
Circuits and Systems, 2012, 3, 1-9
http://dx.doi.org/10.4236/cs.2012.31001 Published Online January 2012 (http://www.SciRP.org/journal/cs)

System-on-Chip Design Using High-Level Synthesis Tools

Erdal Oruklu1*, Richard Hanley1, Semih Aslan2, Christophe Desmouliers1,
Fernando M. Vallina3, Jafar Saniie1

1Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, USA
2Ingram School of Engineering, Texas State University, San Marcos, USA

3Xilinx Inc., San Jose, USA
Email: *erdal@ece.iit.edu

Received August 13, 2011; revised November 20, 2011; accepted November 30, 2011

ABSTRACT

This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert
algorithms designed in C into hardware modules. This approach is a practical choice for developing complex applica-
tions. Nevertheless, certain hardware considerations are required when writing C applications for HLS tools. Hence, in
order to demonstrate the fundamental hardware design concepts, a case study is presented. Fast Fourier Transform (FFT)
implementation in ANSI C is examined in order to explore the important design issues such as concurrency, data recur-
rences and memory accesses that need to be resolved before generating the hardware using HLS tools. There are addi-
tional language constraints that need to be addressed including use of pointers, recursion and floating point types.

Keywords: System Level Design; High Level Synthesis; Field Programmable Gate Arrays; Fourier Transform

1. Introduction

In the past decade, there has been a substantial increase
in the level of hardware abstraction that High-Level
Synthesis (HLS) [1-5] tools offer, which has made de-
signing a complete System-on-Chip (SoC) much more
practical. By designing at the system level, it has become
possible for hardware engineers to avoid gate-level se-
mantics. HLS tools work by taking applications written
in a subset of ANSI C, and translating it into a Register
Transfer Level (RTL) module for Application-Specific
Integrated Circuit (ASIC) or Field Programmable Gate
Arrays (FPGAs) chip design. The design workflow re-
quires knowledge of both software to write C applica-
tions and hardware to parallelize tasks, resolve timing
and memory management issues. There has been signifi-
cant previous work that discusses how to teach RTL con-
cepts to students and design simple applications for SoCs
[6,7]. Nevertheless, the learning curve for software engi-
neers is relatively high since they need to use Hardware
Descriptive Languages (HDL) such as Verilog and VHDL.
By using HLS tools, software engineers can use their pro-
gramming skills along with hardware knowledge to create
complex embedded hardware/software co-design systems.

To demonstrate the critical hardware and software de-
sign issues, a Fast Fourier Transform (FFT) [8] case
study is used as a guideline. In order to generate hard-
ware modules satisfying predefined constraints such as

through-put and area, different modifications of the code
required by HLS tools are presented step by step.

Section 2 of this paper provides a brief background of
HLS tools, and the current pedagogical techniques. Sec-
tion 3 presents an introduction of the FFT algorithm
along with a software implementation. This software
based FFT is then deconstructed in Section 4, where a
fully synthesizable product is created. Section 5 analyzes
the different results that can be produced depending on
the constraints selected by the user such as speed, area,
throughput, and targeted system.

For this paper, all designs are targeted for the Xilinx
Virtex-5 FPGA platform [9] using the HLS tool called
PICO, provided by Synfora Inc [10] (currently known as
Synphony C Compiler by Synopsys [11]). However, the
different code modifications presented in this paper are
applicable to other HLS tools such as AutoESL [12]
which targets primarily Xilinx FPGAs with architecture
aware synthesis and Catapult C [13] which provides full-
chip high-level synthesis for both ASIC and FPGA de-
vices and automatic RTL verification.

2. High Level Synthesis Tools

This section outlines the important concepts that software
developers need to know before entering the field of HLS.
There is a special emphasis on how these concepts differ
from the contemporary software environment familiar to
the software engineers. Design of SoCs has historically *Corresponding author.

Copyright © 2012 SciRes. CS

E. ORUKLU ET AL. 2

been accomplished using Hardware Descriptive Lan-
guages such as VHDL or Verilog. Each expression in
HDL represents a group of gates that operate in parallel,
as opposed to machine instructions executed sequentially.
This concept of instruction level parallelism is one of the
first major hurdles when introducing hardware concepts.

Once an RTL module is designed, it can be compiled
and simulated. The simulation is done by creating a se-
ries of pre-defined inputs, known as a testbench, and re-
cording the outputs. If a module passes the simulation
then a low level implementation can be created. This low
level implementation then enters the verification process
to ensure that all timing dependencies are met. In prac-
tice, simulating and verifying an implementation can take
50% - 60% of the development time, increasing the time-
to-market (TTM) [14]. By automating the simulation and
verification process, it is possible to greatly reduce the
development time.

Integration of HLS tools into the FPGA or ASIC de-
sign flow, as shown in Figure 1, allows software design-
ers to build hardware modules and speed up the TTM
significantly. During the generation process of an RTL
module from a software implementation, simulation and
verification are done automatically by using a formal
proof provided during the initial steps. Subsequently, by
using synthesis tools, the RTL module is implemented
and timing verification is done. An independent evalua-
tion of HLS tools for Xilinx FPGAs has been done by
Berkeley Design Technology [15]. It shows that using
HLS tools with FPGAs can improve the performances of
an application by an order of magnitude compared to
DSPs. Moreover, this study shows that for a given appli-
cation, HSL tools will achieve similar results compared to
hand-written HDL code with a shorter development time.

HLS software based approach for simulation and veri-
fication is made possible by using SystemC, a language
developed by Synopsys, University of California Irvine,
Frontier Design and IMEC. SystemC is an extension of
C++ that provides additional libraries to design an em-
bedded system. The first version was released in 1999
and in 2005 it became IEEE standardized SystemC [16,
17] as the IEEE-1666-2005. These additional libraries
make it possible to specify the hardware and software
components in an embedded system using one unified
paradigm and to generate testbenches.

Figure 1. FPGA high level synthesis block diagram.

Focusing further on HLS, the design flow is shown in
Figure 2. Each module of a system is implemented using
high level languages such as C, C++, Java, or Matlab
[2,18], which can then be tested automatically with test-
benches provided by the user. After verification of the
complete system, the user can specify in the HLS tool
which modules will be converted into hardware accel-
erators in order to speed up the application. This is one of
the core elements of hardware/software co-design that
software developers need to understand. There are in-
herent restrictions in the HDLs that are mirrored in the
HLS tool. Therefore, the emphasis for teaching HDL to
software developers is on its constraints and how it af-
fects the HLS tools.

After generation of the hardware modules along with
testbenches, the system is verified and can be imple-
mented using synthesis tools.

This paper, as mentioned earlier, focuses on designing
a Fast Fourier Transform. The concept of HLS is pre-
sented by using PICO (Program-In Chip-Out) Extreme
from Synfora [10,19,20] to generate the RTL code of an
FFT. To be specific, PICO takes a C-based description of
an algorithm and generates: performance-driven device-
dependent synthesizable RTL code, testbench files, ap-
plication drivers, simulation scripts as well as SystemC
based Transaction Level Models (TLM) [3,17,18,21].
PICO design flow is shown in Figure 3. With integration

Figure 2. High level synthesis (HLS) design flow.

Copyright © 2012 SciRes. CS

E. ORUKLU ET AL.

Copyright © 2012 SciRes. CS

3

Figure 3. HLS (PICO) based design flow for hardware implementation.

of the PICO design tools to their FPGA flow, designers
can create complex hardware [20] sub-systems from se-
quential untimed C algorithms. It allows designers to
explore programmability, performance, power, area and
clock frequency. This is achieved by providing a com-
prehensive and robust verification and validation envi-
ronment. PICO is designed to explore different type of
parallelism and will choose the optimal one transparently.
Results in terms of throughput and area are given along
with detailed reports that will help the user for code op-
timization. When the synthesized performances are sat-
isfactory, RTL code is generated and can be implemented
in the targeted platform. Because the testing is done in C,
the verification time of the RTL module can be signifi-
cantly reduced [20].

3. Fast Fourier Transform

In most cases, the first step when using an HLS tool is to
create a reference implementation, which is used to ver-
ify the synthesized product. The reference code itself can
be compiled using any C compiler, and is purely soft-
ware based. This means that no new concepts have to be
taught, making the reference implementation a logical
starting point when using HLS.

When creating the reference code for FFT, there are
few issues that need to be addressed when using HLS
tools. The first issue is that arithmetic operations such as
division can significantly decrease the performance of
the design, and therefore should be avoided whenever
possible. Nevertheless, division by a power of two is
considered as a bit shift operation and hence can be used
at no cost. The second issue, and more fundamental issue,
is that pointers and recursion are not supported by the
current HLS tools due to the fact that those concepts are
purely software and can’t be applied to hardware designs.
Finally, HLS tools may not have the capability to synthe-
size software functions such as cosine and sine. As a re-

sult of these constraints, the reference code included in
this section does not use divisions, is completely iterative,
and has not pointer variables. However, before going into
the details of the implementation, the mathematical back-
ground of the FFT is presented.

3.1. FFT Algorithm

The Fourier transform takes a signal x in time t and trans-
forms it into a function X in frequency ω:

2 π() () d* j t X x t e t

 (1)

The transform can be computed using a Discrete Fou-
rier Transform (DFT).

1 2 π

0

nN j k
N

k n
n

X x e

 (2)

0, , 1k N . where
The direct realization of DFT algorithm requires O(N2)

computational time. To make this computation faster, an
entire class of Fast Fourier Transforms (FFT) were de-
veloped [8]. However, in this paper a radix-2 FFT deci-
mated in time is implemented. This algorithm divides the
original DFT into two DFTs with half the length (i.e.
decimation). The first step in decimation is shown below:

1 12π 2π2 22 2

2 2 1
0 0

N N
j j

m k m k
N

k m m
m m

X x e x e

1

N

 (3)

Then the algorithm is recursively applied to each term
until each DFT’s length is 1. This recursive deconstruc-
tion of the DFT makes the computational time of
O(Nlog(N)) [8].

3.2. Software Implementation of the FFT

In Figure 4, a 16-point radix-2 FFT is shown. A signal is

E. ORUKLU ET AL. 4

2ܹ0

2ܹ0

2ܹ0

2ܹ0

2ܹ0

2ܹ0

2ܹ0

2ܹ0

 [15]ݔ [7]ݔ [14]ݔ [6]ݔ [13]ݔ [5]ݔ [12]ݔ [4]ݔ [11]ݔ [3]ݔ [10]ݔ [2]ݔ [9]ݔ [1]ݔ [8]ݔ [0]ݔ

4ܹ0

4ܹ0

4ܹ0

4ܹ0

4ܹ1

4ܹ1

4ܹ1

4ܹ1

8ܹ0
8ܹ1
8ܹ2
8ܹ3

8ܹ0
8ܹ1
8ܹ2
8ܹ3

1ܹ60

1ܹ61

1ܹ62

1ܹ63

1ܹ64

1ܹ65

1ܹ66

1ܹ67

ܺ[0]ܺ[1]ܺ[2]ܺ[3]ܺ[4]ܺ[5]ܺ[6]ܺ[7]ܺ[8]ܺ[9]ܺ[10]ܺ[11]ܺ[12]ܺ[13]ܺ[14]ܺ[15]

Figure 4. 16-point radix-2 FFT.

inputted into the FFT in a bit reversed order and then
goes through log2(N) passes, where each pass has N/2
“butterfly” operations. These butterfly operations are
defined as:

k

NW

f

g G

O

2πk jk

NW e N (called the Twiddle factor)

k
N

k
N

F f W g

G f W g

 (4)

The butterfly operation requires complex number
arithmetic additions and multiplications. Because of the
programming constraints placed on the reference code,
most complex number libraries are not useable. Hence,
this reference code uses its own complex number repre-
sentation shown below:

 {

 ;

 ;

} _ ;

typedef struct

float x

float y

s complex

Moreover, in order to perform the butterfly operation,

the k
NW terms need to be calculated. Since we assume

that HLS library does not support cosine and sine func-
tions, the twiddle factors are pre-computed and stored in
a table using the code below:

" . "

.

2 ()6.28318530717958647692528676655901

 _ _ [/ 2];

 _ ()

{

 0.0;

 2 / ;

 _ , _ ;

 ;

(

include fft h

include math h

define pi double

extern s complex fix float N

void table setup void

double a

double e pi N

float cos val sin val

int i

for

0; / 2;){

_ cos();

_ sin();

_ []. _ ;

_ []. _ ;

;

}

}

i i N i

cos val a

sin val a

fix float i x cos val

fix float i y sin val

a a e

The particular implementation chosen for this refer-
ence FFT was provided by [22]. The exact code used is
shown in Figure 5. N represents the length of the FFT
and must be a power of 2. Before using the function
fft_ref, the function table_setup must be executed in or-
der to compute the twiddle factors and store them in the
array fix_float. The FFT of an input z can then be exe-
cuted. The first phase is the bit-reverse operation where
the input data are rearranged as show in Figure 4. Then,
for each passes, the butterfly operations are performed
until the FFT is completed. In the next section this code
will be made fully synthesizable by applying four modi-
fications to it.

4. Code Modification for HLS

The objective of this section is to generate the hardware
of a FFT block based on the reference C code using HLS
tools. Multiple modifications are needed in order to ge-
nerate an optimal hardware in term of resource usage and
throughput. As an example, we generate an 8-bit 1024-
point radix-2 FFT. The output is on 18 bits and will
beavailable in natural order. The size of the data width
inside the FFT has been chosen so that the HLS FFT
gives the same results as the Xilinx FFT core [23].

4.1. Floating Point to Fixed Point Implementation

Since the reference C code is using floating point num-
bers, a fixed-point library is needed. For example, PICO,
the HLS used in this demonstration, provides such library.
The PICO fixed-point arithmetic library derives its se-
mantics from the SystemC fixed-point library and it sup-
ports signed and unsigned arithmetic operations. Hence,
the previous floating point complex structure must be
modified as followed:

Copyright © 2012 SciRes. CS

E. ORUKLU ET AL. 5

݁݀ݑ݈ܿ݊݅# < .ℎݐܽ݉ ℎ .ݐ݂݂" ݁݀ݑ݈ܿ݊݅# < ℎ" ݐ݊݅) ݂݁ݎ_ݐ݂݂ ݐ݊݅ ;[2/ܰ]ݐ݈݂ܽ_ݔ݂݅ ݔ݈݁݉ܿ_ݏ ݊, ,݉ ݐ݊݅ ∗ ݔ݈݁݉ܿ_ݏ ,݅ ݐ݊݅ } (ݖ ݆, ݇, ݊1, ,ܿ ݐ݈݂ܽ ;2݊ ,ݏ ,1ݐ = ݆ ;2ݐ 0; ݊2 = = ݅) ݎ݂ ;2 / ݊ 1; ݅ < ݊ − 1; ݅ + +) { ݊1 = =< ݆) ℎ݈݅݁ݓ ;2݊ ݊1) { ݆ = ݆ − ݊1; ݊1 = ݊1 / 2; } ݆ = ݆ + ݊1; ݂݅ (݅ < = ݐ ݔ݈݁݉ܿ_ݏ } (݆ [݅]ݖ ;[݅]ݖ = [݆]ݖ ;[݆]ݖ = = 1݊ { { ;ݐ 0; ݊2 = = ݅) ݎ݂ ;1 0; ݅ < ݉; ݅ + +){ ݊1 = ݊2; ݊2 = ݊2 + = ݔ݁݀݊݅ ݐ݊݅ ;2݊ = ݎܿ݊݅ ݐ݊݅ ;0 ݊/(1 << (݅ + = ݆) ݎ݂ ;((1 0; ݆ < ݊1; ݆ + +) { ܿ = .[ݔ݁݀݊݅]ݐ݈݂ܽ_ݔ݂݅ = ݏ ;ݔ .[ݔ݁݀݊݅]ݐ݈݂ܽ_ݔ݂݅ = ݔ݁݀݊݅ ;ݕ + ݔ݁݀݊݅ == ݔ݁݀݊݅)݂݅ ;ݎܿ݊݅ = ݔ݁݀݊݅ } (2/ܰ ,݉݁ݐ ݐ݈݂ܽ { ;0 = ݇) ݎ݂ ;1݉݁ݐ ݆; ݇ < ݊; ݇ = ݇ + = 1ݐ } (2݊ + ݇]ݖ ݊1]. ∗ ݔ = ݉݁ݐ ;(ܿ + ݇]ݖ ݊1]. ∗ ݕ =− 1ݐ ;(ݏ = 2ݐ ;݉݁ݐ + ݇]ݖ ݊1]. ∗ ݔ = ݉݁ݐ ;ݏ + ݇]ݖ ݊1]. ∗ ݕ =+ 2ݐ ;ܿ + ݇]ݖ ;݉݁ݐ ݊1]. = ݔ .[݇]ݖ − ݔ + ݇]ݖ ;1ݐ ݊1]. = ݕ .[݇]ݖ − ݕ .[݇]ݖ ;2ݐ = ݔ .[݇]ݖ + ݔ .[݇]ݖ ;1ݐ = ݕ .[݇]ݖ + ݕ { ;0 ݊ݎݑݐ݁ݎ { { { ;2ݐ

Bit-reverse
operation

Obtain cosine and
sine values for the
butterfly operation

Butterflycalculation

Figure 5. FFT reference C code.

 :: _ 22,18, :: _ , :: _ ,0 ;

 {

 ;

 ;

} _ ;

typedef pico s fixed pico S RND pico S SAT floatP

typedef struct

floatP x

floatP y

s complexP

FFT is computed using 22-bit data width with 18 bits
for the integer part and 4 bits for the fractional part.
Rounding and saturation configuration is used. The effect
of the number of bits allocated to the fractional part on
the precision and resource usage of the FFT HLS is pre-
sented in Section V. The twiddle factors are pre-calcu-
lated with a precision of 16 bits and stored in an array
eliminating the need of trigonometric functions.

4.2. Input Array to Stream of Input Data

In the reference C code, the input data are passed to the
function as an array. This will be translated into memory
accesses by the HLS tool which is not optimal for hard-
ware implementation. Hence, a stream of input data is

used. PICO supports two types of streams: external and
internal. External streams are used to stream data from/to
global memory and/or other blocks in the system. Inter-
nal streams are used to stream data between loops within
a multi-loop accelerator designed by PICO. In PICO,
streams are specified using explicit procedure calls that
transmit a scalar value to an output stream or receive a
scalar value from an input stream. These procedures are
converted into special opcodes that receive (transmit)
data from (to) actual streams. For the FFT application,
four streams are needed: input/output streams for real
and imaginary parts:

 _ _ _ ();

 _ _ _ ();

_ _ _ (int);

_ _ _ (int);

char pico stream input xin

char pico stream input yin

void pico stream output xout

void pico stream output yout

PICO synthesizes a FIFO (within the RTL) for each
internal and external stream in the code. Different para-
meters such as the length of the FIFO can be configured
using pragmas. The first step of the FFT will be the
loading phase where input data are stored into a RAM
called z as shown below:

(0; ;){

[]. () _ _ _ ();

. _ _ _ (

}

for h h N h

z h x floatP pico stream input xin

z h y floatP pico stream input yin

);

Finally after the FFT is computed, the unloading phase
is performed:

(0; ;){

_ _ _ ([].);

_ _ _ ([].);

}

for p p N p

pico stream output xout z p x

pico stream output yout z p y

4.3. Bit-Reverse Operation

If we look at the reference C code, the next step would be
the bit-reverse stage; this operation takes 1024 cycles.
However, it can be integrated in the radix-2 FFT block,
hence reducing the total number of cycles required to
perform the calculations. This can be done using the
bit_swap function:

 _ (,){

 0;

 ;

(0; ;){

(1) | (& 0 1);

1;

}

 ;

}

unsigned short bit swap unsigned short in unsigned short bits

unsigned short out

unsigned short k

pragma unroll

for k k bits k

out out in x

in in

return out

Copyright © 2012 SciRes. CS

E. ORUKLU ET AL. 6

In this function, we use the pragma unroll to specify to
the HLS tool to unroll the loop and hence parallelize the
operations to speed-up the process. This function is used
to calculate the new address when performing the butter-
fly calculation on z as shown below:

= ݇) ݎ݂ ݆; ݇ < ݊; ݇ = ݇ + = ݇_ݎ݀݀ܽ ݐݎℎݏ ݀݁݊݃݅ݏ݊ݑ } (2݊ = 1݊_݇_ݎ݀݀ܽ ݐݎℎݏ ݀݁݊݃݅ݏ݊ݑ ;(݉ ,݇)ܽݓݏ_ݐܾ݅ + ݇)ܽݓݏ_ݐܾ݅ ݊1, = 1ݐ ;(݉ .[1݊_݇_ݎ݀݀ܽ]ݖ ∗ ݔ = ݉݁ݐ ;(ܿ .[1݊_݇_ݎ݀݀ܽ]ݖ ∗ ݕ =− 1ݐ ;(ݏ = 2ݐ ;݉݁ݐ .[1݊_݇_ݎ݀݀ܽ]ݖ ∗ ݔ = ݉݁ݐ ;ݏ .[1݊_݇_ݎ݀݀ܽ]ݖ ∗ ݕ =+ 2ݐ ;ܿ .[1݊_݇_ݎ݀݀ܽ]ݖ ;݉݁ݐ = ݔ .[݇_ݎ݀݀ܽ]ݖ − ݔ .[1݊_݇_ݎ݀݀ܽ]ݖ ;1ݐ = ݕ .[݇_ݎ݀݀ܽ]ݖ − ݕ .[݇_ݎ݀݀ܽ]ݖ ;2ݐ = ݔ .[݇_ݎ݀݀ܽ]ݖ + ݔ .[݇_ݎ݀݀ܽ]ݖ ;1ݐ = ݕ .[݇_ݎ݀݀ܽ]ݖ + ݕ { ;0 ݊ݎݑݐ݁ݎ { { { ;2ݐ

Butterfly
calculation

Bit-reverse
operation

4.4. Memory Access Reduction

Each array of data in the reference C code will be im-
plemented as a RAM by the HLS tool. We can see that
multiple accesses of z are done which is not suitable for
hardware implementation since only single or dual port
RAMs/ROMs are available. In order to resolve this
problem and obtain better performances, the first step is
to use temporary variables. This step is shown below:

= ݇) ݎ݂ ݆; ݇ < ݊; ݇ = ݇ + ,1݊_ݖ݉ݐ ݔ݈݁݉ܿ_ݏ } (2݊ ,1݊_ݖݐݑ ݔ݈݁݉ܿ_ݏ ;ݖ݉ݐ = ݖ݉ݐ ;ݖݐݑ = 1݊_ݖ݉ݐ ;[݇]ݖ + ݇]ݖ = 1ݐ ;[1݊ .1݊_ݖ݉ݐ) ݔ ∗ ܿ − .1݊_ݖ݉ݐ ݕ ∗ = 2ݐ ; (ݏ .1݊_ݖ݉ݐ) ݔ ∗ ݏ + .1݊_ݖ݉ݐ ݕ ∗ .1݊_ݖݐݑ ;(ܿ = ݔ .ݖ݉ݐ) − ݔ .1݊_ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) − ݕ .ݖݐݑ ;(2ݐ = ݔ .ݖ݉ݐ) + ݔ .ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) + ݕ [݇]ݖ ;(2ݐ = + ݇]ݖ ;ݖݐݑ ݊1] = { ;0 ݊ݎݑݐ݁ݎ { { { ;1݊_ݖݐݑ

Butterfly
calculation

Through this arrangement, the memory accesses are
reduced to 2 read and 2 write operations. They can be
reduced further using multi-buffering or ping-pong me-
mories. Therefore, we use two RAMs z and z1 and we
alternate read and write operations. For example, a read
operation will be done on z (or z1) while the write opera-
tion will be done on z1 (or z):

= ݇) ݎ݂ ݆; ݇ < ݊; ݇ = ݇ + ,1݊_ݖ݉ݐ ݔ݈݁݉ܿ_ݏ } (2݊ ,1݊_ݖݐݑ ݔ݈݁݉ܿ_ݏ ;ݖ݉ݐ = ݖ݉ݐ } (2%݅) ݂݅ ;ݖݐݑ = 1݊_ݖ݉ݐ ;[݇]1ݖ ݇]1ݖ + = ݖ݉ݐ } ݁ݏ݈݁ { ;[1݊ = 1݊_ݖ݉ݐ ;[݇]ݖ ݇]ݖ + = 1ݐ { ;[1݊ .1݊_ݖ݉ݐ) ݔ ∗ ܿ − .1݊_ݖ݉ݐ ݕ ∗ = 2ݐ ; (ݏ .1݊_ݖ݉ݐ) ݔ ∗ ݏ + .1݊_ݖ݉ݐ ݕ ∗ .1݊_ݖݐݑ ;(ܿ = ݔ .ݖ݉ݐ) − ݔ .1݊_ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) − ݕ .ݖݐݑ ;(2ݐ = ݔ .ݖ݉ݐ) + ݔ .ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) + ݕ [݇]ݖ } (2%݅) ݂݅ ;(2ݐ = ݇]ݖ ;ݖݐݑ + ݊1] = [݇]1ݖ } ݁ݏ݈݁ { ;1݊_ݖݐݑ = ݇]1ݖ ;ݖݐݑ + ݊1] = { ;0 ݊ݎݑݐ݁ݎ { { { { ;1݊_ݖݐݑ

Butterfly
calculation

Multi-buffering

Multi-buffering

By integrating the modifications presented in this sec-
tion to the reference C code given in Figure 5, the HLS
implementation of the FFT can be obtained as shown in
Figure 6.

5. Hardware Synthesis Results

The HLS tool offers different configurations that will
have an impact on the hardware generated. For example,
the user can specify the desired frequency that may or
may not be achieved by the tool depending on the system
targeted and the complexity of the C code. As seen in
= ݇) ݎ݂ ݆; ݇ < ݊; ݇ = ݇ + ,1݊_ݖ݉ݐ ݔ݈݁݉ܿ_ݏ } (2݊ ,1݊_ݖݐݑ ݔ݈݁݉ܿ_ݏ ;ݖ݉ݐ = ݖ݉ݐ } (2%݅) ݂݅ ;ݖݐݑ = 1݊_ݖ݉ݐ ;[݇]1ݖ ݇]1ݖ + = ݖ݉ݐ } ݁ݏ݈݁ { ;[1݊ = 1݊_ݖ݉ݐ ;[݇]ݖ ݇]ݖ + = 1ݐ { ;[1݊ .1݊_ݖ݉ݐ) ݔ ∗ ܿ − .1݊_ݖ݉ݐ ݕ ∗ = 2ݐ ; (ݏ .1݊_ݖ݉ݐ) ݔ ∗ ݏ + .1݊_ݖ݉ݐ ݕ ∗ .1݊_ݖݐݑ ;(ܿ = ݔ .ݖ݉ݐ) − ݔ .1݊_ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) − ݕ .ݖݐݑ ;(2ݐ = ݔ .ݖ݉ݐ) + ݔ .ݖݐݑ ;(1ݐ = ݕ .ݖ݉ݐ) + ݕ [݇]ݖ } (2%݅) ݂݅ ;(2ݐ = ݇]ݖ ;ݖݐݑ + ݊1] = [݇]1ݖ } ݁ݏ݈݁ { ;1݊_ݖݐݑ = ݇]1ݖ ;ݖݐݑ + ݊1] = { ;0 ݊ݎݑݐ݁ݎ { { { { ;1݊_ݖݐݑ

Butterfly
calculation

Multi-buffering

Multi-buffering

Figure 6. HLS implementation of FFT.

Copyright © 2012 SciRes. CS

E. ORUKLU ET AL.

Copyright © 2012 SciRes. CS

7

Area reduction in terms of slices and DSP48E blocks
can be achieved by increasing the number of clock cycles
required to perform the FFT. Hence, for equivalent
throughput, it is better to choose a higher operational
frequency and a higher number of clock cycles required
to perform the FFT. Table 2 shows the hardware usage
of the FFT for a targeted frequency of 150MHz with dif-
ferent throughputs. For example, from Table 1, for a
frequency of 75 MHz, the throughput is 10,463. Never-
theless, with a frequency of 150 MHz, a better through-
put can be obtained using fewer DSP48E blocks (see
Table 2, second row).

this section, increasing the frequency will increase the
resources of the hardware generated by the HLS tool.
The throughput (number of FFTs that can be done in one
second) can also be specified. In order to achieve a high
throughput, the HLS tool will parallelize tasks; hence
increasing the hardware resources. Finally, the user can
specify to implement arrays using block RAMs or look-
up tables (LUTs). Hardware implementation results are
obtained using Xilinx ISE 12.1 software with either
speed or area optimization for Virtex-5 FPGA. The twid-
dle factors have been implemented using LUTs but can
be also implemented using RAMs. By doing this, it will
reduce the total number of slices LUTs but increase the
number of blocks RAM/FIFO. Table 1 shows the hard-
ware usage of the HLS implementation of FFT with
22-bit data width for different targeted frequencies.

Figure 7 shows the error variation with respect to the
width of the fractional part compared to the reference
code shown in Figure 5. The relative error for the FFT is
given using the formula below:

One can see a significant increase in terms of logic
slices for 150 MHz operational frequency. This is due to
the fact that we have selected optimization for speed in
ISE in order to achieve the desired operational frequency
after place and route. For frequencies lower than 150
MHz, optimization in terms of area has been selected.
For frequencies from 50 MHz to 150 MHz, the total
number of clock cycles achieved by PICO to perform the
1024-point FFT is 7168 but for 175 MHz it is increased
to 12288 clock cycles. 7168 clock cycles is the minimum
latency that can be obtained and is calculated as follow:

99 1023

0 0

[][] [][]1 1

100 1024 [][]

[][] [][]

[][]

ref HLS

n k ref

ref HLS

ref

X n k X n k
error

X n k

Y n k Y n k

Y n k

 (6)

where X and Y are real and imaginary parts respectively.
The relative error is calculated for 100 random input

signals of 1024 samples each Figure 7 shows that the
relative error decreases linearly as the number of bit for
the fractional part increases. For the implementation of
the FFT, –40 dB is achieved giving the same results as
the Xilinx FFT core. Nevertheless, the user can increase
the precision at the expense of hardware usage. For 13
bits, the relative error achieved is –73 dB compared to
the reference C code based on double precision floating
point operations.

 2*log
2

1024 512*10 1024 7168

latency loading FFT unloading

N
latency N N N

lantecy clock cycles

 (5)

For frequencies higher than 150 MHz, PICO reduces
the tasks’ parallelism of the FFT in order to achieve the
desired frequency. This results in an increase of the la-
tency and a reduction of the hardware resources. The
maximum frequency that can be obtained by PICO is
around 270 MHz with a total of 17,408 clock cycles
(1024) to compute the FFT. Never-
theless, after place and route, the maximum frequency
obtained is 180 MHz due to the FPGA targeted.

3 512 10 1024

Table 3 shows the hardware usage with respect to the
width of the fractional part for a desired operational fre-
quency of 100 MHz. As expected, the resource usage
increases with the number of bit for the fractional part.
Nevertheless, the number of blocks RAM/FIFO used is
the same. This is due to the architecture of the Virtex-5
FPGA selected.

Table 1. FFT hardware usage for different frequencies.

Resource usage
Targeted frequency

Slices Registers Slices LUTs Block RAM/FIFO DSP48E
Achieved frequency

50 MHz 749 1700 2 4 50 MHz

75 MHz 765 1769 2 4 75 MHz

100 MHz 926 1967 2 4 100 MHz

125 MHz 1042 1714 2 4 125 MHz

150 MHz 1546 2004 2 4 150 MHz

175 MHz 1380 1849 2 2 165 MHz

270 MHz 1457 1989 2 2 180 MHz

E. ORUKLU ET AL. 8

Table 2. FFT hardware usage for different throughputs.

Resource usage
Targeted

throughput Slices
Registers

Slices
LUTs

Blocks
RAM/FIFO

DSP48Es

20926 1546 2004 2 4

12207 1351 1693 2 2

8616 1186 1418 2 2

6658 1161 1404 2 1

0 2 4 6 8 10 12 14
Number of bits for the fractional part

Relative error for different bit sizes for the fractional part
–10

–20

–30

–40

–50

–60

–70

–80

R
el

at
iv

e
er

ro
r

in
 D

b

Figure 7. Relative error for different bit size for the frac-
tional part.

Table 3. FFT hardware usage for different fractional sizes.

Resource usage
Fractional part
number of bits Slices

Registers
Slices
LUTs

Block
RAM/FIFO

DSP48Es

0 767 1305 2 4

2 809 1474 2 4

4 926 1967 2 4

6 968 2184 2 4

8 1188 2309 2 4

10 1279 2405 2 8

13 1400 2607 2 8

6. Conclusion

In this paper, we have presented hardware considerations
that software engineers need to apply when designing
hardware modules using HLS tools. As a demonstration,
the implementation of a radix-2 FFT unit has been pre-
sented. We have shown the different steps to achieve an
optimized C code for HLS tools based on an ANSI C

code. Results of the generated FFT for a Virtex-5 FPGA
have been presented. FFT has a broad range of appli-
cations in digital signal processing, and multimedia. It is
a key component that determines most of the design met-
rics in many signal processing communication applica-
tions. HLS tools facilitate complex algorithms to be real-
ized at a higher level. They can reduce the design cycle
significantly while successfully generating results very
close to handmade HDL design.

7. Acknowledgements

The authors would like to thank the Xilinx, Inc.
(www.xilinx.com) and Synopsys (www.synopsys.com)
for their valuable support.

REFERENCES
[1] S. Dongwan, A. Gerstlauer, R. Domer and D. D. Gajski,

“An Interactive Design Environment for C-Based High-
Level Synthesis of RTL Processors,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 16,
No. 4, 2008, pp. 446-475.

[2] S. Ramachandran, “Digital VLSI System Design,” Chap-
ter 11, Springer, New York, 2007.

[3] M. Glasser, “Open Verification Methodology Cook-
book,” Chapters 1-3, Springer, New York, 2009.
doi:10.1007/978-1-4419-0968-8

[4] E. Casseau and B. Le Gal, “High-Level Synthesis for the
Design of FPGA-Based Signal Processing Systems,” In-
ternational Symposium on Systems, Architectures, Mod-
eling, and Simulation, SAMOS’09, 20-23 July 2009, pp.
25-32.

[5] B. Bailey, G. Martin and A. Piziali, “ESL Design and
Verification,” Morgan Kaufmann, San Francisco, Chap-
ters 1-6, 2007.

[6] V. Sklyarov and I. Skliarova, “Teaching Reconfigurable
Systems: Methods, Tools, Tutorials, and Projects,” IEEE
Transactions on Education, Vol. 48, No. 2, 2005, pp.
290-300. doi:10.1109/TE.2004.842909

[7] L. E. M. Brackenbury, L. A. Plana and J. Pepper, “System-
on-Chip Design and Implementation,” IEEE Transactions
on Education, Vol. 53, No. 2, 2010, pp. 272-281.
doi:10.1109/TE.2009.2014858

[8] J. G. Proakis and D. G. Manolakis, “Digital Processing
4th Edition,” 4th Edition, Prentice Hall, New Jersey,
2006.

[9] Xilinx Inc., “XUPV5 Development Board,”
http://www.xilinx.com

[10] Synfora Inc, Website. http://www.synfora.com

[11] Synopsys, “Symphony C Compiler,”
http://www.synopsys.com/Tools/SLD/HLS/Pages/Synpho
nyC-Compiler.aspx

[12] AutoESL, Website. http://www.autoesl.com

[13] Mentor, Website. http://www.mentor.com

[14] P. Avss, S. Prasant and R. Jain, “Virtual Prototyping In-

Copyright © 2012 SciRes. CS

http://dx.doi.org/10.1007/978-1-4419-0968-8
http://dx.doi.org/10.1109/TE.2004.842909
http://dx.doi.org/10.1109/TE.2009.2014858

E. ORUKLU ET AL. 9

creases Productivity—A Case Study,” IEEE Interna-
tional Symposium on VLSI Design, Automation and Test,
Hsinchu, 28-30 April 2009, pp. 96-101.
doi:10.1109/VDAT.2009.5158104

[15] Berkeley Design Technology, “An independent Evalua-
tion of High-Level Synthesis Tools for Xilinx FPGAs,”
http://www.bdti.com

[16] K. L. Man, “An overview of SystemCFL,” Research in
Microelectronics and Electronics, 2005 PhD, Vol. 1,
2005, pp. 145-148.

[17] P. Schumacher, M. Mattavelli, A. Chirila-Rus and R.
Turney, “A Software/Hardware Platform for Rapid Pro-
totyping of Video and Multimedia Designs,” Proceedings
of Fifth International Workshop on System-on-Chip for
Real-Time Applications, 20-24 July 2005, pp. 30-33.
doi:10.1109/IWSOC.2005.27

[18] W. Chen (Ed.), “The VLSI Handbook,” 2nd Edition,
Chapter 86, CRC Press LCC, Boca Raton, 2007.

[19] S. Van Haastregt and B. Kienhuis, “Automated Synthesis
of Streaming C Applications to Process Networks in
Hardware,” Proceedings of the Conference on Design
Automation & Test in Europe, April 2009, pp. 890-893.

[20] P. Coussy and A. Morawiec, “High-Level Synthesis:
From Algorithm to Digital Circuits,” Springer Science +
Business Media, Chapters 1, 4, Berlin, 2008.

[21] N. Hatami, A. Ghofrani, P. Prinetto and Z. Navabi, “TLM
2.0 Simple Sockets Synthesis to RTL,” International
Conference on Design & Technology of Integrated Sys-
tems in Nanoscale Era, Vol. 1, 2000, pp. 232-235.

[22] D. L. Jones, “FFT Reference C Code,” University of Illi-
nois at Urbana-Champaign, 1992.

[23] Xilinx Inc., “CoreGen,” http://www.xilinx.com

Copyright © 2012 SciRes. CS

http://dx.doi.org/10.1109/IWSOC.2005.27

