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Abstract 
Multilayer network is a frontier direction of network science research. In this 
paper, the cluster ring network is extended to a two-layer network model, and 
the inner structures of the cluster blocks are random, small world or scale-free. 
We study the influence of network scale, the interlayer linking weight and in-
terlayer linking fraction on synchronizability. It is found that the synchroni-
zability of the two-layer cluster ring network decreases with the increase of 
network size. There is an optimum value of the interlayer linking weight in 
the two-layer cluster ring network, which makes the synchronizability of the 
network reach the optimum. When the interlayer linking weight and the in-
terlayer linking fraction are very small, the change of them will affect the 
synchronizability. 
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1. Introduction 

Complex networks are ubiquitous in the world, such as power and transporta-
tion networks, biological networks, economic and financial networks, and social 
networks. The study of complex networks in many disciplines has allowed us to 
better understand a myriad of complex phenomena, including the spread of dis-
ease on networks of human contacts, the functioning of intricate biological 
pathways, and gene circuits, as well as to provide theoretical support for engi-
neers to control or optimize artificial interacting systems [1]-[6]. In the past 20 
years, the synchronization problem of complex networks has attracted more and 
more attention from various disciplines [7]-[12] and has achieved many impor-
tant research results. However, as the research deepens, people realize that many 
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real-world networks do not exist in isolation. They are interrelated and consti-
tute a larger and complex system called multilayer network. Examples of such 
networks are widespread; for instance, in a social system, a set of individuals in-
teract between each other in various modes of social interactions between the 
same people: an individual has interactions with others through online social 
systems (such as Facebook or Twitter) and off-line systems (such as professional 
or personal circles). In another example, there are many forms of interaction 
between digital rumors, such as blogs, Tweets, and emails, not only on their re-
spective networks, but also across each other. Therefore, multiple networks have 
attracted the interest of many researchers and become a new topic in network 
science research. In order to analyze the dynamic processes that appear in inter-
active networks, researchers have done a lot of research on multilayer networks. 
In 2013, Sole-Ribalta et al. extended the existing dynamical framework to deal 
with the dynamics of multilayer networks and analyzed the Laplacian spectrum 
behavior. Gomez et al. studied the time scales associated with diffusion processes 
that take place on a set of networks linked through interconnected layers and 
proposed the construction of supra-Laplacian matrices for the analysis of mul-
tiplex networks. In 2014, Lu et al. investigated the scalability of the synchroniza-
bility for ring or chain networks with dense clusters as the network size increas-
es. In 2015, Xu et al. studied the synchronization of two-layer star networks. In 
2008, Wei et al. analyzed the maximization of synchronization of two-layer net-
works, and analyzed the synchronization of two-layer networks composed of 
two randomly generated network layers with different interlayer node connec-
tion modes. It is found that the interlayer linking weight and the interlayer link-
ing fraction have a profound influence on the synchronization of duplex net-
works [13]-[19]. 

Based on the above research, this paper extends the single-layer cluster ring 
networks studied by Lu et al. to a two-layer network model. In this paper, a 
two-layer cluster ring network model is proposed to study the effect of the 
change of the interlayer linking weight and linking fraction on the synchroniza-
bility of the two-layer cluster ring networks, and explores the change of syn-
chronizability as the cluster blocks and nodes within the cluster blocks change. 

This paper is organized as follows. Section 2 briefly introduces the master sta-
bility function (MSF) approach and network models used in this paper. Section 3 
discusses how the route to synchronizability is affected by changing the network 
size for the complex cluster ring networks. Section 4 describes the relationship 
between the synchronizability and the interlayer linking weight and linking frac-
tion. Finally, concluding comments are given in Section 5. 

2. The Model of Two-Layer Cluster Ring Network 

Cluster ring network refers to a network that connects m cluster blocks into a 
ring [15] (which can be random, small world or scale-free network [14] in the 
cluster block). In this paper, we discuss the two-layer network with each layer 
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being cluster ring, the number of nodes and cluster blocks in each layer is the 
same, but the structure of each layer can be different, and each layer network has 
its own topology structure formed by the connection within the layer. Intralayer 
connections can be directed or undirected, weighted or unweighted. Interlayer 
connections are channels for communicating different layers, or they can be di-
rected or undirected, weighted or unweighted. When intralayer connections and 
interlayer connections are given, the structure of the multilayer network can be 
determined [16] [17]. Figure 1 is a schematic diagram of a simple two-layer 
cluster ring network, in which nodes of each layer are connected by a interlayer 
linking fraction 1γ = . 

For a multiplex network consisting of M layers each consisting of N nodes, the 
dynamics of n-dimensional node α

ix  (the i-th node in the α-th layer) can be 
described by the following differential equation [18]: 
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where 1 ,1 α≤ ≤ ≤ ≤i N M , ∈ℜa n
ix  is the state vector of the i-th node in the 

α-th layer, :α ℜ →ℜn n
if  governs the dynamics of the i-th node in the α-th 

layer, 1 :Γ ℜ →ℜn n  is the inner coupling function defining the interaction be-
tween nodes within any particular layer, and 2 :Γ ℜ →ℜn n  is the inner coupl-
ing function defining the interaction between nodes on separate layers. To apply 
the master stability framework to the composite multiplex, it is necessary to as-
sert identical nodal dynamics and identical coupling functions: α =if f  and 

1 2Γ = Γ = Γ . The intralayer linking weight α
ija  is positive if and only if there is 

a link from node j to node i ( )≠j i  within the α-th layer. Otherwise, 0α =ija . 
The interlayer linking weight αβωi  is similarly positive if and only if there is a 
link between node i in layer α and node i in layer β . Otherwise, 0αβω =i . Note 
that there are no links between node i on layer α and a different node j ( )≠j i  
on a different layer β  ( )α β≠ . 

Two-layer cluster ring network dynamics model is as follows:  
 

 
Figure 1. schematic diagram of two-layer clustering ring network.  
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where 1 ,1 2α≤ ≤ ≤ ≤i N . 
Corresponding to a network, the eigenvalues of Laplacian matrices are very 

important for studying network dynamics. A Laplacian matrix of a multilayer 
network is called a super-Laplacian matrix £ , it can be decomposed into two 
parts: the intralayer super-Laplacian matrix £L  and the interlayer super-Laplacian 
matrix £ I  [19]: 

£ £ £= +L I                              (3) 

As for £L , it can be represented by the direct sum of the Laplacian matrix with-
in each layer, namely,   
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where αa  is the intralayer linking weight in the α-layer. ( )
( )

, 1α = −i jL , if there is a 
link from node j to node i in the α-th layer. Otherwise, ( )

( )
, 0α =i jL , and all rows of 

( )αL  sum up to 0. For a two-layer network, when the interlayer linking weight is 
ω , the interlayer super-Laplacian matrix £ I  is:   

£
ω ω ω ω
ω ω ω ω

− −   
= ⊗ = ⊗ =   − −   

I I I I
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For a two-layer network with N nodes per layer, the super-Laplacian matrix is 
( )
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where ω  is the interlayer linking weight, 1a  and 2a  are the intralayer link-
ing weight in the first and second layers, respectively. ( )1L  and ( )2L  are the 
Laplacian matrix in the first and second layers, respectively. I is the ×N N  
identity matrix. 

3. Scale Variability of Synchronizability 

Consider a general complex cluster network with m clusters, where each cluster 
contains n nodes and all clusters arrange into a ring. The linking between 
neighboring clusters is specific intercluster linking, involving selecting a specific 
node from each cluster. The cluster block is composed of random, small world 
or scale-free structures. In this paper, we discuss the change of synchronizability 
of two-layer cluster ring network when the network size increases. The increase 
in the size of the network can be divided into two situations: the first case is to 
keep the cluster block of the two-layer cluster ring network unchanged ( )20=m , 
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and increase the number of nodes in each block (n from 10 to 100), the numeri-
cal simulation results are shown in Figure 2. The second case is to keep the 
number of nodes within each block unchanged ( )20=n , and increases the 
number of blocks of cluster rings (m from 10 to 100 ), the numerical simulation 
results are shown in Figure 3. In each experiment, we take the average of the 
results of 50 tests, 2λ  and 2λ λ= NR  will be used to investigate the scalability 
of network synchronizability in this paper. 

Figure 2 shows 2λ  and 2λ λN  for network with 20=m  as n increases 
from 10 to 100. The indication is that the synchronizability of network decreases 
monotonically with increasing size n. Figure 3 shows 2λ  and 2λ λN  for 
network with 20=n  as m increases from 10 to 100. The indication is that the 
synchronizability of network decreases monotonically with increasing size m. In 
fact, the two-layer cluster ring network and the single-layer cluster ring network  
 

 
(a) 

 
(b) 

Figure 2. (a) 2λ  versus n with 20=m , (b) 2λ λN  versus n with 20=m . Blue circu-
lar curves (BA-BA): the internal structure of the cluster blocks in the two-layer cluster 
ring network is scale-free; green diamond curves (ER-ER): the internal structure of the 
cluster blocks in the two-layer cluster ring network is random; red star curves (WS-WS): 
the internal structure of the cluster blocks in the two-layer cluster ring network is 
small-world. 
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(a) 

 
(b) 

Figure 3. (a) 2λ  versus m with 20=n , (b) 2λ λN  versus m with 20=n . Blue circu-
lar curves (BA-BA): the internal structure of the cluster blocks in the two-layer cluster 
ring network is scale-free; green diamond curves (ER-ER): the internal structure of the 
cluster blocks in the two-layer cluster ring network is random; red star curves (WS-WS): 
the internal structure of the cluster blocks in the two-layer cluster ring network is 
small-world. 
 
[15] have the same simulation results in terms of the scalability of synchroniza-
bility. Whether it is a cluster ring network with a fixed number of clusters or a 
cluster ring network with a fixed number of nodes in the cluster are not scalable 
with respect to synchronizability. The synchronizability is basically independent 
of the random, small world, and scale-free structure inside the cluster block, and 
the synchronizability is sensitive to the changes in networks size (the change of 
cluster blocks and nodes in cluster blocks). 

4. Influence of Network Structure Parameters on  
Synchronizability 

We consider the impact of the interlayer linking weight and interlayer linking 
fraction on synchronizability of two-layer cluster ring network. Each layer nodes 
of the network is fixed to 1000=N . We recorded 2λ  and 2log R  of the Lap-
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lacian matrix obtained by running 50 times for each network model. The expe-
rimental simulation data was taken as the average of 50 experiments.  

4.1. Synchronizability versus Interlayer Linking Weight 

First, we consider the impact of the interlayer linking weight on network syn-
chronizability. We assume that the interlayer linking fraction 1γ = , that is, 
every node in one layer is linked to its counterpart in the other layer. The inter-
layer linking weight ω  is varied from 0.0002 to 2.002. The simulation results 
are shown in Figure 4.  

Figure 4(a) & Figure 4(b) display the smallest nonzero eigenvalue 2λ  and 
log-eigenratio 2log R  with respect to varying values of the interlayer linking 
weight ω  (ω  from 0.0002 to 0.02), respectively. The subgraph of Figure 4(a) 
& Figure 4(b) displays the smallest nonzero eigenvalue 2λ  and log-eigenratio 

2log R  with respect to varying values of the interlayer linking weight ω  (ω  
from 0.002 to 2.002), respectively.  

 

 
(a) 

 
(b) 

Figure 4. (a) 2λ  with respect to the interlayer linking weight ω , with interlayer linking 
fraction 1γ = . (b) log-eigenratio 2log R  with respect to the interlayer linking weight 
ω , with interlayer linking fraction 1γ = . Blue circular curves (BA-BA): the internal 
structure of the cluster blocks in the two-layer cluster ring network is scale-free; green 
diamond curves (ER-ER): the internal structure of the cluster blocks in the two-layer 
cluster ring network is random; red star curves (WS-WS): the internal structure of the 
cluster blocks in the two-layer cluster ring network is small-world.  
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Figure 4 shows when the interlayer linking weight ω  from 0.0002 to 0.002, 
the smallest nonzero eigenvalue 2λ  of the Laplacian matrix increases sharply, 
the log-eigenratio 2log R  drops sharply, and the network synchronizability is 
strengthened. This means that when the interlayer linking weight is small, it can 
cause dramatic changes in 2λ  and 2log R . The interlayer linking weight ω  
increases from 0.002 to 2.002, 2λ  of the Laplacian matrix remain substantially 
unchanged, but, 2log R  of the Laplacian matrix shows a small increase. So, 
when the two-layer cluster ring network has a fixed interlayer linking fraction 
between layers, as the interlayer linking weight of the network increases, the 
smallest nonzero eigenvalue 2λ  increases first and then remains stable, the 
log-eigenratio 2log R  is significantly reduce and then slowly increase. There is 
an optimal the interlayer linking weight value to optimize the network synchro-
nizability. Whether the cluster ring is random, small world or scale-free, the 
synchronizability changes with the same trend. 

4.2. Synchronizability versus Interlayer Linking Fraction 

Now, we explore the effect of interlayer linking fraction on synchronizability. 
The interlayer linking weight ( 1ω = ) is fixed, we randomly connect the node 
pairs in different layers and change the connection probability. The interlayer 
linking fraction γ  is varied from 0.001 to 1. The simulation results are shown 
in Figure 5. 

Figure 5(a) shows the interlayer linking weight( 1ω = ) is fixed, the the smal-
lest nonzero eigenvalue 2λ  of the Laplacian matrix remains basically un-
changed with the increase of the interlayer linking fraction. Figure 5(b) shows 
the log-eigenratio 2log R  of the Laplacian matrix increases slightly with the in-
crease of the interlayer linking fraction.  

4.3. Phase Diagrams for Synchronizability 

Phase diagrams for 2λ  and 2log R  with respect to both ω  and γ  are dis-
played in Figures 6-11 to illustrate the impact of the two parameters on the  
 

 
(a) 
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(b) 

Figure 5. (a) 2λ  with respect to the interlayer linking fraction γ , with interlayer link-
ing weight 1ω = . (b) log-eigenratio 2log R  with respect to the interlayer linking frac-
tion γ , with interlayer linking weight 1ω = . Blue circular curves (BA-BA): the internal 
structure of the cluster blocks in the two-layer cluster ring network is scale-free; green 
diamond curves (ER-ER): the internal structure of the cluster blocks in the two-layer 
cluster ring network is random; red star curves (WS-WS): the internal structure of the 
cluster blocks in the two-layer cluster ring network is small-world.  
 

 
(a) 

 
(b) 
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(c) 

Figure 6. (a) Phase diagram for 2λ  in the two-dimensional parameter space ( ),ω γ . (b) 

a 2λ  variation diagram of a two-layer BA-cluster ring network with respect to ω . (c) a 

2λ  variation diagram of a two-layer BA-cluster ring network with respect to γ . 

 
synchronizability of two-layer cluter ring networks, for the three different 
two-layer network models. ω  takes a change between 0.0002 and 0.02, and γ  
takes a change from 0.01 to 1. BA-cluster ring network denotes that the internal 
structure of the cluster blocks in the two-layer cluster ring network is scale-free. 
ER-cluster ring network denotes that the internal structure of the cluster blocks 
in the two-layer cluster ring network is random. WS-cluster ring network de-
notes that the internal structure of the cluster blocks in the two-layer cluster ring 
network is small-world.  

Figure 6(a) is phase diagrams for 2λ  in the two-dimensional parameter 
space ( ),ω γ  for randomly correlated two-layer BA-cluster ring networks. Fig-
ure 6(b) is the variation of 2λ  of the network corresponding to different γ  
values with ω . Figure 6(c) is the variation of 2λ  of the network correspond-
ing to different ω  values with γ . Figure 6(a) & Figure 6(b) show when the 
interlayer linking fraction [ ]0.01,0.09γ ∈ , 2λ  increases as the interlayer link-
ing weight increases, and the network synchronizability increases as the inter-
layer linking weight increases. When the interlayer linking fraction [ ]0.1,1γ ∈ , 

2λ  increases first and then remains stable as the interlayer linking weight in-
creases. Network synchronizability enhances first and remains unchange. Figure 
6(a) & Figure 6(c) show when the interlayer linking weight [ ]0.0002,0.0018ω∈ , 

2λ  increases as the interlayer linking fraction increases, and the network syn-
chronizability increases as the interlayer linking fraction increases. When the 
interlayer linking weight [ ]0.002,0.02ω∈ , 2λ  increases first and then remains 
stable as the interlayer linking weight increases. Network synchronizability en-
hances first and remains unchange.  

In conclusion, we find that ω  ( [ ]0.0002,0.0018ω∈ ) is maintained very 
small, synchronizability is greatly affected by γ , and the synchronizability of 
the network will increase as γ  increases. When ω  ( [ ]0.002,0.02ω∈ ) is slightly  
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Phase diagram for 2log R  in the two-dimensional parameter space ( ),ω γ . 

(b) a 2log R  variation diagram of a two-layer BA-cluster ring network with respect to 

ω . (c) a 2log R  variation diagram of a two-layer BA-cluster ring network with respect 
to γ . 
 
larger, γ  is getting bigger and bigger, and the synchronizability is not affected 
by γ . γ  ( [ ]0.01,0.09γ ∈ ) is maintained very small, synchronizability is greatly  
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(a) 

 
(b) 

 
(c) 

Figure 8. (a) Phase diagram for 2λ  in the two-dimensional parameter space ( ),ω γ . (b) 

a 2λ  variation diagram of a two-layer ER-cluster ring network with respect to ω . (c) a 

2λ  variation diagram of a two-layer ER-cluster ring network with respect to γ . 

 
affected by ω , and the synchronizability of the network will increase as ω  in-
creases. When γ  ( [ ]0.1,1γ ∈ ) is slightly larger, ω  is getting bigger and big-
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ger, and the synchronizability is not affected by ω . 
Figure 7(a) is phase diagrams for 2log R  in the two-dimensional parameter  

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. (a) Phase diagram for 2log R  in the two-dimensional parameter space ( ),ω γ . 

(b) a 2log R  variation diagram of a two-layer ER-cluster ring network with respect to 

ω . (c) a 2log R  variation diagram of a two-layer ER-cluster ring network with respect 
to γ . 
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(a) 

 
(b) 

 
(c) 

Figure 10. (a) Phase diagram for 2λ  in the two-dimensional parameter space ( ),ω γ . (b) 

a 2λ  variation diagram of a two-layer WS-cluster ring network with respect to ω . (c) a 

2λ  variation diagram of a two-layer WS-cluster ring network with respect to γ . 

 
space ( ),ω γ  for randomly correlated two-layer BA-cluster ring networks. Fig-
ure 7(b) is the variation of 2log R  of the network corresponding to different  
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(a) 

 
(b) 

 
(c) 

Figure 11. (a) Phase diagram for 2log R  in the two-dimensional parameter space 

( ),ω γ . (b) a 2log R  variation diagram of a two-layer WS-cluster ring network with re-

spect to ω . (c) a 2log R  variation diagram of a two-layer WS-cluster ring network with 
respect to γ . 
 
γ  values with ω . Figure 7(c) is the variation of 2log R  of the network cor-
responding to different ω  values with γ . In Figure 7, we use 2log R  to 
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characterize the synchronizability of the network. We can get the same conclu-
sion in Figure 6: ω  ( [ ]0.0002,0.0018ω∈ ) is maintained very small, synchro-
nizability is greatly affected by γ , and the synchronizability of the network will 
increase as γ  increases. When ω  ( [ ]0.002,0.02ω∈ ) is slightly larger, γ  is 
getting bigger and bigger, and the synchronizability is not affected by γ . γ  
( [ ]0.01,0.09γ ∈ ) is maintained very small, synchronizability is greatly affected 
by ω , and the synchronizability of the network will increase as ω  increases. 
When γ  ( [ ]0.1,1γ ∈ ) is slightly larger, ω  is getting bigger and bigger, and 
the synchronizability is not affected by ω . 

As shown in Figures 8-11, the effects of varying ω  and γ  on the two-layer 
WS-cluster ring and the two-layer ER-cluster ring tend to be consistent with the 
two-layer BA-cluster ring. The simulation results are consistent with the simula-
tion results of two-layer BA-cluster ring.  

5. Conclusion 

In this paper, a two-layer cluster ring network model is established. Through a 
large number of simulation experiments, the effects of two-layer cluster ring 
network size variation, interlayer linking weight and interlayer linking fraction 
change on synchronizability are studied. The experimental results show that 
such networks are not scalable with respect to synchronizability. Network syn-
chronizability decreases with increasing network size for any cluster structures. 
Also, the interlayer linking weight and interlayer linking fraction has a signifi-
cant influence on the network synchronizability. There is an optimum value of 
the interlayer linking weight in the network, which makes the synchronizability 
of the network reach the optimum. ω  is maintained very small; synchroniza-
bility is greatly affected by γ , and the synchronizability of the network will in-
crease as γ  increases. When ω  is slightly larger, γ  is getting bigger and 
bigger, and the synchronizability is not affected by γ . γ  is maintained very 
small, synchronizability is greatly affected by ω , and the synchronizability of 
the network will increase as ω  increases. When γ  is slightly larger, ω  is 
getting bigger and bigger, and the synchronizability is not affected by ω . The 
smaller interlayer linking weight and the smaller interlayer linking fraction will 
affect the synchronizability of the two-layer cluster ring network. 
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