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Abstract 
This paper describes a microprogrammed architecture for an embedded coprocessor that is able 
to control IEEE 1149.1 to IEEE 1149.7 test infrastructures, and explains how to expand the sup-
ported test command set. The coprocessor uses a fast simplex link (FSL) channel to interface a 
32-bit MicroBlaze CPU, but it can work with any microprocessor core that accepts this simple 
FIFO-based interface method. The implementation cost (logic resource usage for a Xilinx Spartan- 
6 FPGA) and the performance data (operating frequency) are presented for a test command set 
comprising two parts: 1) the full IEEE 1149.1 structural test operations; 2) a subset of IEEE 1149.7 
operations selected to illustrate the implementation of advanced scan formats. 
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1. Introduction 
After nearly 25 years of industry acceptance, starting immediately after its approval as a standard in 1990 [1], 
the IEEE 1149.1 Boundary-Scan (BS) Architecture and Test Access Port is now being used in a range of appli-
cation areas that largely exceeds its original scope, which is restricted to structural testing of digital printed cir-
cuit boards. Newer application domains where BS is being used, such as in-circuit debugging, require more effi-
cient and powerful data transfer mechanisms, and lead many designers to implement workarounds that compro-
mised full 1149.1-compliance. In recognition of the need for a more powerful test standard, compatible with all 
the investment made in 1149.1, the IEEE 1149.7 Standard for Reduced-Pin and Enhanced-Functionality Test 
Access Port and Boundary-Scan Architecture was approved in 2009 [2], and offered a far more powerful solu-
tion to test and applications debug. The development of solutions that demonstrate its ability to coexist with 
1149.1 applications, while at the same time supporting the more powerful scan transfer formats required for de-
bugging multi-core architectures, represents a fundamental step to unlock the power of the new standard and to 
promote its wider acceptance [3]-[5]. 
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This paper presents a microprogrammed architecture for an embedded coprocessor dedicated to IEEE 1149.1/ 
1149.7 test operations. Its current instruction set supports all IEEE 1149.1 test operations (state transition, shift 
operations, shift and compare), and an additional subset of IEEE1149.7 test operations designed as proof of 
concept for the proposed architecture (optimized scan format Oscan1, zero-bit DR scan and escape sequences). 
The following section briefly describes the evolution from IEEE 1149.1 to 1149.7. Section 3 describes the mi-
cro-programmed architecture of the proposed embedded test coprocessor, and Section 4 explains the test com-
mand design process. Section 5 presents implementation cost and performance data. The main conclusions of 
this work are presented in the last section. 

2. IEEE 1149.x Standards and Test Command Set 
Several IEEE 1149.x standards and proposed standards were developed by the test community since the mid- 
1980s, when the Joint Test Action Group (JTAG) initiated the development of the test technology that became 
known as the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. The approval of IEEE 
1149.1 in 1990 marked the beginning of a series of IEEE 1149.x test standards that include successful and un-
successful attempts to provide industry-accepted production test technologies [6]. The IEEE 1149.5 Standard for 
Module Test and Maintenance Bus (MTM-Bus) Protocol [7], and the IEEE 1149.4 Standard for a Mixed-Signal 
Test Bus [8], are two examples of proposals that met little or no industry acceptance, in spite of having become 
recognized IEEE standards. The IEEE 1149.6 Standard for Boundary-Scan Testing of Advanced Digital Net-
works [9] deserved better attention, mostly because it overcomes a specific limitation of boundary-scan—the 
testing of AC-coupled differential interconnections. Far more successful that all its 1149.x successors, the IEEE 
1149.1 boundary-scan test technology is now being used to address application areas that go far beyond its orig-
inal development scope. The use of the standard 4-pin test access port (TAP) to control in-circuit debugging is 
particularly worth mentioning, both because it gained wide acceptance since the early years of boundary-scan, 
and also because it has led to the creation of TAPs whose operation includes behavior that deviates from the 
behavior specified by IEEE Std 1149.1-2001 [2]. 

The IEEE 1149.7 standard, approved in 2009, offers a framework that ensures interoperability between 
1149.1 and 1149.7 components, while enabling enhanced test and debug features, and a reduced 2-pin TAP 
(where mode select, data in and data out information are multiplexed in a single TMSC pin). Besides supporting 
several types of advanced scan formats (MScan, OScan, SScan), which enable a variety of tradeoffs between 
capability and performance, the IEEE 1149.7 test architecture also supports a power-down mode to reduce con-
sumption when the test and debug logic is not in use. The original BS architecture, illustrated in Figure 1, re-
mains at the core of the new IEEE 1149.7 standard, and helps us to understand why most IEEE 1149.x test oper-
ations can be implemented with a reduced set of basic test commands, that are able to control state transition and 
to carry out shift, and shift and compare operations.  

Table 1 presents test command set that is supported by our embedded test coprocessor. Besides covering all 
the basic 1149.1 requirements, it includes four additional commands to illustrate 1149.7 test operations. This set 
offers close equivalents to the main Serial Vector Format (SVF) [10] commands, which are accepted by most 
test equipment manufacturers. The following section discusses the alternatives available to implement its control 
path, and offers a detailed description of the micro-programmed architecture that was chosen for this purpose. 

3. A Micro-Programmed Architecture for an IEEE 1449.7 Coprocessor 
The first step for implementing a controller architecture supporting the set of commands referred in the previous 
section consists of building a formal representation of their functionality, bringing into evidence the corres-
ponding control and data flow operations. The data flow operations will determine the blocks required in the co-
processor data path, which will be implemented with regular sequential circuits. There is a higher degree of 
freedom in what concerns the implementation of the control path, where a hardwired or a microprogrammed ar-
chitecture can be used to implement the corresponding control flow operations. Notice also that the formal re-
presentation of each test command will be influenced by the decision of implementing it in Moore or Mealy 
form. A Moore machine will only update its outputs (the control signals to the data path) upon the rising edge of 
the system clock, while Mealy machines can update their outputs at any moment. To illustrate the influence of 
this choice, Figure 2(a) shows an excerpt of an ASMD chart that illustrates a Moore specification for the SHF1 
test command. 
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Figure 1. Original IEEE 1149.1 boundary-scan test infrastructure for structural fault detection.               

 
Table 1. IEEE 1149.1/1149.7 test command set supported by the proposed embedded test coprocessor.                    

Test command Description 

RESET Takes the boundary-scan logic to Test-Logic-Reset (equivalent to SVF “STATE RESET”) 

TMS0, TMS1 Set TMS to 0/1 and generate one TCK clock pulse (enabling the implementation of any SVF “STATE”  
command) 

MTCK N Sets TMS to 0 and generates N TCK pulses (enables the multiple TCK tests carried out by SVF “RUNTEST”) 

SHF1 N X Shifts an N-bit bitstream (X) into the [instruction | selected data] register(s) (data bits shifted out are ignored) 

SHFCP1 N X, Y, Z 
Shifts an N-bit bitstream (X) into the [instruction | selected data] register(s), and compares the output bitstream 
with its expected response (Y), in all positions indicated by the mask bitstream (Z) (enables the scan &  
compare “SDR” and “SIR” SVF commands) 

ZBS N Issues N zero bit scan sequences by counting N TMS edge counts (used to generate IEEE 1149.7 commands 
and to set the control level) 

ESC N Issues N escape sequences (used to select, deselect, reset, and set up other IEEE 1149.7 specific operations) 

SHF7O1 N X Equivalent to SHF1 above, but using the 1149.7 advanced scan format OScan1 

SHFCP7O1 N X, Y, Z Equivalent to SHFCP1 above, but using the 1149.7 advanced scan format OScan1 

 
States 2 and 3 in Figure 2(a) include conditional output boxes used to define Mealy outputs that depend on 

the condition indicated in the preceding decision box. States 2, 4 and 5 comprise non-empty state boxes used to 
define Moore outputs, which will be asserted while the controller remains in the corresponding state. The im-
plementation of the same functional behavior in the form of a Moore machine will increase the number of states, 
since each conditional output box will have to be converted into an equivalent state box, generating a corres-
ponding extra state. The formal representation for the same ASMD chart excerpt, now in the form of a Moore 
machine, is illustrated in Figure 2(b). 

The conversion into a Moore machine increased the number of states by a factor of 2.25 (from 4 to 9). How-
ever, this higher number of states does not imply a proportional degradation of cost or performance, be it in the 
number of logic gates or microprogram memory positions (spatial resources), or in the number of clock cycles 
(speed). A simple benchmarking of the execution speed can take place by considering the time required to move 
from state 2 to state 4, assuming that: 1) conditions B and C hold true, and 2) condition D holds false for five 
times. 

The corresponding state transition for the Mealy representation of Figure 2(a) will be 2-3-5-3-5-3-5-3-5-3-5- 
3-4, requiring a total of 12 clock cycles. Considering the same initial and final states, and the same assumptions, 
the equivalent transition for the Moore representation will in this case go through states 2-3-8-5-9-5-9-5-9-5-9-  
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(a)                                                       (b) 

Figure 2. Partial representation of the ASMD chart for SHF1. (a) Mealy representation. (b) Moore representation.            
 
5-9-5-6-7, and requires a total of 15 clock cycles (that is to say, 1.25 times more than the corresponding Mealy 
representation). 

In order to compare the corresponding implementations in terms of logic resources/FPGA floorspace, a choice 
will have to be made between a hardwired or a microprogrammed control path architecture. The following rea-
sons explain our choice of a microprogrammed coprocessor architecture: 
● A hardwired controller needs to be completely redesigned when a new test command is required, and the de-

signer will have to code each new ASMD chart in the chosen hardware description language (e.g. VHDL, 
Verilog).  

● Even if major differences are not to be expected, a hardwired architecture will correspond to a new sum-of- 
products (or a similar canonical form) structure for each set of test commands, meaning that there will be 
variations in the critical path and maximum propagation delay (on the contrary, there will be no variation in 
the control elements of a microprogrammed architecture, since any additional commands correspond solely 
to further positions added to the microprogram memory). 

● Assuming that the “micro-operation set” is able to cover the primitive constructs required to implement new 
test commands, the designer does not have to write VHDL/Verilog code whenever a new command is added, 
but simply to translate the respective ASMD chart into the corresponding microprogram memory bank posi-
tions. 

The basic control path architecture for a microprogrammed implementation is shown in Figure 3 (adapted 
from [11]). In this case, the most significant address bits of the microprogram memory are determined by the 
test command opcode (which is loaded into the Bank_reg latch), and the ASMD state encoding defines the least 
significant address bits. 

The architecture illustrated in Figure 3 is best in terms of simplicity, and enables a very straightforward im-
plementation of any test command—each state in the ASMD chart will correspond to one word in the micro-
program memory, and the operation flow can simply be specified as a sequence of CONTINUE, JUMP or  
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Figure 3. Basic microprogrammed architecture for a Moore control path.                                            
 
BRANCH IF microinstructions, directing the state transition from beginning to end. However, it can only im-
plement Moore machines, since each ASMD state selects a single microprogram memory position. Since the 
ASMD blocks frequently contain conditional output boxes, or more than one decision box, this means that the 
simplicity of the architecture shown in Figure 3 comes at the price of preprocessing the ASMD chart, in order to 
ensure a pure Moore behavior. The total number of states increases, and so does the number of microprogram 
memory positions, as well as the number of system clock cycles needed to complete the execution of the cor-
responding test command (one clock cycle per ASMD chart state).  

The general rule for preprocessing the ASMD charts consists of eliminating all conditional output boxes 
(which will become unconditional outputs specified in a state of their own), and splitting the state when more 
than one decision box is present. In addition, and since the most significant bits come directly from the test 
command opcode, the number of microprogram memory positions used to implement each command is fixed. 
This represents a waste of FPGA floorspace, since the most complex command, with the longest ASMD chart 
representation, will dictate the number of positions that will be used for all other commands. The control path 
architecture illustrated in Figure 3 is able to implement any Moore ASMD chart, and would take 9 memory po-
sitions to implement the excerpt represented in Figure 2(b). If this was the highest number of states in any 
command, we would need 4 least significant bits, meaning that the total storage requirements would be given by 
24*O = 16*O, where O is the number of opcodes comprised in the test command set. 

If we want to enable a Mealy implementation, the least significant address bits will have to be driven from 
data path conditions. This solution enables any number of decision boxes per state, provided that the corres-
ponding conditions are used to drive the least significant address bits of the microprogram memory. The main 
drawback is that the number of microprogram memory positions will be equal to S*2D, where S is the number of 
states, and D is the maximum number of decision boxes existing in a single state (16 memory positions for the 
example presented earlier). For a test command set with O opcodes, we would have a total microprogram mem-
ory storage requirement given by S*2D*O. While this modification means that we will now have two (or a pow-
er of two) microprogram memory positions for each ASMD chart state, the end result is not necessarily an ex-
plosion of the microprogram memory space, since state decomposition is restricted to the need of preventing 
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multiple decision boxes per ASMD state (a situation that is rather seldom). 
The non-limited simple Mealy architecture enables the fastest implementation. On the other hand, it is the 

most expensive in terms of microprogram memory storage. The intermediate simple Mealy solution limited to 
one decision box per state is likewise an intermediate solution in terms of speed vs. microprogram memory sto-
rage, while the Moore representation is cheapest in terms of microprogram memory storage. It is also the slow-
est, although the number of clock cycles is not proportional to the number of states (instead it is dictated by the 
path through the ASMD chart). Table 2 summarizes the pros and cons of three alternatives: Moore (no condi-
tional outputs allowed, maximum state decomposition), Mealy 1 (one-level Mealy, enabling one decision box and 
its corresponding conditional output boxes per state), and Mealy 2 (two-level Mealy, enabling up to two decision 
boxes and four conditional output boxes). Since preprocessing takes place only once, and the difference in speed 
is small (cf. the simple benchmarking of execution speed that was presented in Figure 2(a) and Figure 2(b)), 
we adopted the Moore architecture that is represented in Figure 4. Its main advantage over the basic Mealy and 
basic Moore (Figure 3) architectures consists of eliminating the waste of memory positions that takes place in 
those two solutions, since the microcode storage requirements are in this case limited to the number of states in 
the ASMD chart (instead of the being fixed, and dictated by the ASMD chart with the highest number of states). 

The specific nature of scan test infrastructures dictates that the number of required primitive constructs (mi-
cro-operations) is very small. The data path architecture will therefore have a small number of elements, con-
sisting only of counters, latches and serializers. The conditions associated with the operation of these data path 
elements are easy to typify, and are limited to detecting if the latches and counters reached one or zero. The 
proposed test coprocessor architecture may be represented as shown in Figure 5. 
 
Table 2. Pros and cons of Moore, Mealy-1, and Mealy-2 microprogrammed control path implementations.                  

Topology Pros Cons Comments 

Moore Maximum simplicity Lowest speed Preprocessing required 

Mealy 1 Good speed upgrade Higher number of memory positions Minimum preprocessing 

Mealy 2 Marginal speed upgrade 
over Mealy 1 

Highest number of memory positions, most 
of which will not be used 

No preprocessing required (if no. of 
decision boxes per state is ≤2) 

 

 
Figure 4. Microprogrammed architecture adopted for the proposed embedded test coprocessor.                          
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Figure 5. The proposed test coprocessor architecture and interface method.                                          

4. Test Command Design 
This section presents the micro-operation set that is supported by the microprogrammed control path, and ex-
plains the sequence of steps that will enable any designer to add further commands, in order to expand the ap-
plication domain of the proposed test coprocessor (e.g. further IEEE 1149.7 operations). The microprogrammed 
control path architecture illustrated in Figure 4 is able to implement the control flow associated to any ASMD 
chart that is specified in the form of a Moore machine. Each state in the ASMD chart corresponds to one posi-
tion in the microprogram memory, which comprises the three fields shown in Figure 4 and Figure 5:  
● The leftmost bits represent the new address, to be used whenever the next state encoding is different from 

the current state encoding plus 1 (in which case we’ll jump into a new address, instead of incrementing the 
current address). The number of bits in this field is dictated by the maximum number of states in the ASMD 
chart of a single test command.  

● The middle field contains the micro-operation that represents the required control flow. The implementation 
of any ASMD chart can be carried out using three basic types of micro-operations: 1) CONTINUE (i.e. in-
crement the current microprogram memory address); 2) JUMP TO ADDRESS (i.e. load the “new address” 
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that is represented in the leftmost bits of the current microprogram memory position); and 3) BRANCH IF 
CONDITION TO ADDRESS (jumps to the indicated address if the condition is true, continues to the next 
address otherwise). This third type actually generates a variety of different micro-operations, i.e. BRANCH IF 
CONDITION_A TO ADDRESS is formally different from BRANCH IF/CONDITION_A TO ADDRESS 
(branch if not_condition). Each new test command to be supported will most likely require additional 
BRANCH IF micro-operations, to cope with the specific conditions associated with its execution. The num-
ber of bits in this field is determined by 2 (CONTINUE, JUMP TO ADDRESS) plus the total number of 
BRANCH IF micro-operations required. 

● The rightmost field comprises all the control bits that determine the data flow operations indicated in the 
ASMD chart. In a horizontal microprogrammed architecture, such as the one that was adopted in this work, 
the number of bits in this field is equal to the total number of control bits required by the data path elements, 
plus all additional bits that are directly connected to test access port pins (e.g. board TMS and board TCK). 

In order to expand the test command set supported by the coprocessor, the designer shall proceed as follows: 
1) Draw the ASMD chart specifying the operation of the required test command. 
2) If the ASMD chart contains conditional output boxes (Mealy machine), split those states so as to convert 

all conditional output boxes into state boxes (convert from Mealy to Moore). 
3) Once the Moore ASMD chart is ready, fill in the microprogram memory template with the micro-opera- 

tions and control bit patterns corresponding to each ASMD state. 
4) Update the content of the microprogram memory. 
As an illustrative example, Figure 6(a) shows an initial ASMD chart that describes the operation of a MTCK 

N test command. This command is needed to carry out various types of built-in self-test functions (e.g. all those 
that rely on pseudo-random pattern generation and parallel signature analysis modes), and generates N test clock 
(b_TCK) pulses, while keeping b_TMS at “0”. MTCK starts by loading the number of required b_TCK pulses 
(present in the FSL_S_Data bus) into one of the data path counters (cbits_cntr in this case), which will be de-
cremented for each b_TCK pulse. As represented in Figure 6(a), state 1 requires two microprogram memory 
positions, since the decrement control signal for cbits_cntr may, or may not, be active in this state, according to 
the condition shown. This example also shows that splitting a state, in order to ensure that a conditional output 
box is converted into a corresponding state box, does not necessarily increase the number of states in the ASMD 
chart. Figure 6(b) represents the equivalent Moore ASMD chart, which contains the same number of states. 
Each state in the chart represented in Figure 6(b) corresponds to a single microprogram memory position. We 
are now ready to move into the third test command design step, where the microprogram memory template is 
filled to represent all control and data flow operations associated to the execution of MTCK. Table 3 shows the 
content of the four microprogram memory positions that are needed to specify the execution of this test com-
mand set. 

As this example shows, expanding the test command set simply consists of updating the content of the micro-
program memory, releasing the designer from the need to understand and modify the VHDL code that describes 
the control path architecture. 

5. Implementation Cost and Performance 
To evaluate the overall performance of the proposed embedded test coprocessor, Table 4 and Table 5 show the 
data that were collected for each test command separately: 
● The columns showing data for each test command (the four rightmost columns) correspond to the imple-

mentation of a single test command, without the FSL interface. 
● Since the FSL interface is predesigned and independent of the proposed microprogrammed architecture, all 

the tables include two columns showing the implementation data for all test commands when no FSL inter-
face is present, and when a single 1-word 32-bit FIFO interface is added from the MicroBlaze to the test co-
processor. 

Table 4 shows the comparison of the logic resources needed by various IEEE 1149.1 test commands with a 
4-pin TAP test infrastructure. TMS1 and TMS0 belong to the same group of results, and the same happens with 
MTCK and RESET, so each second command was omitted in all the tables to improve readability. It is impor-
tant to notice that the usage of logic resources imposed by the most complex test command (SHFCP1) dictates 
the cost of the full implementation—the sole implementation of SHFCP1 requires practically the same resources 
as the full implementation of all the IEEE 1149.1 test commands that are presented in Table 1. The number of  
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(a)                                                        (b) 

Figure 6. ASMD chart for MTCK. (a) Mealy representation. (b) Moore representation.                                 
 
Table 3. Content of the microprogram memory for the MTCK test command.                                        

ASMD 
state 

µprogram ROM  µprogram ROM: control outputs 

New_Addr µoperation iL iD rL cL cD cM sL sS bS bK 

0 X CONT 0 0 0 1 0 0 0 0 0 0 

1 Offset to pos. 3 BIF/A 0 0 0 0 0 0 0 0 0 0 

2 Offset to END pos. JUMP 0 0 0 0 0 0 0 0 0 1 

3 Offset to pos. 1 JUMP 0 0 0 0 1 0 0 0 0 1 

(iL: iwordL; iD: iwordD; rL: bitsL; cL: cbitsL; cD: cbitsD; cM: cbitsM; sL: serL; sS: serS; bS: b_TMS; bK: b_TCK). 
 
Table 4. Logic resources usage by the IEEE 1149.1 test commands.                                                

Parameter All (no FSL) All (one FSL) Only TMS1 Only MTCK Only SHF1 Only SHFCP1 

No. of slice registers 388 
(1%) 

374 
(2%) 

88 
- 

120 
- 

274 
- 

338 
- 

No. of slice LUTs 383 
(4%) 

424 
(4%) 

125 
- 

207 
- 

307 
- 

380 
- 

No. of memory positions 52 52 4 7 16 23 

 
Table 5. Logic resources usage by the IEEE 1149.7 test commands.                                                

Parameter All (no FSL) All (one FSL) Only ESC Only ZBS Only SHF7O1 Only SHFCP7O1 

No. of slice registers 160 
(1%) 

377 
(2%) 

75 
- 

75 
- 

144 
- 

160 
- 

No. of slice LUTs 232 
(4%) 

461 
(5%) 

179 
- 

146 
- 

178 
- 

224 
- 

No. of memory positions 98 98 9 23 32 40 
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microprogram memory positions when the full set of commands is implemented, can be calculated by adding the 
equivalent value for each command individually, but taking into account that the first two positions are common 
to all the test commands. 

The same comparison has been done for the IEEE 1149.7 test commands, and the summary of the collected 
data is shown in Table 5. This table shows that the usage of logic resources imposed by the most complex test 
command (SHFCP7O1) again dictates the cost of the full implementation—the sole implementation of 
SHFCP7O1 requires almost the same resources as the full implementation of all the IEEE 1149.7 test commands 
that are presented in Table 1. The number of microprogram memory positions required when implementing the 
full set of test commands can be calculated as indicated previously for the 1149.1 commands. 

With respect to timing performance, we again notice that the most complex command is the main contributor 
to determine the minimum period/maximum frequency of the embedded test coprocessor operation. Table 6 
shows the timing performance of the implemented IEEE 1149.1 test commands with a 4-pin TAP. The full im-
plementation, in the case of “All (no FSL)”, is circa 30% slower than what would correspond to SHFCP1 alone. 
The minimum period is very close to the maximum combinational path delay, in the case of the sole implemen-
tation of the test commands TMS1, TMS0, MTCK, or RESET, but it is less so as we move into the more com-
plex test commands (SHF1 and SHFCP1). 

Table 7 shows the timing performance of the implemented IEEE 1149.7 test commands with a 2-pin TAP. 
One can notice that, as we move to the right, the minimum period/maximum frequency is increasing. This shows 
that the most complex test command (SHFTCP7O1) is the major contributor to determine the minimum period/ 
maximum frequency of the operation of the proposed embedded test coprocessor. The data presented in Table 7 
shows that the proposed embedded test coprocessor is able to run at TCK frequencies slightly above 70% of the 
FPGA system clock (which in the case of the Nexys 3™ board runs at 100 MHz). 

6. Conclusions 
Several IEEE 1149.1 test controller solutions have been developed over the years [12]-[17], but little attention 
has been given to controller architectures proposed as embedded coprocessors. The work described in this paper 
offers two main contributions with this respect, by proposing: 

1) An embedded test coprocessor that has the capability to test any IEEE 1149.x-compatible system. This co-
processor supports a wide range of testing scenarios for embedded systems based on single or multi-core 32-bit 
MicroBlaze CPUs, from built-in self-test to online fault detection and diagnosis.  

2) A microprogrammed control path architecture for the test coprocessor, enabling a straightforward expan-
sion of the test command set to cope with additional application domains, e.g. those made possible by IEEE 
1149.7. The simplicity of the selected architecture enables a relatively fast execution of the test commands, 
reaching above 70% of the Nexys 3™ board system clock (100 MHz). 
 
Table 6. Timing performance for the IEEE 1149.1 test commands.                                                 

Parameter All (no FSL) All (one FSL) Only TMS1 Only MTCK Only SHF1 Only SHFCP1 

Min. period  
- 

Max. freq. 

12.276 ns 
- 

81.457 MHz 

12.315 ns  
- 

81.199 MHz 

6.053 ns 
- 

165.211 MHz 

6.249 ns 
- 

160.037 MHz 

7.722 ns 
- 

128.662 MHz 

11.246 ns 
- 

88.917 MHz 

Max. comb.  
path delay 5.157 ns 8.102 ns 5.157 ns 5.385 ns 5.385 ns 5.519 ns 

 
Table 7. Timing performance for the IEEE 1149.7 test commands.                                                 

Parameter All (no FSL) All (one FSL) Only ESC Only ZBS Only SHF7O1 Only SHFCP7O1 

Min. period  
- 

Max. freq. 

12.657 ns 
- 

79.005 MHz 

13.655 ns 
- 

73.235 MHz 

7.756 ns  
- 

128.929 MHz 

8.302 ns 
- 

120.449 MHz 

11.469 ns  
- 

87.192 MHz 

12.249 ns 
- 

81.639 MHz 

Max. comb.  
path delay - 5.94 ns - - - - 
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An FSL interface is used to interact with the MicroBlaze for exchanging the command opcode, the arguments 
of the various functions, and the test result. The FSL is a very popular coprocessor interface method that uses a 
simple hardware protocol. It is supported by a flexible, yet dedicated instruction set to write to the output and 
read from the input port. The 32-bit wide FSL bus interface used offers a dedicated point-to-point data streaming 
interface. Its point-to-point nature and its minimum hardware requirement are the greatest advantages of this in-
terface method. Because the FSL channels are dedicated, no arbitration or bus mastering is required, ensuring an 
extremely fast interface with very low data latency. 

The proposed architecture has the capability to cope with emerging requirements of test and debug standards 
based on scan test infrastructures. The microprogrammed control path architecture made the embedded test co-
processor scalable, and the FSL interface enabled an optimized solution for IEEE 1149.x test infrastructures, 
where the most time-consuming functions were executed in hardware, and the remaining functions were imple-
mented by software at a higher abstraction level. 
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