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ABSTRACT 

The paper presents an analytical derivation of Floquet eigenvalues and eigenvectors for a class of harmonic phase and 
quadrature oscillators. The derivation refers in particular to systems modeled by two parallel RLC resonators with 
pulsed energy restoring. Pulsed energy restoring is obtained through parallel current generators with an impulsive char-
acteristic triggered by the resonators voltages. In performing calculation the initial hypothesis of the existence of stable 
oscillation is only made, then it is verified when both oscillation amplitude and eigenvalues/eigenvectors are deduced 
from symmetry conditions on oscillator space state. A detailed determination of the first eigenvector is obtained. Re-
maining eigenvectors are hence calculated with realistic approximations. Since Floquet eigenvectors are acknowledged 
to give the correct decomposition of noise perturbations superimposed to the oscillator space state along its limit cycle, 
an analytical and compact model of their behavior highlights the unique phase noise properties of this class of oscilla-
tors. 
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1. Introduction 

Quadrature oscillators may represent important compo-
nents of integrated digital modulations transceivers. The 
huge demand for wireless communications has indeed 
led to develop compact and low power circuits in order 
to reduce both implementation costs and devices con-
sumptions. The need of precise quadrature signals can be 
found for example in low-IF or direct conversion mo- 
demodulator architectures. A quadrature oscillator can 
easily fit such request avoiding the use of a dedicated 
circuitry in conjunction with a single standard oscillator. 
However there are still many issues with quadrature os-
cillators concerning in particular the relation between 
phase noise and quadrature error [1]. In authors opinion, 
quadrature oscillators should be regarded a coupled sys-
tem in the whole and this aspect increment the difficult 
of a theoretical noise treatment. 

In this paper we propose to achieve a full analysis of a 
new phase-quadrature architecture based on pulsed bias 
we recently presented in [2]. This aim matches with the 
general effort toward the reduction of phase noise in os-
cillators. Stimulated from the idea of Hajimiri-Lee [3] 
and even dating back from the Colpitts oscillator, pulsed 
bias in oscillators represents a new attractive solution 
attempting to concentrate the necessary energy refill in 

the portion of the oscillator limit cycle where noise pro-
jection on the first Floquet eigenvector (thus the contri-
bution to the phase noise close to the fundamental) is 
minimum. 

The main properties of this class of harmonic oscilla-
tors architecture are derived through an analytical treat-
ment based on Floquet eigenvectors noise decomposition. 
Floquet eigenvectors approach is indeed acknowledged 
as a correct analytical methodology for the description of 
noise perturbations [4]. 

In addition Coram [5] remarked that the correct noise 
decomposition is obtained following eigenvectors rela-
tive orientation. Floquet eigenvectors determination is 
then necessary in order to produce a consistent noise 
analysis. We notice that, since in a pulsed bias architec-
ture the pulse itself modifies eigenvectors, even the 
choice of an eventual optimal position of the bias pulse is 
not simply determinable [6]. Hence the calculation we 
present must take into account the mutual dependence of 
bias pulse and eigenvectors. Following this approach we 
derive an analytical formulation which allows to point 
out some important properties of this class of oscillators: 

1) the orthogonal dynamic of coupled oscillators; 
2) the minimization of noise introduced by the bias 

pulse due to minimum projection on first eigenvector; 
3) the intrinsic orthogonality of eigenvectors which 
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ensures minimization of noise contribution from parasitic 
resistances in resonators. 

2. Oscillator Model 

The simplified model we refer to is reported in Figure 1. 
It presents only four state variables corresponding to ca-
pacitors voltages and inductors currents of two identical 
RLC resonators and referred respectively as OSC_I and 
OSC_Q. The resulting state vector is  

          T

I I Q QX t V t I t V t I t    . Here and in 
the following all vectors and parameters quantities are in 
real numbers field if not differently specified. Coupling 
between resonators in a positive feedback configuration 
is accomplished by pulsed current generators emulating 
active devices. This model can be seen as a rather drastic 
simplification of a real oscillator, however if we assume 
the parasitic introduced by transconductors to be much 
smaller than those in resonators they can be merged in 
resonators themselves, thus avoiding to increment the 
effective space state dimension. 

The model assumes a current pulse of fixed duration 
injected in the driven resonator and triggered by crossing 
0V common mode level of the capacitance voltage of the 
driving oscillator. The impulsive characteristic of the 
generators is described by the piecewise linear expres-
sions in (1) where maxI  and PT  represent respectively 
the limiting current and the pulse width. The _th Y  
represents time instant of threshold crossing of the driver 
oscillator.  and 

t

,Y I Q ,Y Q I  indicate respectively 
the driver and the driven oscillator. There are two pulses 
in each period with alternated sign depending on the sign 
of driver voltage derivative. 
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Furthermore the “” takes into account the possible 
degree of freedom in determination of π 2  reciprocal 
phase. Sign choice determines indeed the quadrature re-
lationship between the oscillators. In order to roughly 
depict the role of the sign one can notice that, assuming 
in (1) the sign “-” for current pulse in OSC_Q at the zero 
crossing of OSC_I with positive derivative, a negative 
 

 

Figure 1. Simplified adopted model for pulsed bias phase 
and quadrature harmonic oscillator. 

pulse is applied to OSC_Q. Such pulse corresponds to a 
negative half-wave for driven oscillator OSC_Q that be-
comes delayed of π 2  with respect to driver oscillator 
OSC_I. In the following calculations we shall always 
assume the sign “-” for current pulse in OSC_Q. 

3. Proof of Quadrature Mode Stability 

Since the pulses arise at the crossing of a threshold equal 
to the common mode voltage of the oscillators, subse-
quent pulses can be assumed to impinge in two different 
semi-periods of the oscillation with opposite sign. It can 
be shown that, in a stable condition, the symmetric 
scheduling of the pulses leads to the symmetry of the two 
semi-periods of oscillation. Nevertheless, in order to 
concentrate our effort on the eigenvector extraction, we 
propose to adopt semi-periods symmetry as a preliminary 
assumption. Once the first eigenvector and thus the large 
signal dynamic will be calculated also the preliminary 
assumption will be proved. In the following analytical 
derivations semi-periods symmetry will be formalized as 
the reflection conditions on the eigenvectors space state. 

3.1. First Eigenvector Extraction 

As can be easily derived form the adopted model, the 
evolution of any state variation is a sinusoidal damped 
function of pulsation n  In time intervals when the 
pulse generators are not active, following RLC system 
equations, eigenvectors can be described by 
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    (2) 

where subscripts 1,2,3,4J   refer to the relative ei-
genvector number. _J I _h  and J Q

genvector amplitudes, 
h  are unknown ei-  

_J I  and _J Q  are the un-  

known phase displacements between eigenvector com-
ponents in the two resonators. The  factor 
accounts for the ratio between currents and voltages  

0F  

whereas  0 : π 2  factor accounts for relative phase  

between currents and voltages in a resonator and are 
given respectively by 
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 2

1
1

2Q

1

2Q

L
F =

C

arctg

 

 
  

 

            (3) 

For the sake of calculation simplicity in (2) we define 

_J Qh  as the amplitude of components related to OSC_Q 
at  _π J Q nt      rather than at . We recall 
that in a stable oscillator always exists a “first” eigen-
vector with unitary eigenvalue and with components 
tangent to the space state orbit. This property makes first 
eigenvector behavior directly related to the oscillator 
state. E.g. the threshold crossing which triggers the bias 
current pulse can be indicated either in term of eigen-
vector components or of oscillator state. In the two oscil-
lators the threshold is indeed crossed as the capacitance 
voltage zeroes, i.e. when current component of eigen-
vector is null 

0t 

     _

_ 1_ 0
LY th Y

CY th Y Y LY th Y

dI t
V t L u t

dt
  _  .    (4) 

We assume for the first eigenvector . Since ei-
genvectors components can always be defined by a pro-
portionality constant, we choose to fix 1_  with no 
loss of generality. Similarly we assume the threshold of 
OSC_I is crossed at _  and for 1_

1J 

Ih 

I

1

0th It  0  . We 
recall once more that the value of the eigenvalue of first 
eigenvector must be one. This aspect brings to four the 
number of independent conditions on eigenvector com-
ponents. We notice that Equations (2) contain only two 
unknowns in front of four conditions. The two exceeding 
conditions indeed will lead to determination of both os-
cillation period and amplitude. 

At this point we must introduce the basic assumption 
that if PT  is short enough compared to actual oscilla-
tion period T, the overall effect of the current pulse can 
be approximated with a drop in current components of 
eigenvectors. In [6] we showed that current drop has the 
general form 

 
 

_ _max
_

_

I J CY th Y

n PJ Y
CY th Y

u t
I T

CF V t
    .         (5) 

The sign of current drops depends upon the sign of 
capacitor voltage derivative and eigenvector amplitude of 
the driven oscillator at threshold crossing and on the qu-
adrature sign chosen in Equation (1). Resulting current 
drops are sketched in Figure 2 by thick arrows for a 
semi-period. Due to circuit loss   currents and 
voltages components in resonators are not exactly in qu-
adrature, then current drops may produce both amplitude 
variations and phase shifts of the orbit. In Figure 2 phase 
shifts are respectively indicated as 
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Figure 2. Sketch of evolution of first eigenvector subdivided 
into OSC_I and OSC_Q plane components. Thick gray line 
indicates the eigenvector at t = 0. 
 

As previously indicated, under semi-periods symmetry 
we impose the reflection conditions: after a semi-period 
each component of the first eigenvector must return to 
the initial value changed in sign. For the other eigenvec-
tors the conditions will impose each component to reach 
the initial value times the square root of the eigenvalue 
changed in sign. Using expressions (2) the reflection 
conditions can be written as in Equations (6). Before we 
develop such conditions the evolution along a 
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semi-period must be analytically expressed including the 
drops induced by pulses. This result can be achieved 
combining damped evolutions (following RLC system 
equations) and amplitude and phase shifts due to bias 
pulses. 0 

1_ I  and 1_Q  
for the two oscillators. 

We define as 1  the phase evolution in (2) between 
application of the bias pulse to OSC_Q resonator and the 
time instant when its current component, 1_ LQ , zeroes 
(0 V threshold crossing by OSC_Q voltage component). 
We define as 

u

2  the phase change between the applica-
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tion of the bias pulse to OSC_I resonator and the instant 
when its current component, 1_ LI , zeroes (0V threshold 
crossing by OSC_I voltage component). 

u

0t

In [6] the effect of the current pulse is represented as 
the drop to an equivalent damped sinusoidal evolution 
always with origin in  but with a different ampli-
tude and an additional phase shift. 

0t 

First pulse is applied at   to OSC_Q resonator 
giving rise to phase shift 

   
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After a damped evolution by a 1 1_ 1_Q Q     
phase,  (the OSC_Q threshold) is 
crossed and a second current pulse is applied this time to 
OSC_I. The second induced phase shift 1_

 1_ _ 0LQ th Qu t 

I  retains 
memory of former phase shift 1_Q  resulting in  

   
 

1_
1_ 1_

1_ _

1_

cos

cos

I
Q Q

LI th Q

I

I F

u t







 

 



 



1 1Q I

Q I

  



.    (8) 

A further phase evolution of α2 closes the semi-period. 
Since damped evolution of the two oscillators is identical 
in both semi-period, total phase evolution must equalize. 
We may thus write the reflection condition as 

1 1_ 2 _ 2
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π   
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     
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,       (9) 

i.e. the two phase shifts must be equal. 
Drop 1_ II


 is dependent on the amplitude  

1_ _Q th Q  which is still an unknown. In order not to 
run through an intricate calculation we now attempt a by 
inspection solution (requiring a later verification). Basing 
again on symmetry we assume 

h t
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With this assumption and inserting (7)-(8) into condi-
tion (9) the expression can be solved equating the argu-
ments of cosine functions 

1
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π
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.               (11) 

Using (11) in (6) an implicit form for 1  phase shift 
is obtained 
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which needs to be solved for 1π 2 π 2   . 

We notice that 0   is well approximated with re-
sonator quality factor just greater then few unities. In the 
simplified case of 0    expression (11) is verified 
only 1 0 for   . This assumption implies  

2πn nT T   , i.e. the oscillation period is equal to the 
natural period of damped RLC resonator. The assump-
tion would also lead to state that 1_ π 2Q  . In sections 
3.2 and 3.3 we are going to perform further calculations 
on remaining eigenvectors under this particular assump-
tion. Then in section 5 this approximation will be veri-
fied through comparison with a dedicated Matlab simu-
lator.  

If 0   we may assume 1_ π 2Q   in (2) and this 
ensures that OSC_Q is delayed with respect to OSC_I, 
thus confirming the effect of signs choice in (1). 

Beside these approximations we further use (10) and 
the reflection conditions to obtain 
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From (13) we may infer that the two oscillators are in-
trinsically in quadrature, since the bias pulse generated at 
the 0V crossing of one of the two resonators is applied at 
the center of two identical time evolutions between the 
two bias pulses applied to the other resonator. This prop-
erty is independent from resonators losses. The oscilla-
tion period can indeed be written as  

14 2
n

n n

T T 1 
 
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   .           (14) 

It is possible now to express the reflection conditions 
(6) in a compact form. Being ensured the parallelism of 
the eigenvector at 2t T  by (9), we may impose the 
condition only to one component of eigenvector. If we 
consider  1_ 2 0LQu T   its value must be equal to 
current state component at time origin changed in sign 
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Equation (15) can be solved for  obtaining 1_Qh
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Since expression (16) has still two unknowns ( 1_1 1h   
and CI ) it must be solved in conjunction with evolution 
of OSC_I components. We may calculate the evolution 

V
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of  at  1_ LIu t 4t T   just after the current drop is 
added by the bias pulse (superscript ‘+’ indicates in the 
limit from the right). In particular 1_ II  can be ex-
pressed through (5) at a time instant 4t  T



 when the 
OSC_Q component can be easily calculated using reflec-
tion condition as . We hence obtain 1_ 0
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After a further evolution of 4T  the 1_ LI  zeroes. 
Reflection conditions can now be imposed on the voltage 
component  
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to solve again for  
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We immediately point out that Equations (16) and (19) 
can be verified simultaneously only if 1_ 1_1 1Q Qh h  . 
A straightforward consequence is 

0
4

TCQ CI Ctt
V V


   V           (20) 

Equal oscillation amplitudes for both resonators verify 
the assumption (10) of equal amplitudes for current drops. 
This ensures the correctness of the entire calculation. 
From this statement and considering that also the ampli-
tude of oscillation is a damped sinusoidal function its 
amplitude can be derived as 
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As anticipated at the beginning of this section the con-
ditions on the first eigenvector lead to the determination 
of oscillation amplitude and oscillation period. The exis-
tence of a fixed oscillation amplitude ensures also stabil-
ity of system.  

3.2. Extraction of Second and Third 
Eigenvectors 

The second eigenvector can be expressed through (2) 
with . Again 2 _2J  Ih  and 2_Q  are unknown ei-
genvectors amplitudes, 2 _

h

I  and 2_Q  are the un-
known phase displacements between eigenvector com-
ponents in the two resonators.  

We perform a normalization on amplitudes assuming 
. Since second eigenvector cannot be related to 

the oscillator state evolution, the only additional condi-
tion we may impose is the independence from the first 
one. We recall we are going again to perform the calcu-
lation under the particular assumption that 

2 _ 1Ih 
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(which corresponds to assume nT ), i.e. a damped 
sinusoidal evolution must cover a phase of  　in a 
semi- period.  
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π

We combine the extractions of second and third ei-
genvectors since we may demonstrate that both eigen-
vectors are related to a unique Floquet eigenvalue with 
algebraic multiplicity equal to two. 

Pulses positions are fixed by the oscillator state. We 
individuated at 0t   a first current pulse is applied to 
OSC_Q whereas at 4nt T  the second current pulse 
(in first half of period) is applied to OSC_I. 

With the adopted assumptions we obtained  

1_ π 2Q  , thus at 0t   the first eigenvector has the 
OSC_Q components in the {I} current axis direction and 
the OSC_I in the {V} voltage axis direction. 

In order to preserve geometric multiplicity equal to 
two, second and third eigenvector must be independent 
and this requires them to have at  for OSC_Q at 
least a finite component in the {V} direction and for 
OSC_I a finite component in the {I} direction. 

0t 

In addition we must notice that, as in first eigenvector, 
the phase steps due to bias current pulses must be null to 
ensure that in 2nT  a total phase evolution  is 
achieved. Damped sinusoidal evolution (which is equal 
in all the eigenvectors) is already  and no additional 
phase can be added. 

π

π

Referring again to Figure 1, a null phase step can be 
achieved only for two conditions:  

1) if the eigenvector is in the {I} current direction at 
instant of application of the pulse, but this is not possible 
for the independence condition; 

2) if the current drops discontinuities induced by the 
bias pulses are null. 

As demonstrated in [6] this can be achieved only if the 
OSC_I voltage components of eigenvectors is null at 

0t   and if the OSC_Q voltage components is null at 
4nt T .  

Imposing these two conditions in (2) we immediately 
obtain 

   
2 _0

2 _

40
2 _ 2 _ 2 _

0 cos 0

0
4 2

Q

n

CI I

T

CQ Q Q

u

T
u h e









 

   
 

  

  

2 _

π
cos .

  
 (22) 

     

Hence it must be verified that 2_ π 2I   and 

2 _ 0Q  . 
Without any current drop the eigenvector amplitude 

exponentially decreases with the natural   1
RC2   

damping of the system. There is no further condition to 
be applied in order to calculate the unknown amplitude 
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0

2 _Q . This means that reflection conditions on second 
and third eigenvectors are satisfied for any vectors laying 
in the plane    where , i.e. that 
there are two independent eigenvectors with the same 
eigenvalue: 

h

0
T

a b

2,3

,a b

formerly calculated 1u , 2u  , and 3u .  
We recall that with approximation 0   the phase 

propagation of both OSC_I and OSC_Q amounts in total 
to . Thus also π 4u  must have null values of phase 
steps. This condition occurs if one of the following two 
conditions is satisfied:  

nTe  .             (23)  
1) 4_ π 4I   and 4 _ 0Q  . Null values of voltage 

displacement components at threshold crossing corre-
sponding to null current drops, but this condition is com-
pletely dependent on eigenvectors 2u  and 3u ; 

With no loss of generality we may thus assume  
   1 0 0

T

2 0 0u   and    3 0 0 0 1 0
Tu . 

2) 4_ 0I   and 4_ π 43.3. Extraction of Fourth Eigenvector Q   . Eigenvector is paral-
lel to current drops at the time of thresholds crossings 
thus giving rise to null phase steps. The condition with 
sign “+” is that of 1u .  

The fourth eigenvector can be expressed through (2) with 
J = 4. Again 4_ Ih 4 _Qh and  are unknown eigenvectors 
amplitudes, 4 _ I  and 4_Q   are the unknown phase 
displacements between eigenvector components in the 
two resonators.  

This means we must choose the condition b) with sign 
“-”. With no loss of generality we fix 4 _  then we 
write at 

1Ih 
0t   the independence condition among the 

four eigenvectors Fourth eigenvector must be independent from all the  

       4 _ 4 _ 4 _

4 _ 4_

1
1 0 0

0 1 0 0
0

0 0 1 0

sin
cos cos

I Q Q

I Q Q

F

h
h

F F

 
 

.                 (24) 

4_

sin

For 4_ I 0   and Equation (26) can be solved for h4_Q obtaining  we obtain 4 _Q π 2  

4_1 h 0Q                (25) 
max

4 _

4 4 0
4

I1
n n

Q nT T
μ μ CI t

h T
CV

e e




 



 

  
 

 p .     (27) 
which is satisfied for any positive value of 4_Q  The 
fourth eigenvector evolution is reported in Figure 3 Re-
ported current drops follow the sign imposed by condi-
tion (5) as chosen in (1). This make fourth eigenvector 
components in OSC_Q to be in advance. Change of the 
eigenvector components sign determines change of sign 
of current drops contributions to OSC_I. A decrease of 
eigenvector amplitude is then found in both resonators 
components. 

h

For OSC_I we must first consider the evolution of  
 

Being ensured the parallelism of the eigenvector at 
2nt T  and  for (9) we may impose the reflec-

tion conditions only to one component: after a 
semi-period evolution any eigenvector component must 
reach a value which is the square root of 4

0t 

  times its 
values at  changed in sign. We follow the calcula-
tion performed for the first eigenvector. For OSC_Q at 

0t 

4nt T  we have 

4 _ 4 4 _

max4
4 _ 4 4 _

0

 
4 4

In

n n
LQ LQ

T
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Q n p
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u u
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L CCV F


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        
   



 
 
 
 


4
nT

Q

(26) 

 1, 0

OSC_I 

OSC_

4[ , 0]

0

4
4_

T

Q

C
h e

L


 

 4 _ Qh

4 _ LIu  

4_ CIu

4 _ LQu  

4 _ CQu  

4 _ II  

4 _QI

 

Figure 3. Sketch of evolution of fourth eigenvector subdi-
vided into OSC_I and OSC_Q plane components. The ap-
proximation φ = 0 is assumed. Thick gray line indicate the 
eigenvector at t = 0. 
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 4_ LIu t  at 4nt T  where the current drop is added 
due to the bias pulse. ΔI1_I can be expressed through (5). 
Pulse on OSC_I depends on the amplitude  The 
reflection condition on OSC_I is written as 

4 _Qh

max4 4
4_ 4 _

4

4

I

2

n n

n

T T
n

CI n p Q
TCQ t

T
u e e T h

CV

 




 




       










  (28) 

Equation (28) needs to be solved again for  4_Qh

44 4
4 _ 4

maxI

nn n TT T CQ tμ μ

Q
n p

CV
h e e

T




  
   
 


.      (29) 

We immediately point out that Equations (27) and (29) 
can be verified simultaneously only if 4 _ 4_1Q Qh h 1  
h4_Q = 1/h4_Q = 1. 

It remains the calculation of 4 . Recalling that the re-
flection condition can be written as 

max4 4
4

0

In nT T
μ μ n p

CI t

T
e e

CV




 



 
   

          (30) 

and that from the first eigenvector assuming 0   we 
know that 

max4 4

0

In nT T
μ μ n p

CI t

T
e e

CV

 



 
   

   ,         (31) 

we finally obtain 
2

4 4

4

4

2
n n

n

T T
μ μ

T
μ

e e

e


 



 
 

 
 


 .          (32) 

4. Noise Projections and Zero Projection 
Times 

Noise introduced by the bias pulse generators and from 
parasitic resistances projects onto the eigenvectors and 
evolves following the eigenvalues damping in time. The 
relationship between these projections and the overall 
phase noise has been extensively described elsewhere [7- 
10]. We can briefly state that the lower is the integral 
along the period of the variance of the projection of noise 
contributions onto the first eigenvector, the lower is the 

21 f  component of phase noise close to the fundamen-
tal. We can thus try to evaluate the contribution of pro-
jection of the two cited main noise sources. 

We define as Zero Projection Times (ZPT) the instants 
of the limit cycle when noise introduced by a generic 
source does not project onto the first eigenvector. This is 
particularly important for the bias current generators 
which should be switched on preferably around a ZPT. 

As we have seen along the calculation, eigenvectors 
evolution is strictly related to the pulse position. Then 
eigenvectors and pulses cannot be defined independently. 
Actually we may show that in the presented architecture 
ZPTs in the optimal position correspond to the time of 
application of the bias pulses. 

We recall at 0t   and 2nt T  current pulses are 
found on OSC_Q. We model a normalized white Gaus-
sian process as two additional parallel and independent 
current sources (one source per resonator). Such noisy 
process generates a state variation in the direction 

 for OSC_Q. This variation is in the plane 
of eigenvectors 
0 0 1 0

T
2u  and 3u  and orthogonal to 1u . Thus 

it implies a null projection onto the first eigenvector. 
At 4nt T   and 4nt T  the pulse is in OSC_I. In 

this case the process generates a state variation in the 
direction . Eigenvectors 1 0 0 0

T 2u  and 3u  
after a phase evolution of π 2  still span a plane which 
contains this vector and thus remains orthogonal to 1u . 
This implies again a null projection onto the first eigen-
vector. 

Hence we state that ZPTs correspond exactly to the 
bias pulses application instants. This aspect represents 
the main property of the presented architecture, since it 
ensures that noise introduced by the bias does not project 
onto the phase noise close to the fundamental. In section 
5 simulation will confirm this peculiar behavior. 

A second relevant property can be inferred form the 
eigenvectors description. Further relevant noise sources 
come from parasitic resistances of the resonators. These 
noise contributions exist all along the period (stationary 
source) and are not time limited as the bias noise (ci-
clostationary source). In this case it is essential that the 
projections occur onto orthogonal eigenvectors. Indeed 
non orthogonal orientation of the eigenvectors would 
give rise to an enlargement of the stationary noise source 
projections. Since any projection on 1u  is not decreased 
by the exponential damping due to the eigenvalue 1 1  , 
non orthogonal eigenvectors reflect unavoidably in a 
phase noise enhancement. 

We showed in [6] minimization of the integral of a 
stationary variance projected onto the first eigenvector 
occurs under the condition of orthogonal eigenvectors. 
We may adapt this result to the case of noise vector n  
generated by the parasitic resistance in one of the two 
resonant circuit and verify the condition of minimum 
projection in a period. We extract in (33) the left eigen-
vectors v at 0t   inverting the right eigenvectors ma-
trix u derived from former results. The components of 
first eigenvector are normalized to one in order to make 
more explicit the result of projection even if a normaliza-
tion is not necessary. Being uncorrelated, noise contribu-
tions from the two resonators can be considered inde-
pendently. Noise has a fixed direction while each com-
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ponent of the eigenvectors rotates with pulsation ωn as 
given in Equation (2). For the sake of simplicity we may 
change the reference assuming new axes solid with the 
eigenvectors, so that noise components appear as a rotat-
ing  n t  vector. At every time instant the total energy 
from the two noise components is maintained constant. 

1
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4 4
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
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

      (33) 

It can be easily verified from (34) that each noise gen-
erator arising from one single resonant circuit always 
results projected only along two state components and 
that the two directions are orthogonal. E.g noise from 
OSC_I is projected along  and  

. It is worth to notice that the projections 
onto first and fourth eigenvectors are identical with coef-
ficient 1/2 while there is a projection on eigenvector 

 1 0 0 0
T

0 0 1 0
T

3u  
with coefficient 1.  
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.    (34) 

Vice versa contribution from noise in OSC_Q results 
projected along two constant orthogonal directions  

 and  . Projections onto the 
first and fourth eigenvectors are again identical with co-
efficient 1/2 while this time we have projection on ei-
genvector 

 0 0 1 0
T

0 0 0 1
T

2u  with coefficient 1. 
Having assumed noise generators independent in the 

two resonators, the variances of projections onto first and 
fourth eigenvectors can be summed. Hence due to the 
coefficient on the amplitudes, the total variance of the 
projection on first eigenvector results to be 1/2 of the 
value obtainable in a single resonator. In other words and 
to our knowledge, we obtained the first analytical dem-
onstration of effective reduction of noise projection onto 
the first eigenvector due to phase and quadrature cou-

pling of oscillators. 

5. Simulation Results and Discussion 

The approximation introduced in the former calculation 
requires a numerical verification. This is done in the pre-
sent section by the use of a piece-wise linear integration 
method that gives an exact evaluation of the system re-
ported in Figure 1. 

The simulation method adopts in particular Interface 
Matrices for the description of the state variation at the 
current pulse discontinuities [11]. This method allows to 
extract eigenvectors and eigenvalues with high accuracy. 
For the simulation we choose two given values for ca-
pacitances and inductances respectively 1.05 C pF  
and 0.912 L nH  producing ideal resonance at  

0 5.14313 GHzF   even if the developed theory is not 
frequency dependent. We fix also the total charge of a 
single current pulse in . In Figure 4. the 
eigenvalues for the pulsed bias phase and quadrature 
oscillator are reported in both calculated (continuous 
traces) and simulated (dotted traces) cases as a function 
of resonators quality factor. It can be observed a very 
good match between calculated and simulated 2,3

0.66 12e A s

  (er-
ror  always <1%) whereas calculated 4  is underesti-
mated with respect to the simulated one (error <5% for 

). Underestimation is due to Q 10 0   assumption 
which leads to higher error in determination of expres-
sion (32). 

In Figure 5. we report the simulated projections of 
 and  noise perturbation 

vectors onto the first eigenvector in case 
 1 0 0 0

T 0 0 1 0
T

10Q  . Such 
noise vectors describe both the effect of bias current ge-
nerator and parasitic resistance noise respectively of  
 

 

Figure 4. Eigenvalues of proposed oscillator as a function of 
resonator quality factor. In continue traces (black line is λ1, 
red line are λ2,3 and green line is λ4) the analytical expres-
sions are plotted whereas in dotted traces (black “x” is λ1, 
red “+” and blue “o” are respectively λ2 and λ3 and green 
solid “o” is λ4) the results of simulator are reported. 
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Figure 5. Simulated projections of [1 0 0 0]T (black dotted 
trace) and of [0 0 1 0] T  (black continuous trace) onto first 
eigenvector 1u  and related capacitors voltages (OSC_I in 

red dotted trace, OSC_Q in red continuous trace) of reso-
nators in time of proposed oscillator for Q = 10. 
 
the two resonators. The phase and quadrature oscillation 
of capacitances voltages is also reported in the figure. 
The evident presence of discontinuities on voltage 
waveforms induced by bias pulsed currents allows to 
verify that null projections correspond exactly to the 
pulses injected in relative resonators. We remark that 
maximum projection is 1/2 corresponding to the normal-
ized noise charge injected onto the  capacitor. 
Absence of any increase above value 1/2 of projection is 
the effect of the eigenvectors orthogonality. 

1.05 pF

Finally in Figure 6, we report the value of the oscilla-
tion period and amplitude in calculated (continuous trac-
es) and simulated (dotted traces) as a function of the re-
sonators quality factor. In this evaluation the calculated 
expressions present a maximum of 1.8% error for period 
and of 11.8% error for amplitude at low quality factor 
value compared to simulated results. Both errors become 
<1% as Q increases above 10. 

6. Concluding Remarks 

We presented the full analytical description of a new 
class of pulsed bias phase-quadrature oscillators. Intro- 
ducing a new methodology entirely based on system state 
Floquet eigenvectors we proved existence and stability of 
the quadrature mode and derived a consistent noise 
analysis. We pointed out a direct relationship between 
circuit parameters and the exclusive noise performances 
of the architecture. In particular we highlighted the in- 
trinsic orthogonal behavior of the coupled oscillators, the 
possibility to obtain a minimum projection of noise in- 
troduced by the bias pulse on first eigenvector and finally 
the intrinsic orthogonality of the eigenvectors. We fur- 
thermore demonstrated that such properties ensure mini- 
mization of phase noise contributions from both the  

 

Figure 6. Period and amplitude of oscillation of proposed 
oscillator as a function of resonator quality factor. In con-
tinue traces the analytical expressions are plotted whereas 
in dotted “x” traces the results of simulator are reported. 
The dashed line in top subfigure represents period of reso-
nator with no loss. 
 
parasitic resistances and the eventual active devices per-
forming the pulsed energy restore. Exploited properties 
should be common to the entire class of phase-quadrature 
oscillators with fixed duration current bias pulses. Nev-
ertheless the analysis of a practical electronic realization 
of the architecture and its evaluation requires and de-
serves a dedicated work. 
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