using GA based optimization algorithm gives a good 
response but the reduction in error is minimum. In order to further minimize the error 
the PI parameter is tuned using an optimization technique namely Particle Swarm Op-
timization (PSO). 

3.3. Design of IMC-PI Using PSO 

In the design of IMC-PI using PSO, the desired PI parameters, around an operating 
point, are generated through a bird flocking in two-dimension space. The position of 
each agent is represented by XY axis position and also the velocity is expressed by vx 
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(velocity of X axis) and vy (velocity of Y axis). Each of these PI settings is applied to the 
system; the velocity and position are calculated. From that, the best values are taken 
and the agent position is realized by the position and velocity information. The objec-
tive function considered here is Integral Square Error (ISE). To implement the PSO al-
gorithm the values to the variables of the PSO algorithm is given by sampling number 
N = 12, the local attractors and global attractors C1 = 2, C2 = 2, [9]. The steps involved 
in PSO based optimization are listed below. 

Step 1: Initialize the population of particles with random positions and velocities. 
Step 2: For each particle, evaluate the fitness. 
Step 3: Compare the particles current fitness (Xi) with the particle best fitness (Pi). If 

current is the best then set Pi fitness equal to current values and set Pi location equal to 
current location otherwise go to step 4. 

Step 4: Compare the fitness of the particle (Pi) with the population overall best Pg. If 
the current value of particle fitness is better than Pg, then Pg fitness equal to current 
value otherwise go to step 5. 

Step 5: Change the velocity and position using the Equation (13). 

Vi (new) = WiVi + C1 rand (Pi − Xi) + C2 rand (Pg − Xi)        (13) 

Step 6: Repeat step 2, 3 & 4 till we get the best fitness. 
The controller parameter values for IMC-PI controller using PSO are tabulated in 

Table 5. 
 

Table 5. IMC-PI controller parameters obtained using PSO. 

Controller KC KI 

Temperature 1.6099 0.0297 

Humidity 1.6097 0.0189 

4. Closed Loop Analysis 

The closed loop control strategy for Greenhouse system is shown in Figure 2. The GHS 
is a multivariable system. The inputs to GHS are ventilation rate (r1) and water capacity 
of fog system (r2). The external disturbance include: solar radiation (V1), outside tem-
perature (V2) and outside humidity (V3). The outputs from the GHS are: inside tem-
perature (y1) and inside humidity (y2). 1 2ˆ ˆ&u u  are the temperature change and hu-
midity change. 1 2&u u  are the control variables. Generally the closed loop responses 
of multivariable GHS are affected by the disturbance variable namely solar radiation, 
outside temperature and outside humidity. From the RGA analysis it is found that the 
system outputs are affected by disturbance variable. Hence the decoupled and linea-
rized is developed from the desired closed loop using feedback-feed forward lineariza-
tion based on the model IMC controller is designed. The GHS output responses namely 
the inside temperature and inside humidity obtained using three different control 
schemes for the linearized and decoupled of the greenhouse are shown below. 
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Figure 2. Closed loop control strategy for greenhouse system. 

4.1. Servo Operation 

The GHS output responses namely the inside temperature and inside humidity ob-
tained using three different control schemes for the linearized and decoupled of the 
greenhouse are shown in Figure 3(a) and Figure 3(b) respectively. 
 

 
(a) 

 
(b) 

Figure 3. Comparison of closed loop performance of here types of IMC-PI controllers for servo 
operations. (a) Variation in inside temperature; (b) Variation in inside humidity. 
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From Figure 3(a) and Figure 3(b), it is observed that the performance of the IMC- 
PI controller tuned using PSO is better. This is reflected in the value of λ that is com-
puted using the PSO-based optimization algorithm. 

Control Signals 
The corresponding variation in control signals namely the ventilation rate and water 
capacity of the fog system, for the linearized and decoupled model of the GHS are 
shown in Figure 4(a) and Figure 4(b), respectively. It is observed that the variation in 
the manipulated variable is smooth. 
 

 
(a) 

 
(b) 

Figure 4. Corresponding variations in control signal for servo operations. (a) Variation of venti-
lation rate with respect to time; (b) Variation of water capacity of fog system with respect to time. 
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It is observed that the variation in the manipulated variable is smooth. 

4.2. Regulatory Operation 
4.2.1. For Disturbance in Temperature Loop 
Regulatory responses for the three types of IMC-PI controllers are obtained by provid-
ing a load change of 5% at time t = 100 minutes on the temperature loop, and the varia-
tions observed in temperature and humidity are shown in Figure 5(a) and Figure 5(b), 
respectively. 
 

 
(a) 

 
(b) 

Figure 5. Comparison of closed loop performances of 3 types of IMC-PI controller’s regulatory 
operation (for disturbances in temperature loop). (a) Variation in temperature for disturbance in 
temperature loop; (b) Variation in humidity for disturbance in temperature loop. 
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It is observed that the performance of the IMC-PI controller tuned using PSO is bet-
ter. This is reflected in the value of λ that is computed using the PSO-based optimiza-
tion algorithm. 

4.2.2. Control Signals (for Disturbance in Temperature Loop) 
The corresponding variations in control signals, namely, the ventilation rate and water 
capacity of the fog system, for the linearized and decoupled model of GHS for a distur-
bance in the temperature loop at time t = 100 minutes are shown in Figure 6(a) and 
Figure 6(b), respectively. 
 

 
(a) 

 
(b) 

Figure 6. Corresponding variation in control signal for regulatory operation (for disturbance in 
temperature loop). (a) Variation for ventilation rate for disturbance in temperature loop; (b) 
Variation of water capacity of fog system for disturbance in temperature loop. 
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It is observed that the variation in the manipulated variable is smooth. 

4.2.3. For Disturbance in Humidity Loop 
Regulatory responses for the three types of IMC-PI controllers are obtained by provid-
ing a load change of 5% at time t = 100 minutes on the humidity loop and the varia-
tions are shown in Figure 7(a) and Figure 7(b) respectively. 
 

 
(a) 

 
(b) 

Figure 7. Comparison of closed loop performances of 3 types of IMC-PI controller’s regulatory 
operation (for disturbances in humidity loop). (a) Variation in temperature for disturbance in 
humidity loop; (b) Variation in humidity for disturbance in humidity loop. 
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It is observed that the IMC-PI controller tuned using PSO has the minimum over-
shoot. 

4.2.4. Control Signals (for Disturbance in Humidity Loop) 
The corresponding variations in the control signals, namely, the ventilation rate and 
water capacity of the fog system, for the linearized and decoupled model of GHS for a 
disturbance in the humidity loop at time t = 100 minutes is shown in Figure 8(a) and 
Figure 8(b), respectively. 
 

 
(a) 

 
(b) 

Figure 8. Corresponding variation in control signal for regulatory operation (for disturbance in 
humidity loop). (a) Variation of ventilation rate for disturbance in humidity loop; (b) Variation 
of water capacity of fog system for disturbance in humidity loop. 



A. Manonmani et al. 
 

3445 

It is observed that the variation in the manipulated variable is smooth. 

5. Quantitative Comparison 

The performance measures for IMC-PI controller, IMC-PI tuned using Genetic Algo-
rithm (GA) and IMC-PI tuned using Particle Swarm Optimization (PSO) for linearized 
and decoupled model of GHS are carried out using the Integral Absolute Error (IAE) 
and the Integral Square Error (ISE) as given in Equations (14) and (15) respectively. 

( )
0

dIAE e t t
∞

= ∫                           (14) 

( ) 2

0
dISE e t t

∞
= ∫                          (15) 

The performance measures obtained for servo and regulatory operation (for distur-
bance in temperature loop and for disturbance in humidity loop) are tabulated in 
Tables 6-11 respectively. From tables it is observed that the error is minimum for the 
IMC-PI tuned using PSO when compared to IMC-PI using GA and conventional PI. 
 
Table 6. Comparison of performance measures for servo response for Temperature. 

Performance Criterion 
Temperature 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 12.87 8.692 8.484 

ISE 28.71 20.3 15.19 

Overshoot (%) 2.29 0.756 0.54 

Settling time (min) 40 38 35 

 
Table 7. Comparison of performance measures for servo response for Humidity. 

Performance Criterion 
Humidity 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 15.42 11.16 10.23 

ISE 44.83 32.56 30.85 

Overshoot (%) 3.66 2.726 2.24 

Settling time (min) 30 29 27 

 
Table 8. Comparison of performance measures for regulatory response for Temperature (for 
disturbance in temperature loop). 

Performance Criterion 
Temperature 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 14.91 10 9.754 

ISE 29.76 21.14 20.29 

Overshoot (%) 2.9 3.2 2.8 

Settling time (min) 29 25 15 
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Table 9. Comparison of performance measures for regulatory response for Humidity (for dis-
turbance in temperature loop). 

Performance Criterion 
Humidity 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 15.42 10.46 9.63 

ISE 44.83 32.81 29.48 

Overshoot (%) 3.66 2.726 2.34 

Settling time (min) 32 28 24 

 
Table 10. Comparison of performance measures for regulatory response for Temperature (for 
disturbance in humidity loop). 

Performance Criterion 
Temperature 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 12.86 8.484 7.692 

ISE 28.71 20.46 19.3 

Overshoot (%) 2.29 0.75 0.52 

Settling time (min) 26 24.6 23.2 

 
Table 11. Comparison of performance measures for regulatory response for Humidity (for dis-
turbance in humidity loop). 

Performance Criterion 
Humidity 

IMC-PI IMC-PI Using GA IMC-PI Using PSO 

IAE 17.46 11.36 10.56 

ISE 45.87 34.66 32.63 

Overshoot (%) 3.67 2.73 2.24 

Settling time (min) 24.5 23.2 20.6 

 
From these closed loop simulation studies, it is seen that IMC-PI controller tuned 

using Particle Swarm Optimization (PSO) gives better performance than IMC-PI con-
troller using Genetic Algorithm (GA) and IMC-PI controller. 

6. Conclusion 

In this work, a model based on feedback-feed-forward linearization and decoupling for 
the GHS has been developed in order to avoid the interactions among the process va-
riables. The IMC based PI controller is designed for the GHS. The controller settings 
are also tuned using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 
to achieve minimum Integral Square Error (ISE). The results implicate that PSO based 
IMC-PI controller provides better performance compared to conventional PI and 
IMC-PI tuned using Genetic Algorithm (GA). Such a control scheme when used for 
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GHS would result in better yield in the production of crops such as tomato, lettuce and 
broccoli. 
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