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Abstract 
This paper presents an application of GRADE Algorithm based approach along with PV analysis to 
solve multi objective optimization problem of minimizing real power losses, improving the voltage 
profile and hence enhancing the performance of power system. GRADE Algorithm is a hybrid tech-
nique combining genetic and differential evolution algorithms. Control variables considered are 
Generator bus voltages, MVAR at capacitor banks, transformer tap settings and reactive power gen-
eration at generator buses. The optimal values of the control variables are obtained by solving 
the multi objective optimization problem using GRADE Algorithm programmed using M coding in 
MATLAB platform. With the optimal setting for the control variables, Newton Raphson based power 
flow is performed for two test systems, viz, IEEE 30 bus system and IEEE 57 bus system for three 
loading conditions. Minimization of Real power loss and improvement of voltage profile obtained 
are compared with the results obtained using firefly and particle swarm optimization (PSO) tech-
niques. Improvement of Loadability margin is established through PV curve plotted using contin-
uation power flow with the real power load at the most affected bus as the bifurcation parameter. 
The simulated output shows improved results when compared to that of firefly and PSO techniques, 
in term of convergence time, reduction of real power loss, improvement of voltage profile and en-
hancement of loadability margin. 
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1. Introduction 
In Power systems planning and operation, voltage stability poses a major concern. Voltage instability or voltage 
collapse may come as a consequence of inadequate reactive power support from generators and transactions in 
transmission lines. Hence, understanding the concept of voltage stability and designing the prevention metho-
dologies to mitigate the voltage instability is of great value to the utilities. Real Power versus Voltage (PV) 
analysis is useful for conceptual analysis of voltage stability and can be useful in specifying the active power 
margin. 

Optimization of reactive power is proved to improve the voltage stability limits and to minimize system active 
power losses. Generator bus voltages, Transformer tap positions, the MVAR at the capacitor Banks and reactive 
power generation at generator buses are considered as the control variables. Many conventional methods used in 
VAR optimization are based on linear programming, nonlinear programming and quadratic programming me-
thod. The optimization of reactive power support to mitigate voltage collapse problem in power market systems 
was described using a sequential quadratic programming method [1] in 2003 by X. Lin et al. 

The major drawbacks of the Conventional methods were that they were time consuming and they were not 
capable to solve complex problem with discrete variables. To overcome the disadvantages experienced in con-
ventional methods, nature-inspired metaheuristic algorithms such as Genetic algorithm, colonial search algo-
rithms and swarm intelligence techniques were proposed. 

Comprehensive learning particle swarm optimization for reactive power dispatch [2] [3] were reported in 
2007 & 2010. Modified Swarm optimization method with admissible step and with minimization of constraint 
violation were reported in the same literature. A new Hybrid evolutionary strategy for reactive power dispatch [4] 
for controlling the reactive power generation in dispatching centers was reported in 2003 by D. Bhagwan Das 
and C. Patvardhan. This new method for solving optimization problem based on evolutionary strategy to im-
prove the convergence and to find the better solution. Optimal reactive power dispatch based on different opti-
mization techniques [5]-[11] were reported in various literatures.  

Genetic algorithm [12] [13], employed for reactive power optimization is based on the mechanics of natural 
genetics. P. Devaraj and J. Preetha Roselyn have employed Genetic algorithm for voltage stability enhancement 
based on minimization of maximum L-indices of load buses. For effective genetic processing, the crossover and 
mutation operators which can immediately trade with the floating point numbers and integers were used. 

Colonial search algorithms such as Ant colony and Binary Ant colony based optimization were also reported 
in reactive power optimization [14] [15]. It was established that the ants take tour based on aromatic substance 
called pheromone laid by them. The amount of pheromone will be high if the artificial ants finish their tour with 
a wide track and vice versa. The pheromone of the routes progressively decreases by evaporation in order to 
avoid the artificial ants getting stuck in the local optimum solution. 

Differential Evolution (DE) algorithm was reported in various literatures [16]-[20] for reactive power optimi-
zation. DE combines the simple arithmetical operators with operators like recombination, mutation and selection 
thus evolving from a random population to the final population. Quasi-opposition teaching-learning based opti-
mization (QOBL) [21] was employed for reactive power dispatch in IEEE 30 bus arrangement and was reported 
by Barun Mandal and Provas Kumar Roy. It was based on two basic operations, namely teaching (for global 
search) and learning (for local search) stage.  

Comparative Study of Firefly algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization 
Problems was reported in 2012 by Saibal K. Pal et al. [22]. There are various noisy non-linear mathematical op-
timization problems that can be effectively solved by Metaheuristic Algorithms. These are iterative search pro- 
cesses that efficiently perform the exploration and exploitation in the solution space, efficiently find near optim-
al solutions. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by fireflies 
behavior in nature. PSO is population based optimization technique inspired by social behavior of bird flocking 
or fish schooling. Preventive reactive power management for improving voltage stability margin [23]-[25] was 
reported by O. Alizadeh Mousavi et al. Adequate voltage stability margin needs to be obtained through the ap-
propriate scheduling of the reactive power sources and also preventive counter measure to improve voltage sta-
bility margin through the management of the reactive power and its reserve. 

In this paper, an algorithm namely GRADE algorithm is applied for solving multi objective optimization. The 
GRADE algorithm is based on a combination of genetic algorithm and differential evolution technique. The rest 
of this paper is organized as follows. In Section 2, a brief description of the formulation of the multi objective 
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optimization problem along with equality and inequality constraints is presented. In Section 3, GRADE algo-
rithm is presented in brief and the steps involved to solve multi objective optimisation problem is presented 
alongside a flowchart representing the same. In Section 4, the numerical results obtained during simulation for 
different loading conditions are explained in detail and analysis from the results is also presented. The conclu-
sions are given in Section 5. 

2. Mathematical Problem Formulation 
The main objective of multi objective optimization is to minimize the active power loss in the transmission net-
work, which is defined as follows: 

1 loss
1

min
nl

n
f P

=

= ∑                                      (1) 

Another objective of this problem is to improve the voltage profile which is formulated mathematically as 
follows, 

2 max,spec
1

n

i
f V v

=

= −∑                                    (2) 

The overall objective function of the problem is thus formulated as follows, 

( ) ( )1 2f f fα β= +                                    (3) 

where, Ploss = active power loss in the transmission network, 
Vmax,spec = is the maximum voltage specified for all the buses, 
α and β are the penalty factors. 

Constraints 
Equality Constraints. The equality constraints include the real and reactive power constraints which are 

given as follows: 
1) Real Power Constraint 

( ) ( )
1

, cos sin
n

i i j ij ij ij ij
j

P V VV G Bθ θ θ
=

= +∑                          (4) 

where, n = numbers of buses, except swing bus. 
Gij = mutual conductance between bus i and j. 
Bij = mutual susceptance between bus i and j. 
θij = Load angle between bus i and j. 
Pi = Real power injected into network at bus i.  
Vi, Vj = Voltage magnitude at bus i, j. 

2) Reactive Power Constraint 

( ) ( )
1

, sin cos
n

i i j ij ij ij ij
j

Q V VV G Bθ θ θ
=

= +∑                            (5) 

where, n = number of buses, except swing bus. 
Qi = Reactive power injected into network at bus i. 
Inequality Constraints. The inequality constraints include the following, 

1) Bus Voltage Magnitude Constraint 

,min ,maxi i iV V V≤ ≤ ; Bi N∈ : Total number of buses                      (6) 

where, Vi = Voltage magnitude at bus i. 
NB = Total number of buses. 

2) Generator Bus Reactive Power Constraint 

,min ,max ,Gi Gi Gi gQ Q Q i N≤ ≤ ∈                                 (7) 
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where, QGi = Reactive power generation at bus i. 
Ng = Number of generator buses. 

3) Reactive Power Source Capacity Constraints 

,min ,max ;Ci Ci Ci CQ Q Q i N≤ ≤ ∈                                  (8) 

where, QCi = Reactive power generated by ith capacitor bank. 
NC = No. of capacitor banks. 

4) Transformer Tap Position Constraints:  

,min ,max ;k k k TT T T i N≤ ≤ ∈                                   (9) 

where, Tk = Tap setting of transformer at branch k. 
NT = No. of tap-setting transformer branches. 

3. GRADE Optimization Algorithm 
The GRADE algorithm is a combination of genetic algorithm and differential evolution technique. The algo-
rithmic scheme of GRADE algorithm is really alike to that of the genetic algorithm except that it uses the sim-
plified differential operator like the differential evolution technique. The parameters used in GRADE Algorithm 
are given in Table 1. 

GRADE algorithm uses 3 genetic operators which include mutation, crossing and selection. 
Mutation operator 
Mutation operator is applied to the parental population, thus producing a new population of offsprings. From 

the unit interval, a random number p is generated for each parent P. One offspring O is created by mutation for a 
parent P if p is smaller than radioactivity. In such a case, the new random point RP is generated inside a given 
domain and new offspring O is created on a random position on the line connecting the parent P and the random 
point RP. This operator creates each time different number of offsprings, but in average this number should 
converge to population_size * radioactivity. Radioactivity is a control parameter of GRADE algorithm defining 
the part of offsprings created by mutation. 

Crossover Operator 
Crossover operator is designated to create such a number of new offsprings, that the total number of 

offsprings n_Offsprings will be the same as parents n_Parents (population will be doubled). To create an 
offspring, two members P1 and P2 of parental population are randomly chosen. Then the vector of their differ-
ence is computed, multiplied by cross_rate and added to the better one between P1 and P2. Cross_rate is a num-
ber each time randomly generated from the interval (0; cross_limit). cross_limit is another control parameter of 
GRADE algorithm.  

Selection Operator 
Operator selection should select new population from parents and offsprings or more precisely, it eliminates 

chosen offsprings and parents, until the complete population has its initial size. Each time when one member is 
rejected, best members are selected for next generation and the worse of them is discarded. This selection 
process has two advantages: It ensures that the best member will survive to the next generation, even very bad 
member has a possibility to survive and certain diversity of population remains.  

The GRADE algorithm suffers from serious disadvantage that it tends to form clusters. In order to overcome 
this disadvantage a niching strategy called CERAF strategy is employed. It produces areas of higher level of 
“radioactivity” in the neighborhood of all previously found local extremes by increasing the mutation probabili-
ty (i.e. ceraf radioacitivity) in these areas many times. Parameters used to implement CERAF strategy and the 
corresponding values employed are given in Table 2. 

 
Table 1. Parameters in GRADE algorithm.                                                                     

Parameter Description Used Value 

pop_rate Control the size of population 10 

Radioactivity Control the number of offsprings created by mutation 0.2 

cross_limit Control the distance of offsprings from its better parent created by crossing 1.0 
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Table 2. Parameters in CERAF strategy.                                                                       

Parameter Description Used Value 

RAD Control the radius of the radioactivity area 0.25 RAD 

deact_rate Control the decreasing in size of radioactive area 0.995 deact_rate 

Quiet Control number of generations before new local extreme is marked 100 Quiet 

4. Algorithm and Flowchart 
The GRADE algorithm used for searching an optimal solution for multi objective optimisation is given in Fig-
ure 1. 

Step 1: Read the power flow data, set the minimum and maximum value of control variable and initiate trans-
former tap positions. 

Step 2: Generate the initial population in random manner and assign the objective function value to all chro-
mosomes in the population. The size of the population is then defined as the number of variables of objective 
function multiplied by parameter pop rate. 

Step 3: Several new chromosomes are created using the mutation operators—the mutation and the local muta-
tion (their total number depends on the value of a parameter called radioactivity—it gives the mutation probabil-
ity). 

Step 4: Create another set of new chromosomes using the simplified differential operator; thus doubling the 
population. 

Step 5: Assign objective function values to all newly created chromosomes. 
Step 6: Apply CERAF strategy. 
Step 7: Apply selection operator to the double-sized population, thus decreasing the amount of individuals to 

its original value. 
Step 8: Perform load flow analysis. 
Step 9: Steps 3 - 7 are repeated until the variables are within their limits. 
Step 10: Stopping criteria are checked, if satisfied the search process stops and displays the result, else pro-

ceed to the next iteration. 

5. Results and Discussion 
The effectiveness of GRADE algorithm based optimization technique is tested in IEEE 30-bus and 57-bus test 
systems and the results are compared with the results obtained using firefly and Particle Swarm Optimization 
algorithms. The proposed algorithm is developed in MATLAB 7 and run on a PC with INTEL i5 processor of 
4GB RAM. For implementing GRADE technique, 30 trials each for different loading conditions are performed 
in the above mentioned test systems 

5.1. Results in IEEE-30 Bus System 
The standard IEEE 30-bus test system [10] is used to test the effectiveness of the proposed method. The test 
system consists of 6 generators, 4 transformers, and 41 branches. The transformers are at the branches 6 - 9, 6 - 
10, 4 - 12 and 28 - 27. The reactive power support is provided at the buses 10 and 24.Line data and bus data of 
the test systems is available in [10] (Figure 2). 

The reactive power generation limits for the IEEE 30-bus system are listed in Table 3. The voltage and tap 
settings limit are provided in Table 4. The initial power loss for the IEEE 30-bus system is obtained as 0.17557 
p.u by performing load flow analysis. 

Different loading conditions are considered for multi objective optimization. The normal loaded condition has 
a load of 2.834 p.u and two other loading conditions of which one is light loaded and the other heavy loaded 
when compared to that of the normal loaded condition are considered. 

In light loaded condition, the load is reduced by 50% of the normal load in all load buses and in heavy loaded 
condition, the load is increased by 50% of the normal load in all load buses.  
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Figure 1. Flowchart of GRADE algorithm for multi objective optimisation.                                          
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Figure 2. Single line diagram of IEEE 30 bus system.                                                            

 
Table 3. Limits for reactive power generation for IEEE30 bus system.                                              

Bus No 1 2 5 8 11 13 

( )mingQ MVAR  0 −40 −40 −10 −6 −6 

( )maxgQ MVAR  10 50 40 40 24 24 

 
Table 4. Limits for voltage and tap setting (in p.u.) for IEEE30 bus system.                                           

max
GV  min

GV  max
loadV  min

loadV  max
kT  min

kT  

1.1 0.9 1.05 0.95 1.05 0.95 
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Under light loaded condition the load is reduced to 1.4170 p.u and the base case loss is obtained as 0.037765 
p.u. Under normal loaded condition the load is 2.834 p.u and the base case loss is obtained as 0.17557 p.u. Un-
der heavily loaded condition the load is 4.2510 p.u and the base case loss is obtained as 0.4495 p.u. A compari-
son of fitness value for various loading condition is provided in Table 5 and a comparison of the real power loss 
obtained using PSO, Firefly and GRADE algorithm under three loading condition is shown in the Table 6. 

From Table 6, it can be seen that, real power loss reduction is more when GRADE algorithm is used com-
pared to conventional techniques such as firefly and particle swarm optimization technique. 

After 30 trials the real power losses obtained by reactive power optimization using GRADE algorithm is pre-
sented in Table 6 along with worst and best results, mean and standard deviation in Table 7. 

The optimal values of the control variables after optimization for three loading conditions are shown in Table 
8. 

 
Table 5. Comparison of fitness value for the three loading conditions.                                               

Parameter Lightly loaded condition Normal loaded condition Heavily loaded condition 
Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE 

Fitness Value 0.12732 0.043762 0.043761 0.43534 0.20071 0.20069 1.4924 0.54832 0.54832 
 

Table 6. Comparison of real power loss for IEEE30 bus system.                                                   

Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition 
Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE 

Ploss(p.u) 0.035772 0.034768 0.034256 0.17476 0.16953 0.16939 0.43357 0.4339 0.4311 
 

Table 7. Comparison of best and worst case real power loss for IEEE30 bus system using Grade Algorithm.                 

Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition 

Optimization  
Technique Worst Best Mean Std. 

Deviation Worst Best Mean Std. 
Deviation Worst Best Mean Std. 

Deviation 

Ploss(p.u) 3.8002 3.4756 3.5657 0.10135 19.954 16.939 17.7497 0.672046 43.683 43.41 43.2472 0.3058 

 
Table 8. Optimal values of the control variables in p.u. obtained using grade algorithm for IEEE30 bus system.                 

Control variables Lightly loaded condition Normal loaded condition Heavily loaded condition 

V1 1.1 1.1 1.1 
V2 1.1 1.1 1.1 
V5 1.1 1.1 1.0890 
V8 1.1 1.1 1.1 
V11 1.0999 1.1 1.1 
V13 1.1 1.1 1.0767 
QC10 0.27648 0.50 0.20 
QC24 0.048992 0.213704 0.20 

T1 1.0003 0.970824 1.0484 

T2 1.05 1.0157 0.95 

T3 0.95 0.95 0.95 

T4 0.97338 0.95 0.9759 

Q1 0.2806 0.0499289 0.10 

Q2 −0.36843 0.10 −0.40 

Q5 −0.39967 −0.40 −0.096311 

Q8 0.049558 −0.007805 −0.10 

Q11 −0.027887 0.239964 0.24 

Q13 −0.06 0.141589 −0.06 
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From Table 8, it can be observed that, all control variables are set as per the optimum values obtained using 
GRADE Algorithm and the values are within the given specified limits. A comparison of voltage levels before 
and after optimization for lightly loaded condition, normal loaded condition and heavy loaded condition is also 
presented in Figures 3-5 respectively. The 30th bus of the IEEE 30 bus system is found to be the weakest bus 
from power flow results and hence voltage at 30th bus is compared to establish the effectiveness of GRADE Al-
gorithm is improving the voltage profile. 

It is noted that, from Figures 3-5 in all the loading conditions voltage profile improvement is optimum when 
controllers are tuned using GRADE Algorithm. 

The result of continuation power flow analysis before and after optimization for different loading conditions  
 

 
Figure 3. Comparison of voltage levels before and after optimization under light loaded condition for IEEE30 bus test sys-
tem.                                                                                                   

 

 
Figure 4. Comparison of voltage levels before and after optimization under normal loaded condition for IEEE30 bus test 
system.                                                                                                 

 

 
Figure 5. Comparison of voltage levels before and after optimization under heavy loaded condition for IEEE30 bus system.    
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is presented. As the 30th bus of the IEEE-30 bus system is found to be the weakest bus, real power at bus number 
30 is considered as load parameter in continuation power flow. Under various loading conditions the PV curve is 
obtained and the comparison of the PV curve before and after optimization is done.  

Under Light loaded condition the curve is as shown in Figure 6 and the load ability margin has increased 
from a value of 0.508603 (p.u) to 0.569762 (p.u). 

Under normal loaded condition the curves are Superimposed for cases before and after optimization and are 
as shown in Figure 7. The loadability margin has increased from a value of 0.481380 (p.u) to 0.563519 (p.u). 

Under heavy loaded condition the curves are as shown in Figure 8. The load ability margin has increased 
from a value of 0.449522 (p.u) to 0.536189 (p.u). 

A comparasion of loadability margin for three loading conditions before and after optimization using GRADE 
algorithm is furnished in Table 9. 

 

 
Figure 6. Comparison of PV curve before and after optimization during light loaded condition for IEEE30 bus system.       

 

 
Figure 7. Comparison of PV curve before and after optimization during normal loaded condition for IEEE30 bus system.     

 

 
Figure 8. Comparison of PV curve before and after optimization during heavily loaded condition for IEEE30 bus system.     
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Table 9. Comparison of loadability margin under three loading conditions for IEEE30 bus system.                         

Sl. No. Loading conditions 
Loadability margin(p.u) 

Before optimisation After optimisation 

1 Light loaded 0.508603 0.569762 

2 Normal loaded 0.481380 0.563519 

3 Heavy loaded 0.449522 0.536189 

 
From Table 9, it can be observed that Loadability Margin has increased considerably when controllers are set 

as per the values obtained using GRADE algorithm. 

5.2. IEEE-57 Bus System 
The effectiveness of GRADE algorithm is minimizing the real power losses, improving the voltage profile and 
enhancing the loadability limit is tested using second test system, viz, IEEE-57 Bus system. The IEEE 57-bus 
systems [26] consists of 7 generators, 4 transformers, and 80 branches. The reactive power support is provided 
at the buses 18, 25 and 53 using capacitor bank. The line diagram of IEEE-57 bus test system is shown in Fig-
ure 9. The line data and bus data are available in [26]. 

The reactive power generation limits for the IEEE 57-bus system are listed in Table 10 and The voltage and 
tap settings limit is shown in Table 11. 

Different loading conditions are considered for multi objective optimization. The normal loaded condition has 
a load of 12.5080 p.u and two other loading conditions of which one is light loaded and the other heavy loaded 
when compared to that of the normal loaded condition is considered. In light loaded condition the total load is 
reduced by 50% of the normal load and in heavy loaded condition the total load is increased by 50% of the base 
case as in test system1. The GRADE algorithm was tested for the multi objective optimization problem using 
MATLAB 7 programming and is run for 30 trials each for different loading conditions in INTEL i5 processor.  

Under light loaded condition the load is 6.2540 p.u and the base case loss is obtained as 0.243750 p.u. Under 
normal loaded condition the load is 12.5080 p.u and the base case loss is obtained as 0.278638 p.u. Under heavy 
loaded condition the load is 18.7620 p.u and the base case loss is obtained as 1.581204 p.u.  

To establish the effectiveness of GRADE algorithm, multi objective optimization for the test system is per-
formed using firefly and particle swarm optimization techniques. Fitness value and real power loss obtained us-
ing the above three techniques are compared and tabulated in Table 12 and Table 13 respectively. 

From Table 12 and Table 13, it can be observed that GRADE technique is yielding better results compared to 
result obtained using firefly and particle swarm optimization techniques. The optimal values of the control va-
riables such as generator voltage magnitudes, reactive power rating of capacitor banks and transformer tap set-
tings for the three loading conditions obtained using GRADE algorithm technique is presented in Table 14. 

Control Variable are set as per the values obtained by solving multi objective optimization problem using 
GRADE algorithm and from Table 14, it can be observed that all controllers are set within the given specified 
limits. The 31st bus of IEEE-57 bus system is found to be the weakest bus. Hence voltage at 31st bus is observed 
before and after optimization under the three loading conditions to check the effectiveness of GRADE Algo-
rithm. The results are presented in Figures 10-12 respectively. 

From Figures 10-12 it is understood that voltage profile at bus no 31 improved considerably when controllers 
are turned as per the values obtained using GRADE Algorithm. 

The result of continuation power flow analysis before and after optimization for different loading conditions 
is presented. Real power at bus number 31st is considered as the bifurcation parameter for continuation power 
flow. PV curve is plotted for the three loading conditions, as in the previous test case.  

Under Light loaded condition, the super imposed PV curves before and after optimization are shown in Fig-
ure 13. The loadability margin has increased from a value of 0.284611 (p.u) to 0.295366 p.u. 

Under normal loaded condition the PV curves are obtained before and after optimization and it is presented in 
Figure 14. It can be seen from Figure 14 that the load ability margin has increased from a value of 0.232494 
(p.u) to 0.324625 (p.u). 
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Table 10. Limits for reactive power generation for IEEE 57 Bus system.                                             

Bus No 1 2 3 6 8 9 12 

( )mingQ MVAR  0 −40 −40 −40 −10 −6 −6 

( )maxgQ MVAR  10 50 50 40 40 24 24 

 
Table 11. Limits for voltage and tap setting (in p.u.) for IEEE 57 Bus system.                                         

max
GV  min

GV  max
loadV  min

loadV  max
kT  min

kT  

1.1 0.9 1.05 0.95 1.05 0.95 

 
Table 12. Comparison of fitness value for IEEE-57 bus system.                                                    

Parameter Lightly loaded condition Normal loaded condition Heavily loaded condition 

Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE 

Fitness Value 0.42732 0.2801 0.2797 1.093 0.3362 0.3359 4.4924 2.0835 2.0819 

 
Table 13. Comparison of real power loss for IEEE-57 bus system.                                                   

Loading Condition Lightly loaded condition Normal loaded condition Heavily loaded condition 

Optimization Technique Firefly PSO GRADE Firefly PSO GRADE Firefly PSO GRADE 

Ploss(p.u) 0.19762 0.189052 0.185047 0.27863 0.249934 0.243697 1.30134 1.2899 1.284536 

 
Table 14. Optimal values of the control variables in p.u. obtained using GRADE algorithm for IEEE-57 bus system.          

Control  
variables 

Lightly loaded 
condition 

Normal loaded 
condition 

Heavily loaded 
condition 

Control  
variables 

Lightly loaded 
condition 

Normal loaded 
condition 

Heavily loaded 
condition 

V1 1.08623 1.1 1.1 T7 1.04543 0.95 0.989527 

V2 1.09163 1.1 1.1 T8 0.988768 0.95 0.95 

V3 1.09716 1.1 1.1 T9 0.95 1.05 0.950728 

V6 1.1 1.1 1.1 T10 1.02535 0.95 0.95 

V8 1.1 1.1 1.1 T11 0.968509 0.96518 0.95 

V9 1.07875 1.1 1.1 T12 0.981064 0.95 1.01125 

V12 1.07661 1.1 1.1 T13 0.964782 1.05 0.995869 

QC18 −2.86067 20 20 T14 1.00633 0.95 0.990177 

QC25 −0.455466 20 20 T15 0.989047 0.95 1.05 

Qc53 0.204621 13.1967 20 Qg1 2.79599 0 3.61023 

T1 1.04844 0.95 0.95 Qg2 −17.3942 −40 50 

T2 1.04991 0.95016 0.95 Qg3 50 −40 15.4129 

T3 0.96976 0.95 0.95 Qg6 20.2413 −18.1918 −28.3228 

T4 0.995547 1.05 0.955142 Qg8 34.9479 −10 20.2949 

T5 0.973679 0.95 1.00837 Qg9 14.3681 24 −6 

T6 0.95073 0.95 0.95 Qg12 6.1866 24 −6 
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Figure 9. Single line diagram of IEEE 57 bus system.                                                           

 

 
Figure 10. Comparison of voltage levels before and after optimization for light loaded condition for IEEE-57 bus system.     
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Figure 11. comparison of voltage levels before and after optimization under normal loaded condition for IEEE-57 bus sys-
tem.                                                                                                    

 

 
Figure 12. Comparison of voltage levels before and after optimization under heavily loaded condition for IEEE-57 bus sys-
tem.                                                                                                      

 

 
Figure 13. Comparison of PV curve before and after optimization during light loaded condition for IEEE-57 bus system.      
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Under heavy loaded condition the total load is increased by 50% of normal load in all load buses. The PV 
curves are obtained before and after optimization and presented in Figure 15. The loadability margin has in-
creased from a value of 0.449522 (p.u) to 0.536189 (p.u). 

A comparasion of loadability margin under three loading conditions before and after optimization obtained 
using GRADE algorithm is furnished in Table 15 for the second test system. 

From Table 15, it is corroborated, once again that load ability margin gets enhanced when controller variables 
are set using the optimized solution from GRADE algorithm based approach. A Comparison of convergence 
time incurred for the two test systems under three loading conditions using three techniques, viz, firefly, Particle 
swarm optimization and GRADE is furnished in Table 16. 

From Table 16, it can be observed that GRADE Algorithm converges quickly compared to firefly and Par-
ticle swarm optimization Techniques in all the three loading conditions. 

 

 
Figure 14. Comparison of PV curve before and after optimization during normal loaded condition for IEEE-57 bus system.    

 

 
Figure 15. Comparison of PV curve before and after optimization during Heavily loaded condition for IEEE-57 bus system.   

 
Table 15. Comparison of loadability margin under three loading conditions for IEEE-57 bus system.                        

Sl. No. Loading conditions 
Loadability margin(p.u) 

Before optimisation After optimisation 

1 Light loaded 0.284611 0.295366 

2 Normal loaded 0.232494 0.324625 

3 Heavy loaded 0.449522 0.536189 
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Table 16. Comparison of Convergence time for the two test systems under three loading condition for 30 trial.                 

IEEE 30 Bus system IEEE 57 Bus system 

Firefly PSO GRADE Firefly PSO GRADE 

L N H L N H L N H L N H L N H L N H 

10 8 15 12 7 13 5 4 8 19 15 25 21 11 23 15 8 16 

L—Light loaded condition; N—Normal loaded Condition; H—Heavy loaded condition. 

6. Conclusion 
A GRADE algorithm based approach is presented along with PV analysis to solve multi objective optimization 
problem of minimizing real power losses and improving the voltage profile and hence enchancing the Perfor-
mance of power systems. Real and Reactive power losses are considered as equality constraints. Inequality con-
straints comprised of generator bus voltages, transformer tap settings, reactive power ratings at the capacitor 
banks and reactive power generation at generator buses. The GRADE Algorithm based optimization approach is 
developed using M coding in MATLAB plat form. To illustrate the effectiveness of the GRADE Algorithm 
based approach, studies are performed in two test systems, viz, IEEE 30 bus system and IEEE 57-bus system for 
three loading conditions. Results obtained using GRADE Algorithm are compared with the results obtained us-
ing firefly algorithm and particle swarm optimization technique. In all the three loading conditions tested, GRADE 
Algorithm based optimization approach yielded reduced real power loss and improved voltage profile. It is also 
observed through PV curve using continuation power flow that loadability margin increased considerably when 
control variable values are tuned using GRADE Algorithm based approach. Hence it is concluded that, the 
GRADE algorithm performs better than the firefly and particle swarm optimization techniques, in terms of con-
vergence time, reduction in real power losses, improving voltage profile and enchancing the load ability margin 
of power systems. 
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