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Abstract 
With the rapid development of big data, the scale of realistic networks is in-
creasing continually. In order to reduce the network scale, some coarse-graining 
methods are proposed to transform large-scale networks into mesoscale net-
works. In this paper, a new coarse-graining method based on hierarchical 
clustering (HCCG) on complex networks is proposed. The network nodes are 
grouped by using the hierarchical clustering method, then updating the 
weights of edges between clusters extract the coarse-grained networks. A 
large number of simulation experiments on several typical complex networks 
show that the HCCG method can effectively reduce the network scale, mean-
while maintaining the synchronizability of the original network well. Fur-
thermore, this method is more suitable for these networks with obvious clus-
tering structure, and we can choose freely the size of the coarse-grained net-
works in the proposed method. 
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1. Introduction 

Our life is full of all kinds of networks. For example, metabolic networks, large- 
scale power networks, paper citation networks, global transportation networks, 
scientific research cooperation networks and so on. These networks have same 
analogous and obvious characteristics—massive nodes and complex interac-
tions. Networks with complex topological properties are called complex net-
works [1]. A complex network is formed by abstracting the basic units of a com-
plex system into nodes and the interactions between the units into edges. Com-
plex networks are important tools for studying the relationship between the 
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structure and function of complex systems. 
The existed research methods of complex networks are mainly designed for 

mesoscale networks. Coarse-graining technology is an effective way to study the 
large-size networks, which can reduce the complexity of networks by merging 
similar nodes. However, coarse-graining techniques go far beyond the require-
ment of clustering techniques, because coarse-graining techniques requires the 
coarse-grained networks to keep the initial network’s topological properties or 
dynamic characteristics, such as the degree distribution, clustering coefficient, 
correlation properties [2], random walk properties [3], synchronizability [4]. In 
2007, Gfeller et al., proposed a spectral coarse-graining (SCG) algorithm, which 
is based on the eigenvalue spectrum of random walk probability matrix, the al-
gorithm can maintain the random walk characteristics of original networks [5]. 
In 2008, Gfeller et al. further used SCG technology on the Laplace matrix of 
networks to extract coarse-grained networks, while maintaining the synchroniza-
bility of original networks [6]. In 2013, J Chen et al. [7] studied the coarse-graining 
method on the networks with obvious clustering structure in literature [5] [6]: 
through a large number of simulation experiments on WS small world networks, 
ER random networks, and BA scale-free networks, we can draw the conclusion 
that the clustering structure of networks can enhance the coarse-graining effect. 
In 2016, Shuang Xu et al. proposed a coarse-graining method based on K-means 
clustering which by redistributing the central cluster nodes of the network and 
clustering to reduce the network scale, the method can keep some statistical 
characteristics of initial networks in some extent, such as degree distribution, 
assortativity and so on [9]. In 2017, the ISCG [8] algorithm proposed by our re-
search group Zhou et al., the algorithm adopt split clustering method determin-
ing which nodes should be are grouped together, the algorithm can effectively 
keep the synchronizability of original networks, and the effect is better than SCG 
method in directed networks. Recently, our research team proposed a spectral 
coarse-graining method based on K-means clustering, by numerical simulations, 
they find that this method has better effect in preserving the synchronizability of 
original networks than SCG algorithm. Xingbo Liu proposed a cohesive hierar-
chical clustering algorithm based on variable merging threshold, and gave a ref-
erence formula for the distance threshold [10]. 

Coarse-graining technique is an important method for studying large-scale 
complex networks. However, almost every coarse-graining method has some 
inadequacies: for example, in the SCG method, computing the eigenvalues of 
network’s Laplacian matrix will take a lot of time, so the method is difficult to be 
used in large-scale real networks, furthermore, the SCG method cannot accurately 
control the size of coarse-grained network; The K-means clustering coarse-graining 
method requires to define the objective function, and may arise the problem of 
trapping local minimum values or selecting initial points. This paper proposes a 
new coarse-graining method based on hierarchical clustering (HCCG) on com-
plex networks. The distance and similarity of the coarse graining method are 
easy to define, and we can choose the size of the reduced network freely. More-
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over, this method does not need to define the objective function and does not 
cause the problem of selecting the initial point. The new coarse-graining method 
can make up for some shortcomings of the above-mentioned methods. In the 
HCCG method, we use the hierarchical clustering method to cluster the network 
nodes, and update the weights of edges between clusters to extract the coarse- 
grained network. Furthermore, we apply the HCCG method to WS small world 
networks, ER random networks and BA scale-free networks. Simulation experi-
ments show that the HCCG method can keep the synchronizability of the initial 
network well, and the method is more suitable for the networks with more ob-
vious clustering structure. 

The rest of the paper is organised as follows. In Section 2, the mathematical 
basis of the HCCG method is introduced. The steps of the HCCG method are 
presented in Section 3. In Section 4, a large number of numerical simulations on 
several typical networks verify the feasibility and effectiveness of the proposed 
method. Finally, conclusions and discussion are drawn in Section 5. 

2. Mathematical Basis 
2.1. Hierarchical Clustering Algorithm 

Clustering is an unsupervised learning process. By clustering, the similarity is as 
large as possible in the same cluster and as small as possible in different clusters. 
The fundamental difference between sorting technique and clustering technique 
is that sorting technique must know the data characteristic on which it is based 
in advance, and the clustering technique is to find the data characteristics. 
Therefore, clustering analysis is usually used as a data preprocessing process in 
many fields, which is the basis for further data analysis and processing [11]. 
There are usually four clustering methods: partitioning methods, hierarchical 
methods, density-based methods, and grid-based methods [12]. In this paper, we 
use the hierarchical methods to cluster networks nodes. 

Hierarchical clustering methods merge or separate data objects recursively 
until some termination condition met. According to the order of hierarchical 
decomposition, the method can be divided into bottom-up algorithm and top- 
down algorithm. This paper adopts the bottom-up method, which is a cohesive 
hierarchical clustering algorithm. The algorithm starts with every individual as a 
cluster, then searching for the nearest cluster to group into one cluster. After 
merging once, the total number of clusters is reduced by one, until the required 
number of clusters or the nearest threshold is reached. In this paper, Jaccard 
distance is used to calculate the distance between two different nodes. The me-
thods of calculating the distance between two different clusters include Single 
Linkage, Complete Linkage, Average Linkage and so on. In this paper, we use 
the Average Linkage in the HCCG method. 

( ) { }
,

1,
i j

avg i j
p C p Ci j

dist C C p p
n n ′∈ ∈

′= −∑                  (1) 

where p p′−  is the distance between two nodes, ,i j  represent two different 
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nodes of the initial network, the coarse-grained network has N�  clusters, la-
beled with 1,2, ,C N= � � �� , iC  is the label of the cluster of node i, iC  is the 
cardinality of the set iC , i in C=  ( in  is the number of nodes in the cluster 

iC ).  

2.2. Index of Network Synchronizability 

Consider an unweighted and undirected network with N nodes, ( )N N
ijA a

×
=  is 

the adjacency matrix of the network, ( ) 0iia =  and ( ) ( ) 1ij jia a= =  if node i 
connects to j ( )i j≠ , otherwise ( ) ( ) 0ij jia a= = . ( )1 2, , , ND diag k k k= �  is a 
diagonal matrix, ik  is the degree of i’th node. L D A= − , ( ) N N

ij N N
L L R ×

×
= ∈  

is the Laplacian matrix of the network. L satisfies the dissipative coupling condi-
tion: 1 0N

iji L
=

=∑ . Since the network is connected, L is a symmetric matrix with 
nonnegative eigenvalues: 1 20 Nλ λ λ= < ≤ ≤� . 

Generally, according to the difference of synchronization regions, network 
systems can be divided into four types, each type corresponds to a kind of syn-
chronization region: 1) Type-I networks correspond to bounded regions ( )1 2,α α ; 
2) Type-II networks correspond to unbounded regions ( )1,α ∞ ; 3) Type-III 
networks correspond to union of several bounded regions ( )1 2,i iα α∪ ; 4) Type- 
IV networks correspond to empty sets. Generally, the networks of the case (3) 
and (4) are difficult or impossible to achieve synchronization. Fortunately, most 
networks are in the case of (1) and (2). In Type-I networks, The synchronizabil-
ity of networks can be characterized by the minimum non-zero eigenvalue 2λ . 
The larger the value of 2λ , the smaller the coupling strength is needed to 
achieve synchronization, the synchronizability of Type-I networks are stronger. 
In Type-II networks, the synchronizability of networks can be characterized by 
the ratio of 2 Nλ λ� � . Only when the eigenvalues ratio 2 1 2Nλ λ α α>� �  are satis-
fied can the network achieve synchronization. So, the larger the value of  

2 NR λ λ= � � , the stronger the synchronizability of Type-II networks. Therefore, if 

2λ  or 2 Nλ λ� �  is unchanged in the process of coarse-graining, we can deem the 
synchronizability of the network is maintained [13].  

3. Hierarchical Clustering Coarse-Graining Scheme  

There are three main steps in the HCCG method: the first step is calculating the 
distance between two nodes for obtaining the distance matrix of the initial net-
work by using Jaccard distance, and constructing n single-member clusters; the 
second is calculating the distance between two different clusters, using the hie-
rarchical clustering method to cluster the network nodes; the last step is updat-
ing the weight of the links between different clusters to extract the coarse-grained 
network. In this section, the HCCG scheme is introduced revolving around the 
above content.  

3.1. Jaccard Distance Calculation 

Supposing ( ) { }| 0iji j aϑ = ≠  is the set of neighbor nodes of node i. ( )iϑ  is 
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the cardinality of the set ( )iϑ . ( ) ii kϑ = , ik  are the degrees of nodes i. The 
Jaccard coefficient is defined as follows:   

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )ij

i j i j
J

i j i j i j
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ
= =

+ −

∩ ∩

∪ ∩
          (2) 

here, ,i j  are two different nodes. ( ) ( )i jϑ ϑ∩  is the common neighbor nodes 
set of node i and j, ( ) ( )i jϑ ϑ∪  is the union of the neighbor nodes of node i 
and j. When ( ) 0iϑ =  and ( ) 0jϑ = , 1ijJ = . Jaccard distance is an index 
related to Jaccard coefficient. The lower the nodes similarity, the larger the Jac-
card distance. The Jaccard distance is defined as follows:   

( ) ( ) ( ) ( )
( ) ( )

1ij ij

i j i j
d J

i j
ϑ ϑ ϑ ϑ

ϑ ϑ

−
= − =

∪ ∩

∪
             (3) 

A toy network is used to illustrate how to calculate the distance between two 
different nodes, using Jaccard distance method obtain the Table 1.  

In Figure 1, ( ) { }1 3,4ϑ = , ( ) { }2 3,4,5ϑ = , ( ) { }3 1,2ϑ = , ( ) { }4 1,2ϑ = ,  
( ) { }5 2,6ϑ = , ( ) { }6 5ϑ = . Table 1 can be obtained based on Equation (3). 

3.2. Node Clustering of Networks 

The basic idea of hierarchical clustering method is to calculate the similarity 
between nodes by some similarity index, and to rank the nodes according to the 
similarity from high to low, then to merge the nodes step by step. The main steps 
are as follows: 

1) Obtain the adjacency matrix A of the network; 
2) Use Jaccard distance method calculating the distance between two different 

nodes to obtain the distance matrix of the network, construct n single-member 
clusters, the height of each cluster is 0; 

3) Use Average Linkage method calculating the distance between two different 
clusters to search for the nearest clusters ,i jC C , merging ,i jC C , reducing the 
number of all clusters by 1, take the distance between the two clusters merged as 
the height of the upper layer; 

4) Calculate the distance between the newly generated cluster and other clus-
ters in this layer. If the termination condition is satisfied, the algorithm will end, 
otherwise it will turn to (3). 

To better explain the steps of clustering, we use the example in Figure 2, a 
6-node toy network is clustered into one cluster. The obtained hierarchical clus-
tering dendrogram is shown in Figure 3.  

In Table 1, the closest distance is 3,4 0d =  on the Figure 2(a), so node 3  

and node 4 are grouped together; based on Equation (3), we know 1,2
1
3

d =  is  

the minimum distance on the Figure 2(b), so node 1 and node 2 are grouped 
together; according to Equation (1),  

( ) ( )1,2 3,4
1, 1 1 1 1 1

2 2avgdist C C = + + + =
×

, ( ) ( )1,2 5
1, 1 1 1

2 1avgdist C C = + =
×

, 
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Table 1. Distance matrix of the toy network. 

ijd  1 2 3 4 5 6 

1  1
3

 1 1 1 1 

2   1 1 1 2
3

 

3    0 2
3

 1 

4     2
3

 1 

5      1 

6       

 

 
Figure 1. A toy network.  

 

 
Figure 2. Node clustering of the toy network. 

 

 
Figure 3. Hierarchical clustering dendrogram of the toy network. 

 

( )1,2 6
1 2 5, 1

2 1 3 6avgdist C C  = + = ×  
, ( )3,4 5

1 2 2 2,
2 1 3 3 3avgdist C C  = + = ×  

,  

( ) ( )3,4 6
1, 1 1 1

2 1avgdist C C = + =
×

, ( ) ( )5 6
1, 1 1 1

1 1avgdist C C = + =
×

,  

the nearest distance is ( )3,4 5
2,
3avgdist C C =  on the Figure 2(c), the cluster of  

3,4C  and node 5 are grouped together; based on Equation (1),  
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( ) ( )1,2 3,4,5
1, 1 1 1 1 1 1 1

2 3avgdist C C = + + + + + =
×

,  

( )1,2 6
1 2 5, 1

2 1 3 6avgdist C C  = + = ×  
, ( ) ( )3,4,5 6

1, 1 1 1 1
3 1avgdist C C = + + =
×

,  

the nearest distance is ( )1,2 6
5,
6avgdist C C =  on the Figure 2(d), so the cluster of  

1,2C  and node 6 are grouped together; according to Equation (1), the nearest 
distance is  

( ) ( )1,2,6 3,4,5
1, 1 1 1 1 1 1 1 1 1 1

3 3avgdist C C = + + + + + + + + =
×

  

on the Figure 2(e), all nodes are grouped together into one cluster.  

3.3. Updating Edges of the Coarse-Grained Network 

Clusters are obtained according to the clustering steps which in Section 3.2, then 
based on the Equation (4) update the edge weight between different clusters to 
extract the coarse-grained network. ,s tC C  are two different clusters, and the 
weight of sC  to tC  are defined as:   

, , 1, 2, , ,s t
s t

xy
x C y C

C C
t

a
W s t N s t

C
∈ ∈

→ = = ≠
∑

��                 (4) 

In Figure 4, 1,2 1C = � , 3,4,5 2C = � , 6 3C = � ,  

1, 2
1 2

1 1 1 1 1 5
3 32

xyx y a
W ∈ ∈

→

+ + + +
= = =
∑ � �

� � � , 2, 1
2 1

1 1 1 1 1 5
2 21

xyx y a
W ∈ ∈

→

+ + + +
= = =
∑ � �

� � � , 

2, 3
2 3

1 1
13

xyx y a
W ∈ ∈

→ = = =
∑ � �

� � � , 3, 2
3 2

1 1
3 32

xyx y a
W ∈ ∈

→ = = =
∑ � �

� � � . 

4. Application and Simulation 

In this section, we apply the HCCG method to several typical complex networks. 
The several types of networks including: WS small world networks, ER random 
networks and BA scale-free networks. N is the size of initial networks; N�  is the 
size of coarse-grained networks, 2λ�  is the minimum non-zero eigenvalue of the 
coarse-grained network, 2 NR λ λ= � ��  is the eigenvalue ratio of the coarse-grained  
 

 
Figure 4. Updating the links weight between clusters.  
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network. The closer the values of 2λ�  and 2λ  (or R and R� ), the better the ef-
fect of the HCCG method on keeping the synchronizability of original networks.  

4.1. WS Small World Network 

In 1998, Watts and Strogatz [14] [15] proposed the algorithm for the formation 
of small world networks and established WS model, found that most real net-
works have short average path lengths and high clustering coefficients. The WS 
network is based on the random edge rewiring of regular networks, which stipu-
lated that there mustn’t be self-ring and multiple edges. Random reconnection 
probability 0p =  corresponds to complete regular networks and 1p =  cor-
responds to complete random networks. By adjusting the value of p, the transi-
tion from regular networks to random networks can be realized. Figures 5(a)-(c) 
shows the evolution curves of 2λ�  by using the HCCG method in WS small 
world networks with initial sizes 1000,2000,3000N =  respectively, and Fig-
ures 5(d)-(f) shows the evolution curves of R�  by using the HCCG method in 
WS small world networks with initial sizes 1000,2000,3000N =  respectively. 
For each cases, networks with average degrees 4,6,8k =  and rewiring proba-
bilities 0.1,0.2,0.45p =  are considered. Each simulation result was obtained by 
5 independent repeated experiments. 

As shown in Figures 5(a)-(c), in Type-I networks, when 0.1,0.2p = ,  
4,6,8k =  the synchronizability of original networks can be maintained well 

in the coarse-graining process. However, with the increasing of p, the effect has 
not been so good. When the p value is fixed, the smaller the k , the better the 
effect of the HCCG method. In the literature [16]: The clustering structure of 
networks contribute to improve the synchronicity of coarse-graining methods. 
The construction algorithm of WS small world model starts with the regular 
graph, at this time, on each nodes left and right sides is connected with 2k  
adjacent nodes respectively, the clustering structure of the network is clear rela-
tively, it is effective to keep the synchronizability of the original network by us-
ing the HCCG method; then the network is reconnected randomly with proba-
bility p. With the increasing of p and p, the clustering structure becomes weaker. 
The reason is that: k p×  is the number of the nodes randomly reconnected, 
when the network scale is fixed, the larger p and p are, the more random recon-
nected nodes, the weaker the clustering structure. Therefore, the smaller the 

k  and p, the better the efect of the HCCG method. 
As shown in Figures 5(d)-(f), in Type-II networks, the evolution curves of 

R�  are consistent with that of 2λ� . The reason is also consistent with in the case 
of Type-I networks. The difference is: when k  and p are quite large, the effect 
of the HCCG method in Type-II networks is better than that in Type-I networks.  

When p increases gradually, The minimum non-zero eigenvalue 2λ�  and the 
maximum eigenvalue Nλ�  increase simultaneously, 2λ�  increases much faster 
than Nλ�  which lead to the rise in 2 NR λ λ= � ��  [17], so with p increases the 
synchronizability of the network is enhanced. However, with the increase of  

https://doi.org/10.4236/cn.2019.111003


L. Liao et al. 
 

 

DOI: 10.4236/cn.2019.111003 29 Communications and Network 
 

 

Figure 5. (a)-(c) Evolution of 2λ�  by using the HCCG method in WS small world network; (d)-(f) Evolution of R�  by using the 
HCCG method in WS small world network.  

 
k  and p, the clustering structure of the network becomes weaker, the effect of 

maintaining original network’s synchronizability becomes not so good. So the 
HCCG method is more suitable for the networks with obvious clustering struc-
ture. 

4.2. ER Random Network 

In 1959, Erdos and Renyi, two Hungarian mathematicians, proposed algorithm 
for the formation of random graphs [18]. The ER random graph ( ),G N p  giv-
en N nodes firstly, the connecting probability between any two different points is 
p, ( )0 1p< < . Figures 6(a)-(c) shows the evolution curves of 2λ�  by using the 
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Figure 6. (a)-(c) Evolution of 2λ�  by using the HCCG method in ER random network; (d)-(f) Evolution of R�  by using the 
HCCG method in ER random network.  

 
HCCG method in ER random networks with initial sizes 1000,2000,3000N =  
respectively, and Figures 6(d)-(f) shows the evolution curves of R�  by using 
the HCCG method in ER random networks with initial size 1000,2000,3000N =  
respectively. For each case, the connecting probability is  

0.26,0.35,0.47,0.67,0.88p = . Each simulation result was obtained by 5 inde-
pendent repeated experiments. 

The eigenvalue spectral distribution of ER random networks is symmetrical, 
and as the connection probability p increases, the range of eigenvalue distribu-
tion shrinks rapidly, at the same time, 2λ�  and Nλ�  increase. The main reason 
is that with p increases, the number of isolated clusters decreases, the maximum 
degree maxd  increases, so Nλ�  is increased. However, the growth rate of 2λ�  is 
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faster than that of Nλ� , which leads to the increase of 2 NR λ λ= � �� . Therefore, 
from a view of statistical perspective, the synchronizability is gradually increased 
as the connection probability p increases [19]. Figures 6(a)-(c), in Type-I net-
works, when the size of the coarse-grained network is larger than or equal to that 
of original network’s 60 percent, although the difference of the value 2λ�  is 
quite big in the case of different p, the method can maintain the synchronizabil-
ity of the original network well. We can see that the larger p, the larger the value 
of 2λ� . So the larger p, the stronger the synchronizability of the network. The 
minimum size (that can maintain the synchronizability of original network) in 
the case of 0.88p =  is significantly smaller than that in the case of 0.26p = . 
Therefore, the larger p, the better the effect of the HCCG method, which is con-
sistent with the reference [19]. As shown in Figures 6(d)-(f), in Type-II net-
works, the HCCG method also can maintain the synchronizability of the original 
network well. So, the HCCG method is suitable for ER networks.  

4.3. BA Scale-Free Network 

In 1999, Baralsi and Albert established BA model to explain the scale-free prop-
erty of complex networks [19] [20]. They believed that most complex systems in 
the real world evolve dynamically, and these complex systems are open and 
self-organizing. Scale-free phenomena in real networks comes from two impor-
tant factors: Growth pattern and Priority connection mode. Another an impor-
tant discovery in network science research is that the degree distribution of net-
works can be described by appropriate power-law form. The degrees of nodes in 
these networks have no obvious characteristic length, so these networks are 
called scale-free networks. Figures 7(a)-(c) shows the evolution curves of 2λ�  
by using the HCCG method in BA scale-free networks with initial sizes  

1000,2000,3000N =  respectively, and Figures 7(d)-(f) shows the evolution 
curves of R�  by using the HCCG method in BA scale-free networks with initial 
sizes 1000,2000,3000N =  respectively. The larger the power-law exponents γ  
of the network, the weaker the heterogeneity. In the real complex networks, γ  
mostly range among 2 and 3. So we main consider the networks with power-law 
exponents 2.2,2.4,2.6,2.8,3.0γ = , Each simulation result was obtained by 5 
independent repeated experiments. 

Figures 7(a)-(c), In the case of Type-I networks, when the scale of 
coarse-grained network is larger than or equal to 60 percent of the original scale, 
the HCCG method can maintain the synchronizability of the original network 
well; Figures 7(d)-(f), In the case of Type-II networks, when the scale of 
coarse-grained networks is larger than 70 percent of the original scale, the 
HCCG method can maintain the synchronizability of the original network well, 
but subsequently, there is a sharp increasing in R� , at this time the average de-
gree of the corresponding network increases suddenly. This is consistent with 
the conclusion in the literature [21]: in Type-II networks, the synchronizability 
of the network is enhanced with the increasing of average degree; in Type-I  
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Figure 7. (a)-(c) Evolution of 2λ�  by using the HCCG method in BA scale-free network; (d)-(f) Evolution of R�  by using the 
HCCG method in BA scale-free network.  

 
networks, with the increasing of average degree, the synchronizability of the 
network basically unchanged. ER random networks have some emergence prop-
erties: for any given connecting probability p, either almost every graph ( ),G N p  
has a certain nature Q, or almost every graph ( ),G N p  does not have this 
property Q. The suddenly increasing of R�  whether mean that arising certain 
emergence properties in BA scale-free networks, the problem has yet to be stu-
died.  

5. Conclusion and Discussion 

Coarse-graining technique is an important method for studying large-scale 
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complex networks. In the HCCG method, the distance and similarity are defined 
simply. Jaccard distance is used to obtain the distance matrix of the network. 
Average Linkage method is used to find the nearest clusters. We use the hierar-
chical clustering method to cluster the network nodes, and update the weights of 
edges between clusters to extract the coarse-grained network. Massive simula-
tion experiments show the HCCG method can keep the synchronizability of the 
original network well, and the method more suitable for the network with ob-
vious clustering structure. Furthermore, the size of coarse-grained networks can 
be chosen freely in the HCCG method. However, the suddenly increasing of R�  
on BA scale-free network whether mean that certain emergence properties aris-
ing, the problem has yet to be studied. In addition, greedy algorithm is used in 
hierarchical clustering, thence the clustering result is local optimum, may not be 
global optimum, the problem can be solved by adding random effects, which is 
also the direction of our future researches. 
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