
Circuits and Systems, 2016, 7, 3415-3429
Published Online August 2016 in SciRes. http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.710291

How to cite this paper: Vinodh Kumar, B. and Ramesh, J. (2016) Improved Automotive CAN Protocol Based on Payload Re-
duction and Selective Bit Stuffing. Circuits and Systems, 7, 3415-3429. http://dx.doi.org/10.4236/cs.2016.710291

Improved Automotive CAN Protocol
Based on Payload Reduction and
Selective Bit Stuffing
B. Vinodh Kumar1, J. Ramesh2

1Department of Electronics and Communication Engineering, Sri Shakthi Institute of Engineering and
Technology, Coimbatore, India
2Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore, India

Received 13 May 2016; accepted 23 May 2016; published 31 August 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this research paper, the implementation strategies of automotive controller area network
protocol are investigated and the short messaging scheme with selective bit stuffing method to
improve the effective utilization of its bandwidth has been proposed. There would be a sharp de-
crease in the performance of traditional CAN protocol because of considerable increase in the
number of ECUs (Electronic Control Units) and infotainment gadgets connected in the vehicle ar-
chitecture. The demand for safety, emission, diagnostics and comfort norms has steeply in-
creased the number of messages in the 250 Kbps CAN network as the computational power of
ECUs has gone up. To overcome this problem, the short CAN method has been proposed and the
work is benchmarked with SAEJ1939 Heavy commercial vehicle CAN standard. The Matlab Simu-
link based short CAN has been modeled and the performance of the proposed system has eva-
luated using virtual instrument cluster. Experimental results have shown that compared to the
traditional CAN, the proposed method has reduced the worst case response time of CAN extended
frame from 160 µ sec to 144 µ sec. Selective bit stuffing technique has reduced the impact of bit
stuffing over the payload and improved the utilization factor for the CAN bus without affecting
the CAN message ID properties. The proposed algorithm has been modeled and simulated using
CAN Matlab model Simulink and it has been verified using virtual CAN tool and real time CAN bus
hardware.

Keywords
CAN, Selective Bit Stuffing, Payload Reduction, Worst Case Response Time

http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.710291
http://dx.doi.org/10.4236/cs.2016.710291
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

B. Vinodh Kumar, J. Ramesh

3416

1. Introduction
The computational power of the microprocessor and microcontroller keeps on increasing along with the demand
of sophisticated vehicle electronics. The complexity of automobile electronics has now become much more
complicated as the requirements of vehicle to vehicle data communication systems, navigation systems and oth-
er driving assistance systems are steadily growing [1]. In the cost competitive commercial vehicle business, it is
challenging for the automobile original equipment manufacturers have a greater responsibility of delivering safe
vehicles to sustain world class standards. In this research work, instrument cluster model of a heavy commercial
vehicle is being designed using Matlab Simulink and verifies the implementation of short CAN over SAEJ1839
messages with selective bit stuffing. Two virtual Controller Area Network (CAN) nodes have been developed
and made communicated with each other as per SAEJ1939 standard. In a basic commercial vehicle, one CAN
bus connects all power train related Electronic Control Units (ECUs) such as ABS, Engine control unit, Trans-
mission control units and much more. When it comes to hybrid vehicle or pure electric vehicle, the number of
ECUs connected in a vehicle is doubled. Most of the ECUs use CAN as a main communication protocol and it is
supposed to be working at 250 Kbps. Research work of Peng Hao and Yang Shun clearly shows that Rate Mo-
notonic based CAN bus network messages will meet all its deadline only when its utilization rate is not above
30% [2]. To overcome this problem, OEMs would always prefer 2 to 3 CAN bus for handling the bandwidth
scarcity problem with an increase in the vehicle cost.

Alternate communication protocols like fast CAN, LIN, Flexray and MOST are being considered by vehicle
manufactures. But when it comes to cost, performance, reliability, safety, standardization and vendor support
CAN outperforms all the other networks. All vehicle network protocols are classified according to their operat-
ing speed, length, cost and safety features. Steve C. Talbot and Shangping Ren’s work on automotive commu-
nication protocols discusses about CAN, LIN and Flexray protocols which are mostly used in vehicle powertrain
and safety [3]. LIN is preferred for the applications such as door control, window control, etc. because it sup-
ports less than 20 Kbps speed and it is viewed as a sub bus for CAN network. Controller Area Network comes in
three speed grades such as basic CAN with 125 Kbps, low speed CAN with 500 Kbps and high speed CAN with
1 Mbps. Depending upon the vehicle architecture requirement, low speed and medium speed CAN are being
used. Usually power train CAN is fitted with HS CAN as powertrain handles a higher number of messages and
infotainments. CAN is designed with low speed as it has to handle infotainment, information to instrument clus-
ter and the navigation systems. MOST is the special kind of protocol which supports more than 1 Mbps and it is
more suitable for audio video communication inside the vehicle

2. CAN History
In 1985, Bosch GmbH had developed CAN for in-vehicle network and then certified with ISO 11,898 interna-
tional standards. Since then several higher level protocols like CANopen and Devicenet have been standardized
for industrial automation. During 1986, Robert Bosch has introduced CAN at Society of Automotive Engineers
congress (SAE). Since 1994, several higher-level protocols have been standardized on CAN, such as CANopen
and DeviceNet. In February of 1986, Robert Bosch GmbH introduced the serial bus system CAN at the Society
of Automotive Engineers (SAE) congress. Since then CAN is being exclusively used in automotive in-vehicle
networking. Low cost, reliable, universal standardization, plug and play features with Automatic error correction
and detection mechanism makes this CAN protocol as an ideal choice for safety critical applications, but at 250
kbps along with bit stuffing technique for synchronizations and error detection that increases worst case re-
sponse time and slows the system performance.

2.1. Problem Statement

Many research activities have been carried out for critical time requirements and effective utilization of the
available CAN bandwidth. CAN uses Non Return to Zero (NRZ) bit encoding technique ensures that CAN bus
does have long sequence of same polarity bits and bit stuffing technique has been used for synchronization of
the connected control units connected in the bus. CAN transceiver insert a complimentary logic bit if the 5 con-
secutive bit sequence is of same value else transmit the original data and at the receiver side these stuffed bits
are removed if identified.

B. Vinodh Kumar, J. Ramesh.

3417

2.2. Literature Review of Bit Stuffing Techniques
The bit stuffing nature of CAN protocol make the transmission time a complex function and varies length of the
message. It is very hard to predict the message transmission time and to implement in a real time embedded sys-
tem. To address this problem T. Nolte and Nahas proposed XOR masking technique. They proposed a simple
XORing scheme with a bit masking of alternate zeors and ones (101010). Original data was XORed with the bit
mask before transmission and at the receiver side the received data was XORed with the same mask for recon-
struction of the original data but the entire CAN frame format was XORed with the key value dynamically
changed the original message ID of the messages [4] [5]. Hence making it very difficult to implement on a real-
time system as the source and designation addresses changed during receiving.

Another research work Inversion bit stuffing mechanism was proposed by Maha in which, the proposed sys-
tem helped in reduction of stuffed bits in the data filed only. Bytes by byte the data’s were checked and if the
potential bit stuffing was identified in a byte fifty bit was made complimentary. One byte in the data filed was
reserved to carry flag to identify the byte location of inversion taken place. In this work the message ID integrity
was maintained but at a cost of reducing message payload, as the key of encoding has to be carried along with
the original message ID, made the proposal unrealizable for real time CAN data traffic [6].

Imran Sheik and M. Short research work proposed methods to reduce the impact of bit stuffing like XOR, the
transmitting data and at receiver side the data is being XOR once again to reconstruct the original information
and by over clocking method also research has been made to improve speed of CAN data transmitted [7] [8]. All
the alternative methods proposed are not back ward compatible and the feasibility of implementation has also
been reduced because of additional hardware requirement. To overcome the above stated limitations and to ef-
fectively utilize the available CAN bandwidth, a novel method of short Controller area network has been pro-
posed in this research work. Research work 1 demonstrates the selective XORing technique to reduce the bit
stuffing impact on the protocol. Research work 2 mathematically proved the sort CAN proposal that reduces the
maximum payload defined in the CAN protocol from 8 byte to 4 byte in which, the worst case response time of
the CAN network can be reduced. Research work 3 shows how these techniques could be implemented on a
virtual network simulator and real time hardware.

3. CAN Real Time Implementation
3.1. In Vehicle Architecture
Even in a low cost Light Commercial Vehicle, LCVs, minimum of 10 to 15 ECUs (Electronic Control Units) are
interconnected to each other using different serial communication protocols like CAN (Controller Area Net-
work), LIN (Local Interconnect Network), Flex ray and etc. Every automobile has its own electrical architecture
and the design would be owned by the OEMs.

The vehicle architecture shown in Figure 1 illustrates how the instrument cluster is interfaced with Engine
ECU, GPS Systems and with the Body control module which acts as a CAN gateway between other sensor units
and actuators. CAN gateway could interface LIN and MOST as per the requirement. All powertrain related
ECUs are connected with CAN1 and hence it is known as power train CAN and all infotainment related CAN is
connected in CAN2 called infotainment CAN.

3.2. CAN Format
Bosch published several versions of the CAN specification and the latest is CAN 2.0 which is published in 1991.
This specification has two parts; part A is for the standard formats with an 11-bit identifier, commonly called
CAN 2.0A and part B is for the extended format with a 29-bit identifier, called CAN 2.0B [9].

The CAN frame that has been extended and standard frame format are shown in Figure 2 and the CAN ver-
sions are listed in the Table 1. SOF stands for Start of Frame which indicates the beginning of Data Frames and
Remote Frames consisting of a single dominant bit. Arbitration is different for standard as well as for extended
frame format. In standard and extended frame format, RTR bit stands for Remote Transmission Request for
DATA frame. RTR is 0 where as for REMOTE frame RTR is 1. RTR helps in identifying the type of the frame.

In extension frame format 11 bit base ID is followed by SRR bit. SRR stands for Substitute Remote Request
bit and it is a recessive bit that helps in resolving the collusion of Standard and extension frame formats. IDE bit

B. Vinodh Kumar, J. Ramesh

3418

Table 1. CAN versions versus factures.

Version Features

CAN 2.0A • Sends and Receives Only Standard (11 Bit) Messages
• “Trashes” Extended (29 Bit) Messages on the Bus (Sends Error Frames)

CAN 2.0A/2.0B Passive • Sends and Receives Only Standard (11 Bit) Messages
• Will not “Trash” Extended (29 Bit) Messages on the Bus

CAN 2.0B • Sends and Receives Both Standard and Extended Messages
• Can Have a Mix of Both Message Types

Figure 1. In vehicle network architecture.

Figure 2. CAN frame format.

is followed by SRR/RTR which stands for Identifier Extension Bit. This bit actually indicates whether the frame
format is standard or an extension version. The IDE bit transmitted in the Standard Format is “dominant”, whe-
reas in the Extended Format the IDE bit is recessive. Control bit consists of six bits in which IDE is used to
identify the standard and extended frame formats. R0 and R1 are reserve bits. These reserved bits have to be sent
as “dominant”, but receivers accept “dominant” and “recessive” bits in all combinations. DLC stands for Data
Length Code which is 4 bit wide used to represent the data length 0000, stands for 0 bytes and 1000 stands for 8
byte.

Depending upon the DLC length, the data filed would carry the required data which each contain 8 bits which
are transferred MSB first. Table 2 lists the different types of fames in CAN communication.

4. Bit Stuffing
In CAN message transmission, bit stuffing is done at the transmission side and removed at the receiver end.
During bit stuffing a non information bit is inserted by the controller during the data sequence of 5 similar bits
which would be a complimentary logic to the sequence as shown in Figure 3 Bit stuffing is done to limit the

B. Vinodh Kumar, J. Ramesh.

3419

Figure 3. CAN bit stuffing.

Table 2. CAN frame types.

S. NO Frame Types Function

1 A Data Frame Carries data from a transmitter to the receivers.

2 A Remote Frame Transmitted by a bus unit to request the transmission of the Data Frame with the same
Identifier.

3 An Error Frame Transmitted by any unit on detecting a bus error.

4 An Overload Frame Used to provide for an extra delay between the preceding and the succeeding Data
or Remote Frames.

number of consecutive bits of the same value in the data to be transmitted and the receiver does not need any
extra information about the location of the bit stuffing in order to do the de-stuffing. Any violation of this rule is
understood as a bit stuffing error in the network.

4.1. Impact of Bit Stuffing
In a given CAN standard frame format, the worst case bit size is 135 bit and the maximum possible bit stuffing
could happen during the transmission is 24 bits, similarly in extended frame format the worst case bit size is 160
bit and 29 possible bit stuffing could happen. If the CAN network is operating at 1 Mbps, a single CAN bit tim-
ing is 1 micro second. Totally due to bit stuffing character of CAN network the possibility of worst case re-
sponse time has been increased to 29 micro seconds. Table 3 lists CAN bit stuffing impact in standard and ex-
tended frame format.

4.2. XORing Technique
Imaran Shiek and M. Short made enhancement of, the XOR technique for bit stuffing reduction [7]. The valua-
ble finding of their work has motivated us to implement the same technique to the standard CAN SAEJ1939.
But unfortunately the XORing techniques proposed by Imaran and Short is applied to the entire CAN frame
which has modified the CAN message ID dynamically. The SAE J1939 standard does not allow message ID to
be modified. The technique has been inherited by applying the XORing technique only to the pay load of 64 bit.
A significant improvement has been found in the net bit error rate and made the proposed system compatible to
the automotive standard.

The dynamic CAN message frame is subjected to XOR masking during transmission and decoded with the
same key at the receiver. Figure 4 explains the XORing technique which is applied during the transmission for
the entire frame and similarly decoded at the receiver end. This technique does not require any key to decode at
the receiver end.

4.3. Selective Bit Stuffing Algorithm
In Selective bit stuffing, the only the data filed is exposed for the bit stuffing, Two bit mask are used BM1: [55
55 55 55 55 55 55 55] Hex and BM2: [91 91 91 91 91 91 91 91] Hex. The Algorithm compares the transmission
data with bit masking value if found similar the data are transmitted without masking and at the receiver side the
data are compared with masking vale. Whenever the data received is found similar to masking the data’s, the
received data is taken without XORing the mask. if the data is different from the masking value the masking
logic is being executed as per the flow chart.

In selective XORing method the bitmask is applied for the data field in the selective CAN frames. The bit
mask values used are BM1: [55 55 55 55 55 55 55 55] and BM2: [91 91 91 91 91 91 91 91]. The bitmask is
applied for the CAN frames other than the worst case scenarios as mentioned above. If the data is the same as

B. Vinodh Kumar, J. Ramesh

3420

Figure 4. CAN XORing technique.

Table 3. CAN bit stuffing.

Type Message ID size in bits Total bit size in bits Maximum possible bit stuffing

CAN 2.0A
(No of bits) 11 135 24

CAN 2.0B
(No of bits) 29 160 29

the bitmask or the complement of the bitmask it will be transmitted without masking. The algorithm explains
this method.

4.4. CAN Analysis
Tindell [10] proposed methods to calculate worst case latencies of CAN frames. Naturally the analysis is based
on fixed priority response time analysis. The calculations are focused on worst case queuing patterns of frames.
Each message in a CAN network is assigned with a fixed priority. In order to analyze the worst case behavior of
each message is streamed and to compute the network load, which has S set of messages stream m mS S P∈ < ,
Tm, Cm > where Pm is priorly defined in the message identifier, Tm is the time period of the message and Cm is the
worst case transmission of message m. the worst case latency Rm of a CAN frame that is sent on stream Sm with
assumption of minimum variation in queuing time to be zero is defined by

m m m mR J q C= + + (1)

The calculation of the worst case response time of each message in the CAN network is guided by Response
time analysis and hence it could be compared with the dead line of the message to verify the schedule of mes-
sages. Three different parameters that influence worst case response time are queuing jitter Jm, queuing delay qm
and transmission time Cm.

Queuing jitter Jm—longest time between event initiation and message being queued before ready for transmit
on the CAN bus.

Queuing delay qm—maximum time that a message spends in the CAN node before successful transmission on
the CAN bus.

Transmission time Cm—maximum time that a message could take for transmission.
Inherited from sender’s task, the effective queuing time is given by

() ()
1

3
n
m j bitn

m m j bitj hp m
j

q J T
q B C T

T

−

∈

 + +
= + × + × 

  
∑ (2)

where
Cj is the transmission time of message j
Tbit is the bit time
hp(m) is the high priority set of messages than that of m
lp(m) is the low priority set of messages than that of m
3 × Tbit is considered as inter frame gap as a port of the data frame represented in Tindell calculation.
Maximum blocking time or worst case blocking time of a frame sent on Sm

()
()max 3m k bitk lp m

B C T
∈

= + × (3)

B. Vinodh Kumar, J. Ramesh.

3421

The maximum blocking time of a CAN message happens when a low priority message starts to transmit just
before a message m is placed when it is ready to transmit. This message m has to wait for the low priority mes-
sage to transmit completely and bus goes to idle. The time duration is represented as Bm called maximum block-
ing time.

4.5. CAN Utilization Factor Analysis
PengHao and Yang Shun [2] proposed the computation method of hard real time scheduling utilization rate in-
dicated that if requested capacity of CAN is not above 30% then time deadlines of all messages flow are met

The utilization of the message time is defined as

1
m i
i

i

C
U

T=
= ∑ (4)

The CAN standard specifies that the maximum data payload is 8 byte and lest is at 0 byte. Sm denotes the
maximum number of bytes of payload of a packet and Tbit specifies the bit time of a single bit.

Transmission time of a CAN message is represented as

8 1
8 13

4
m

m m bit
g S

C g S T
 + × −  = + × + +    

 (5)

For CAN 2.0A has g value of 34 and CAN 2.0B has g as 54, where g is the number of frame header subjected
to bit stuffing. Maximum transmission time is denoted as Cmax and minimum transmission time is denoted as C
min. Applying Sm = 0 and Sm = 8 on equation (5) we get

max
6364 13

4 bit
gC g T +  = + + +    

 (6)

(){ }min 13 bitC g T= + (7)

To understand the impact of payload versus the CAN unitization, the payload size has been applied on above
equation 6 and 7 to compute the utilization factor. Table 4 has been computed to understand the payload impact
which clearly indicates that there is a significant improvement in unitization rate of standard and extended frame
formats. The utilization rate of CAN for standard is 26% and extended is 29%, it is understood that all the mes-
sages in the network are schedulable under this value and without any deadline missed.

5. Short CAN-Payload Reduction Technique and Analysis
The next research work focus on Payload reduction and implementation strategies for real time requirement.
CAN payload vary from 0 bytes to 8 bytes (maximum). In a bandwidth constrained CAN network, this work

Table 4. CAN utilization rate versus payload.

Bytes C min Std C min Ext C Max Std C Max Ext Utilization Rate Std Utilization Rate Ext

0 47 67 55.25 80.25 45.9 45.5

1 47 67 65.25 90.25 41.2 42.6

2 47 67 75.25 100.25 38.4 40

3 47 67 85.25 110.25 35.5 37.7

4 47 67 95.25 120.25 33 35.7

5 47 67 105.25 130.25 30.8 33.9

6 47 67 115.25 140.25 28.9 32.3

7 47 67 125.25 150.25 27.2 30.8

8 47 67 135.25 160.25 25.7 29.4

B. Vinodh Kumar, J. Ramesh

3422

focus on optimum payload size to handle bandwidth requirement. This proposed short works in payload size
from 0 byte to 4 byte maximum. Payload reduction in any networked communication increases the network uti-
lization as the overhead for a single packet is being reduced. The above study about the controller area network
protocol follows in the same fashion. Optimum payload for the real time communication protocol like CAN has
to be of four bytes. Because both standard and extended protocols have almost same utilization factor of 33 and
35.7, planning larger number will have the same impact on the utilization factor.

In CAN standard and extended protocol version it has been defined that the Message pay load size various
from 0 to 8 bytes and in short CAN it is defined to be 0 to 4 bytes. Table 5 shows clearly that whenever the
payload size of the CAN is reduced from 64 to 32, the maximum transmission time of CAN 2.0A reduces from
135 to 95 and for extended CAN frame format CAN 2.0B, the transmission time has been reduced from 160 to
120. The calculation is made for 1 Mbps gross bit rate and one bit is computed as 1 µSec.

In the proposed Short CAN frame format, all the Start of Frames (SOF) and Message Identifiers which arbi-
trate with other messages follow the same standard protocol of 11 bits for standard and 29 bits for extended
CAN frame format. Control bit is 6 bits, CRC 15 and CRC delimiter, ACK delimiter and ACK slot shares one
bit each. Maximum bit stuffing values are taken for the computation purpose.

5.1. Short CAN over SAEJ1939 Benchmarking
In order to benchmark and implement the findings of the research work carried out, SAE J1939 Protocol con-
troller application layer is enhanced to short CAN model. SAE (Society of Automotive Engineers) J1939 is a set
of standard one that is used in heavy duty commercial vehicles like buses and Truck. The physical layer is de-
scribed in the J1939/11 explained about the electrical interface [11]. The data link layer is described in the
J1030/21 explaining about the message construction, bus access, arbitration and error transmission. The applica-
tion layer is described in the J1939/71 and about the data content in individual message is explained in J1939/73.
These are pre defined messages and location of information in each bit of the CAN message has been clearly
spelt out and implemented by automobile OEMs.

J1939 protocol has been implemented over CAN2.0B protocol which has 29 bit identifier for priority and
source address and designation address assignment. The message ID consists of “PDU” called as Protocol Data
Unit and PDU1 stands for destination address and PDU2 stands for broadcast message. Every bit in the SAE
J1939 Message has a meaning and function, Table 6 indicated every bit location and its function.

Table 5. Short CAN frame format and maximum transmission time.

Bit Name CAN 2.0A CAN 2.0B Short CAN 2.0A Short CAN 2.0B

SOF 1 1 1 1

Identification bits 11 11 11 11

SRR x 1 x 1

IDE x 1 x 1

Identification bits x 18 x 18

RTR 1 1 1 1

Control bit (Max) 6 6 6 6

Data bits 64 64 32 32

CRC 15 15 15 15

CRC delimiter 1 1 1 1

Bit stuff max 24 29 16 21

ACK slot 1 1 1 1

Ack delimiter bit 1 1 1 1

End of frame 7 7 7 7

Interframe space 3 3 3 3

Total (Maximum time µSec) 135 160 95 120

B. Vinodh Kumar, J. Ramesh.

3423

Table 6. SAE J1939 message ID and its fuctions.

Message ID Bit Function

Priority 3 bits Defines message priority during arbitration

Reserved 1 bit This bit is reserved for future, always it must be set as zero

Data page 1 bit expansion of possible parameter group

PDU format (PF) 8 bits PF indicate message transmitted with a destination address or always broadcast message

PDU specific (PS) 8 bits If PF is between 0 and 239 then PS contains addressable MSG PDU1
If PF is between 240 and 255 then PS contains only broadcast MSG PDU2

Source Address 8 bits Source Address

SAE J1939 Total 29 Bits

5.2. SAEJ1939 Message Classification
SAEJ1939 Protocol has a well defined application layer in which there are 27 inseparable messages whose
lengths of the messages may fall in between 4th and 5th byte of CAN payload. The detailed survey of SAEJ1939
protocol clearly indicates that there are 27 such messages that have to be handled with care while converting in-
to short CAN Message.

In order to categorize the short CAN message implementation under the Heavy commercial vertical standard
protocol SAE J1939, we have take 256 messages (PGN) described in the standard. Figure 5 shows the combina-
tion of messages that are available in the automobile standard. To test the effectiveness of the short CAN we
have selected 27 messages that will be configured in Matlab Simulink model and test the functionality and its
peak load impact along with the short CAN messages. Table 7 highlights the 27 inseparable messages under the
standard. The PGN number of these messages and it corresponding length of the message has been listed for di-
rect transmission of 8 bytes as they are not modifiable in to short CAN because of its data location in the payl-
oad given in the standard. The other 229 SAEJ1939 messages are converted in to short CAN and testing was
performed over it.

6. Experimental Setup
Model based system design and development is a fast developing powerful design and analysis tool. The pro-
posed instrument cluster design is developed using vehicle network toolbox which provides real-time connectiv-
ity to the Matlab Simulink models, CAN transceivers and vector virtual CAN bus driver.

Model based designing is the latest design methodology in the field of automobile electronics. As the embed-
ded system software development depends on the High level languages like C, Embedded C, assembly level
languages and etc, development any small logic or control is completely depending upon the programming ca-
pability of a particular software development team. To overcome effective software development with limited
programming knowledge, model based software development has opened the doors of aspirant hardware engi-
neers to program the desired functionally in a common development platform like Matlab where actual control
or logic could be designed using Simulink blocks and the developed algorithm could be implemented in the tar-
get platforms

6.1. Implementation of Short CAN
SAEJ1939 sends data in CAN 2.0B in 29 bit extended message ID format and the location of sensor and other
vehicle related data are defined as per the specification of the application layer. If the data contains only 2 bytes
of information other 6 bytes of information are filled with all ones causing potential bit stuffing location. These
types of messages could be reduced to short CAN of 4 byte information and control bit could be modified as
short CAN message and other message be truncated. Figure 6 shows the short convertor model helps us to iden-
tify potential short CAN message and truncate the rest of the unwanted bits.

There are totally 246 predefined SAEJ1939 Messages in which 27 are more than 4 byte of single messages. If
these messages are splitted in two real time data cannot be reconstructed. So these 27 messages are transmitted in
CAN network without any modification. Rest of the message could be split into two or if the useful information is

B. Vinodh Kumar, J. Ramesh

3424

150

27

79

PGN WITH SPLITABLE
DATA 8 BYTES

PGN WITH
UNSPLITABLE …

PGN WITH <= 4 BYTES

CAN SAE J1939 MESSAGE PGNs

Figure 5. CAN SAE J1939 messages PGN types.

Figure 6. Short CAN block diagram.

Table 7. SAE J1939 inseparable messages.

S. No NAME PGN Length Parameter Name

1 Anti-theft Status PGN 56320 2 bits Anti-theft Encryption Seed Present Indicator

2 Anti-theft Request PGN 56576 2 bits Anti-theft Encryption Indicator States

3 Electronic Engine Controller 1 PGN 61444 4 bits Engine Torque Mode

4 Vehicle Dynamic Stability Control 2 PGN 61449 2 bytes Steering Wheel Angle

5 After Treatment Historical Information #1 PGN 64920 4 bytes After Treatment 1 Total Fuel Used

6 After Treatment Historical Information #2 PGN 64921 4 bytes After Treatment 2 Total Fuel Used

7 Farebox Service Detail PGN 64956 2 bits Farebox Service Status

8 Transit Milepost PGN 64959 1 byte Number of bytes in the Milepost Identification

9 ECU Identification Information PGN 64965 Variable-up ECU Part Number

10 Operators External Light Controls Message PGN 64972 4 bits Work Light Switch

11 FMS-standard Interface Identity/Capabilities PGN 64977 2 bits FMS-standard Diagnostics Supported

12 Engine Torque History PGN 65168 1 byte Number of Engine Torque History Records

13 Trip Time Information 2 PGN 65200 4 bytes Trip Cruise Time

14 Trip Time Information 1 PGN 65204 4 bytes Trip Time in VSL

15 Engine Speed/Load Factor Information PGN 65207 2 bytes Trip Maximum Engine Speed

16 Trip Fuel Information (Gaseous) PGN 65208 4 bytes Trip Drive Fuel Used (Gaseous)

17 Trip Fuel Information (Liquid) PGN 65209 4 bytes Trip Drive Fuel Used

18 Trip Distance Information PGN 65210 4 bytes Trip Distance on VSL

19 Trip Fan Information PGN 65211 4 bytes Trip Fan On Time

20 Compression/Service Brake Information PGN 65212 4 bytes Total Compression Brake Distance

21 Software Identification PGN 65242 1 byte Number of Software Identification Fields

22 Retarder Configuration PGN 65249 4 bits Retarder Type

23 Engine Configuration PGN 65251 2 bytes Engine Speed At Idle, Point 1
(Engine Configuration)

24 Vehicle Weight PGN 65258 8 bits Axle Location

25 Component Identification PGN 65259 5 bytes Make

26 Power Takeoff Information PGN 65264 1 byte Power Takeoff Oil Temperature

27 Ambient Conditions PGN 65269 1 byte Barometric Pressure

B. Vinodh Kumar, J. Ramesh.

3425

only 4 byte length, rest of the unwanted messages are truncated.

6.2. Short CAN Instrument Cluster Model
Matlab target Simulink model with the power of vehicle network tool box provides the programming power to
the hardware designers. Vehicle Network Toolbox provides connectivity to CAN devices from MATLAB and
Simulink. The tool box has the capability of generating required CAN Messages in the required format from a
CAN Node and receive the CAN message in other node.

Tools have additional features like decoding; encoding, filtering, logging and recording of CAN Message, It
could also be connected with CAN dbc files and replay the sequence. Vehicle network tool box supports Vector,
Kvaser, and National Instruments interface hardware and Vector CAN database (.dbc) files which can be rec-
orded and play back. CAN communication could be configured using Matlab command line or from Simulink
model. Figure 7 shows the Matlab simulation model which simulates the virtual vehicle instrument cluster and
follows the short CAN over SAE J1939 standard and the results shows no performance degradation because of
payload reduction of 8 byte to 4 bytes. The Virtual CAN enabled instrument cluster model simulates 2 virtual
CAN nodes in data collection is done with Simulink car engine model designed by Simulink and transmit by
virtual CAN node 1. The CAN node 2 receive the simulated data of vehicle performance during riding is given
to a CAN node 2 enabled Simulink GUI. Vehicle parameters like odometer, trip meter, Engine RPM, Fuel level
and tell tale (LED indicator) are modeled using upgraded short CAN model. These were no performance de-
grading between SAE J1939 messages and modified SAE J1939 Messages over short CAN [12].

6.3. Short CAN Workbench Setup
As the performance of the short CAN was tested using virtual model. The same short CAN messages were
coded in the CAN enabled multifunction display. The multifunction display was powered by automobile graded
freescale controller. The experimental setup shown in Figure 8 had CAN debugger and CANoe CAN bus simu-
lator. The 256 short CAN SAE J1939 messages were modeled and performances were verified.

Similarly the second research work on selective bit stuffing was also tested on the workbench setup. The
CANoe, AHU, MFD and SYNC are connected to a common bus. The selective bit stuffing method is analyzed
for the various worst case scenarios. Interestingly the Selective bit stuffing technique gave constant 8 bit stuffing
for the applied combination. The selective bit stuffing algorithm has reduced the maximum bit stuffing impact in

Figure 7. Virtual instrument cluster model.

B. Vinodh Kumar, J. Ramesh

3426

Figure 8. Workbench setup for performance evaluation.

payload from 24 bits to 8 bits in standard CAN messaging scheme and from 29 to 13 in extended frame format.

7. Results and Discussion
7.1. Peak Payload
For analysis, 50 messages out of 256 listed CAN SAE J1939 standard were configured and tested in the test se-
tup, as only 50 CAN SAE messages were allowed to be configured from a single node. The Peak load was cap-
tured in the CAN tool and different combinations of CAN messages were transmitted and the peak load is ob-
served over CAN tool. 5 non splittable messages are sent and the transmission is executed for 1 time step in the
Matlab. Because of payload size reduction we were able to reduce the peak load in a real time CAN traffic. Ta-
ble 8 shows the impact on peak load during testing.

7.2. Bit Stuffing Reduction
Impact of bitstuffing over payload can be easily understood from the bit stuffing versus payload analysis. Total
number of bits after bit stuffing for the worst case scenario using the selective XORing method is (114 + 8 =
122).

The largest frame takes 119 bit times to send the data using this method. This is reduced to 122 bit times from
138 bit times for CAN 2.0A. For CAN 2.0B the largest frame takes 144 bit times to send the data. This is re-
duced to 144 bit times from 160 bit times. The possible number of stuff bits of each byte for CAN 2.0A and
CAN 2.0B is shown in the following Figure 9. The short CAN proposal combined with selective XORing will
have a greater impact in the worst case response time of CAN messaging.

7.3. Selective Bit Stuffing Net Bit Rate
Net bit rate is defined as the number of useful bits carried per second. The CAN communication protocol carries
various overheads like Message ID, CRC, bit stuffing and control bits. The impact of net bit rate could be re-
duced by applying selective bit stuffing technique. Table 9 discusses the computation of net bit rate.

The experimental results have clearly indicated that the maximum possible bit stuffing using selective bit
stuffing is 8. The experiments were conducted for all b4 byte combination. The proposed algorithm was stable
and was not introducing any additional bit which helped in improving the net bit rate of CAN messages. The

B. Vinodh Kumar, J. Ramesh.

3427

Figure 9. Impact of bit stuffing.

Table 8. Real time CAN data analysis results for peack load.

S.NO SAE J1939 Messages Payload Peak load (%)

1 All messages with extended frame format and message 8 90.56

2 Message no 6 to 20 message 4 81.77

3 Message no 11 to 20 messages are splitted (message ID + 1) 4 89.12

Table 9. Net bit rate calculation with selective bit stuffing.

CAN 2.0A
Maximum Length of the Frame for the Worst Case Scenario

after Selective Bit Stuffing

CAN 2.0B
Maximum Length of the Frame for the Worst Case Scenario

after Selective Bit Stuffing

Frame length = 114 + (max no of stuff bits) = 114 + 8
(with selective bit stuffing technique) = 122

Frame length = 131 + (max no of stuff bits) = 131 + 13
(with selective bit stuffing technique) = 144

Net bit rate = ((11 + 1 + 4 + 64)/122) * 1 Mbps = (80/122) * 1
Mbps = 655.73 kbps

Net bit rate = ((29 + 1 + 4 + 64)/144) * 1 Mbps = (98/144) * 1
Mbps = 680.55 kbps

same analysis was performed with different CAN message payloads. The selective bit stuffing was having ap-
proximate 650 kbps for standard and 680 kbps for extended CAN frame format.

Selective bit stuffing algorithm results for various payload has been listed in Figure 10. The Net bit rate has
increased from 579 kbps to 655.73 kbps for standard CAN 2.0A and for 680.55 kbps for extended CAN 2.0B
frame formats.

7.4. Short CAN Utilization Factor
The proposed Short CAN is a shorter version of native CAN and could be implemented on the existing CAN
network provides back ward compatible that exists in the same commercial available network. Results shown in
Figure 11 clearly demonstrates short CAN of 4 byte increase CAN bus utilization factor by achieves 6% in-
crease extended format and 8% in standard CAN frame format of 8 bytes.

8. Conclusion
This paper presents a novel short CAN technique for effective utilization of available CAN bandwidth and ex-
plores the impact of selective bit stuffing over data payload without altering major modification in the existing
CAN protocol. Various experiments have been conducted on different payload sizes using Matlab Simulink and
the influence of payload; bit stuffing, worst case response time and busload have been studied. Smaller the
payload size is, smaller the bus load is. There was no performance degradation in Simulink working model si-
mulation and real time CANoe hardware with multi functional display has been shown on the study on 266 PGN

B. Vinodh Kumar, J. Ramesh

3428

Figure 10. CAN data payload impact on net bit rate.

0 1 2 3 4 5 6 7 8

Utilization Rate Std 45.9 41.2 38.4 35.5 33 30.8 28.9 27.2 25.7
Utilization Rate Ext 45.5 42.6 40 37.7 35.7 33.9 32.3 30.8 29.4

0

5

10

15

20

25

30

35

40

45

50

No of Bytes

Payload Vs Utilization Factor

U
til

iza
tio

n
Ra

te

Figure 11. CAN utilization factor.

messages. The implementation of short CAN is possible without any additional hardware and resources as clearly
indicated by benchmarking with SAEJ1939, thereby improving the protocol as backward compatible.

Future Work
The future work of the research work is to integrate short CAN technique and selective bit stuffing technique on
a single VLSI CAN IP core for ASIC and FPGA prototyping.

References
[1] Najafzadeh, S., Ithnin, N., Razak, S.A. and Karimi, R. (2014) BSM: Broadcasting of Safety Messages in Vehicular Ad

B. Vinodh Kumar, J. Ramesh.

3429

Hoc Networks. Arabian Journal for Science and Engineering, 29, 777-782.
http://dx.doi.org/10.1007/s13369-013-0686-y

[2] Hao, P. and Shun, Y. (2010) Computing Utilization Rate of Rate Monotonic Scheduling Mechanism in Controller Area
Network. 2010 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Qingdao, 15-17 July
2010, 133-137. http://dx.doi.org/10.1109/ICVES.2010.5550934

[3] Steve C. Talbot and ShangpingRen (2009) Comparison of Field Bus Systems, CAN, TTCAN, Flex Ray and LIN in
Passenger Vehicles. 29th IEEE International Conference on Distributed Computing Systems Workshops, ICDCS
Workshops’09, Montreal, 22-26 June 2009, 26-31. http://dx.doi.org/10.1109/ICDCSW.2009.15

[4] Nahas, M., Pont, M. and Short, M. (2009) Reducing Message Length Variations in Resource Constrained Embedded
Systems Implemented Using CAN Protocol. Journal of Systems Architecture, 55, 344-354.
http://dx.doi.org/10.1016/j.sysarc.2009.03.004

[5] Nolte, T., Hansson, H., Norstrom, C. and Punnekkat, S. (2001) Using Bit Stuffing Distribution in CAN Analysis.
IEEE/IEE Real-Time Embedded Systems Workshop, London.

[6] Hassan, M.M. (2015) Bit Stuffing Techniques Analysis and a Novel Bit Stuffing Algorithm for Controller Area Net-
work. International Journal of Computer Systems, 2, 80-87.

[7] Sheik, I. and Short, M. (2009) Improving Information Throughput in Controller Area Networks: Implementing the
Dual Speed Approach. Proceedings of 8th International Workshop on Real Time Networks, Dublin, June 2009, 57-62.

[8] Sheikh, I. (2011). Doctor Thesis of Philosophy, University of Leicester, Leicester.
[9] Bosch, R. CAN Specification 2.0. Technical Report, Robert Bosch-Gmbh.
[10] Tindell, K., Burns, A. and Wellings, A.J. (1995) Calculating Controller Area Network (CAN) Message Response

Times. Control Engineering Practice, 3, 1163-1169. http://dx.doi.org/10.1016/0967-0661(95)00112-8
[11] Vinodh Kumar, B. and Ramesh, J. (2014) Automotive in Vehicle Network Protocols. 2014 International Conference

on Computer Communication and Informatics, Coimbatore, 3-5 January 2014, 1-5.
[12] Kokkolaras, M. (2004) Simulation-Based Optimal Design of Heavy Trucks by Model-Based Decomposition. Interna-

tional Journal of Heavy Vehicle Systems, 11.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

http://dx.doi.org/10.1007/s13369-013-0686-y
http://dx.doi.org/10.1109/ICVES.2010.5550934
http://dx.doi.org/10.1109/ICDCSW.2009.15
http://dx.doi.org/10.1016/j.sysarc.2009.03.004
http://dx.doi.org/10.1016/0967-0661(95)00112-8
http://papersubmission.scirp.org/

	Improved Automotive CAN Protocol Based on Payload Reduction and Selective Bit Stuffing
	Abstract
	Keywords
	1. Introduction
	2. CAN History
	2.1. Problem Statement
	2.2. Literature Review of Bit Stuffing Techniques

	3. CAN Real Time Implementation
	3.1. In Vehicle Architecture
	3.2. CAN Format

	4. Bit Stuffing
	4.1. Impact of Bit Stuffing
	4.2. XORing Technique
	4.3. Selective Bit Stuffing Algorithm
	4.4. CAN Analysis
	4.5. CAN Utilization Factor Analysis

	5. Short CAN-Payload Reduction Technique and Analysis
	5.1. Short CAN over SAEJ1939 Benchmarking
	5.2. SAEJ1939 Message Classification

	6. Experimental Setup
	6.1. Implementation of Short CAN
	6.2. Short CAN Instrument Cluster Model
	6.3. Short CAN Workbench Setup

	7. Results and Discussion
	7.1. Peak Payload
	7.2. Bit Stuffing Reduction
	7.3. Selective Bit Stuffing Net Bit Rate
	7.4. Short CAN Utilization Factor

	8. Conclusion
	Future Work

	References

