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Abstract 
In this paper, we consider a cost-based extension of intrusion detection capa-
bility (CID). An objective metric motivated by information theory is presented 
and based on this formulation; a package for computing the intrusion detec-
tion capability of intrusion detection system (IDS), given certain input para-
meters is developed using Java. In order to determine the expected cost at each 
IDS operating point, the decision tree method of analysis is employed, and 
plots of expected cost and intrusion detection capability against false positive 
rate were generated. The point of intersection between the maximum intru-
sion detection capability and the expected cost is selected as the optimal oper-
ating point. Considering an IDS in the context of its intrinsic ability to detect 
intrusions at the least expected cost, findings revealed that the optimal operat-
ing point is the most suitable for the given IDS. The cost-based extension is 
used to select optimal operating point, calculate expected cost, and compare 
two actual intrusion detectors. The proposed cost-based extension of intrusion 
detection capability will be very useful to information technology (IT), tele-
communication firms, and financial institutions, for making proper decisions 
in evaluating the suitability of an IDS for a specific operational environment. 
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1. Introduction 

In recent times, the ease of application of computer systems and availability of 
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internet services has dramatically changed the way businesses are transacted on 
the global scene. This has led to rapid developments in the field of computing 
and e-business. Consequently, the risk of unwarranted access to computer sys-
tems has increased in proportionate measures. There is no denying the fact that 
several cases of computer security attacks are reported daily across the globe. 
This calls for a serious concern for organizations and corporate bodies to deci-
sively step up the game of securing computer systems from intrusion. In order to 
ameliorate this ugly incident, individuals and organizations are currently dep-
loying passphrases, antivirus applications, and firewall to protect networks and 
sensitive data. Unfortunately, these algorithms have limited capabilities to secure 
information. For example, passwords of such algorithms can be compromised 
[1]. In addition, fire walls could be inefficient and lack the capacity to allow real 
time monitoring of security systems [2]. Therefore, the need for intrusion detec-
tion systems to improve system security through real time monitoring and de-
tection of attacks and intrusion can not be overemphasized. Intrusion detection 
system (IDS) refers to the mechanism for identifying an abuse and or compro-
mise of a computer system by attackers from internal and external sources [3]. 
Therefore, the task of securing all computer systems in an organization from all 
possible attackers is necessary and should be taken seriously [4]. 

Although there have been many research and development efforts in IDS, ap-
propriate evaluation of IDS is still a major problem. Some of the problems in-
clude 1) no standard benchmark, which makes comparison of IDS difficult, 2) 
dynamic changing environment, making it difficult to establish a fully descrip-
tive baseline, 3) issues with empirical evaluations (using data-set to test IDS) as 
there will always be a difference between data-set and real scenario. 

However, a key problem in intrusion detection is how to determine the essen-
tial metrics to appropriately evaluate IDS in objective terms, especially how to 
ascertain the capabilities of the IDS to categorise events as normal or intrusive 
[5]. Although several metrics such as the true positive rate, false positive rate, 
intrusion detection capability, receiver operating characteristics and several oth-
ers that measure different aspects of intrusion detection systems, have been re-
ported in the literature, it is very difficult to find a single metric that is com-
pletely adequate for the evaluation of the capability of an IDS, especially as it re-
lates to the cost of operation.  

In practice, a unifying metric could possibly be deployed to assist the admin-
istrator of a particular network in the choice of an appropriate detector from a 
pool of systems or enhance an existing configuration settings of a known intru-
sion detector system for a defined network environment [5] [6]. Intrusion detec-
tion capability, CID is a single unified metric proposed by Gu et al. [5] based on 
information theory. For the unified metric, if a given IDS is tuned with respect 
to the CID, it becomes very easy to ascertain or determine the particular operat-
ing point that gives the minimum level of uncertainty about a defined input 
event that occurred due to intrusion or not is determined. However, the CID me-
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tric does not take into consideration the expected cost associated with that oper-
ating point. In addition, it could be quite expensive to quantify in practical terms 
of interest like false alarm and detection rates, how to minimize the uncertainty 
of an attack. 

Thus, this study presents a cost-based extension of the intrusion detection ca-
pability (CID). Determining the corresponding costs complements and increases 
the scope of CID as an evaluation metric rather than just diminishing the uncer-
tainty of the intrusions as proposed in [7]. This extension provides the expected 
costs associated with an operating point and also specifies the best response de-
cision to take with respect to the detectors report. Specifically, the objective of 
this work is to find the corresponding cost of CID for the optimal operating 
point. This will provide an explanation for the IDS optimal point in terms of the 
least expected cost. Thus, the cost of tuning the detector to the optimal point will 
be determined. Another objective is to determine the optimal operating point of 
an IDS in terms of cost. This defines the ability of the IDS to classify events at 
the least expected cost. We then demonstrate how the proposed metric facilitates 
the comparison of IDSs. 

In particular, our contributions include the following: 1) a mathematical for-
mulation is presented using information theory and based on this formulation; 2) 
a package for computing the intrusion detection capability of IDS, given certain 
input parameters is developed; 3) to include cost function in CID, a decision tree 
approach is used as a method of analysis for evaluation; 4) the cost-based exten-
sion is used to select optimal operating point, calculate expected cost and com-
pare two actual intrusion detectors. Finally, the results in this paper are com-
pared with the results of related works reported in [5] [7]. 

The remainder of this paper is described as follows. Section II summarizes re-
lated works on intrusion detection. Section III discusses the theoretical back-
ground of intrusion detection as it relates to information theory and the asso-
ciated cost. Section IV presents the system architecture for software intrusion 
detection evaluation scheme (SIDES). Section V presents the results with some 
discussions on changing some of the parameters used in the evaluation. Section 
VI concludes the paper and states useful contributions as well as recommenda-
tions for future studies. 

2. Related Work 

Recently, there has been an unprecedented growth in technologies involving the 
use of computer applications. Consequently, this has given birth to rapid cases of 
denial of service attacks, proliferation of worms and virus attack, and increased 
activities of hackers have led to increased security concern at all levels of public 
and private-sector organizations. This has encouraged useful researches on IDS 
in recent years. In the existing literature, various models for IDS have been pro-
posed based on architecture, fault tolerance, and mobile agent platforms. Some 
authors compared the distributed model architecture with the traditional centra-
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lized models and demonstrated that the future of IDS is pointing towards dis-
tributed or hybrid architecture [8]. Other authors focused on the intrusion de-
tection evaluation problem with a focus on an elaborate comparison of various 
IDS schemes, investigate the performances of IDS, and obtaining the most effi-
cient configuration structure for IDS [5] [9] [10]. 

In 1998, a study sponsored by DARPA was carried out at the Lincoln Labora-
tory of Massachusetts Institute of Technology. Prior to this study, not much in-
formation on intrusion detection systems is available in the open literature. The 
1998 DARPA offline project actually opened up this interesting area of research 
following a detailed and elaborate report on the test of IDSs in a real world en-
vironment [11]. 

Gu et al. [5] argued that lack of a single unified metric makes it difficult to 
fine-tune and evaluate IDS. It was defined that an information theoretic measure 
is the ratio of the mutual information between IDS input and output, and the 
entropy of the input. Through numerical examples and experiments of actual 
IDSs, it was demonstrated that using the proposed metric, the best (optimal) 
operating point for an IDS can be obtained. In addition, the new metric can ob-
jectively compare different IDSs. 

In a similar study [12], a framework for the evaluation of intrusion detection 
was proposed. Previous studies [5] [7] [8] which introduced evaluation metrics 
such as the intrusion detection capability (CID), the expected cost, and the Baye-
sian detection rate were reviewed. The strengths and drawbacks of the individual 
performance metrics were investigated and analyzed in a closed form. In addi-
tion, a new IDS performance trade-off referred to as intrusion detection operat-
ing characteristics (IDOC) curves is introduced, and real world data were used 
to test the validity of the practical and simulated results. 

In the same vein, Sallay et al. [9] presented a report on the method of evaluat-
ing the performance of intelligent techniques available for the detection and 
prediction of unauthorized intrusion in security networks. The authors stressed 
the need for the development of an appropriate technique for enhancing the 
success rate of the predictions of a detector, and evaluating the cost implications 
in a situation where a wrong decision is made by the detector. In addition, the 
authors developed a model suitable for the training of detectors to be able to 
properly predict and detect intrusion in the network, based on the Bayesian ap-
proach. The findings reported in the paper showed that the proposed model 
predicted intrusion with a very high detection rate, with minimal false alarms. 
Furthermore, the authors opined that the model proposed would provide an ef-
fective and efficient detection of numerous network attacks with false alarm 
rates provided that there are available anomalies for training. 

Authors in [13] proposed a deep learning approach for intrusion detection 
systems. The model trains a well-known deep learning model called Deep Au-
to-Encoder in a greedy layer wise fashion so as to avoid local optima and overfit-
ting. A similar dataset (KDD-CUP’99) used in our work was utilized to validate 
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their model. Different from our work, they did not evaluate the cost of the intru-
sion detection capability. 

In [14], a more interactive approach to detecting and predicting anomaly 
based on IDS was proposed. This approach takes a metric described as F-score 
per Cost (FPC) for each attack predictor into consideration. Here, misclassifica-
tion of attack class “MC” is used to denote instances of wrong predictions of an 
attack as another attack class. The authors used three competitors in conjunction 
with “KDD CUP’99” competition to validate the authenticity of the proposed 
metric. Generally, the findings revealed an enhanced performance by the metric, 
showing an excellent understanding of the performance of the IDS. It was con-
cluded in the paper that the proposed scheme showed great improvements over 
existing intrusion detection systems. 

On performance metric scorecard-based approach to the evaluation of IDS 
associated with wireless networks [15], a set of performance metrics that find 
useful applications in wireless IDS were reported. Here, “scorecards” that have 
set of values suitable for evaluating and testing wireless IDS are employed. As a 
test, the proposed scheme was matched to a set of wireless IDS such as the Air 
defence Gaurd, kismet, and snort wireless. 

Authors in [16] provided a review of the metrics and performance evaluation 
of contemporary intrusion detection systems available in literature. The empha-
sis was on flexible approaches that are able to perform well with respect to the 
metrics highlighted. An empirical evaluation of the IDS was discussed via stan-
dard and custom metrics. Evaluation criteria used include correctly classified in-
stances (CCI) and incorrectly classified instances (ICCI). The outcome of this 
type of evaluation shows that different algorithms are required to process dif-
ferent types of attacks in the network based on the detection performance of dif-
ferent IDS. 

In a related study, Verma and Ranga [17] reported a statistical description of 
labelled flow-based CIDDS 001 dataset suitable for the evaluation of Anoma-
ly-based network IDSs. The k-nearest neighbor classification and k-means clus-
tering techniques were employed to measure the robustness of metrics in IDSs. 
From their evaluation results, both techniques perform well over CIDDS-001 
data-set. Metrics used include true positive rate, false positive rate, precision, 
detection rate and F-measure. Their simulation was done on Weka. Different 
from our work, they did not investigate the cost of utilizing their intrusion de-
tection system. Popoola et al. [18] proposed a feature selection technique for 
network intrusion detection using discretized differential evolution (DDE). 
Their technique was able to identify 16 features capable of classifying connec-
tions in NSL-KDD data-set with high accuracy. They used standard metrics used 
in the literature similar to [17]. They also did not consider cost of implementing 
their technique. 

In view of the foregoing, this study is aimed at developing a cost-based exten-
sion of the intrusion detection capability which has not been given a fair treat-
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ment in the existing literature. 

3. Theoretical Background 
3.1. Intrusion Detection and Information Theory 

Essentially, a quality IDS should be able to distinguish the events monitored 
(input data) as either intrusive or normal. Here, the IDS provide output infor-
mation usually in form of alarms, that should give a true picture of the events 
being monitored. This means that the IDS should be able to detect whether there 
is actually an intrusion or not at any given time. Therefore, the task of a well de-
signed IDS is to accept and analyze input data stream and give output alerts to 
show the presence of intrusion. On a careful analysis, each unit of an input data 
stream could be intrusive or normal and an IDS should be able to know and 
record these information for the attention of the administrator. This implies that 
the input of an IDS can be carefully modeled as a random variable X. For in-
stance, if the value of X is high (X = 1), there is an intrusion and if X is low (X = 
0), there is no intrusion and the traffic is normal. 

Similarly, the output information of a typical IDS can be modeled as a random 
variable Y. Here, when Y = 1, it means that there is an alert of an intrusion, and 
when Y = 0, there is no alert information from the IDS. In a situation where it is 
assumed that an IDS output is available, and this corresponds to each input in-
formation to the IDS [5]. By leveraging on the knowledge of information theory, 
a binary symmetric channel can be used to model intrusion detection as illu-
strated in Figure 1. As shown in the model, p(X = 1) denotes the base rate, 
which means the prior probability that there are intrusions in the input informa-
tion as detected by the IDS. This is denoted as B. 

The probability that an intrusion event can be regarded as normal is 
represented by ( )0 | 1p Y X= = . This is the false negative rate (FN), denoted as 
γ. Similarly, the probability that a normal event being misclassified as an intru-
sion is represented by ( )1| 0p Y X= = . This is the false positive rate (FP), de-
noted as α. From the foregoing, it can be assumed that X is the random variable 
depicting the IDS input and Y represents the random variable depicting the IDS 
output. Therefore, intrusion detection capability can be defined as: 
 

 
Figure 1. A binary symmetric model for intrusion detection [5]. 
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( )

;
ID

I X Y
C

H X
=                         (1) 

Given what we know from our knowledge of information theory about mutual 
information, we can rewrite CID as Equation (2). 

( ) ( )
( )

|
ID

H X H X y
C

H X
−

=                    (2) 

Ideally, mutual information captures the decrease in the level of uncertainty of 
the input by evaluating the IDS output. From (2), it can be deduced that CID 
gives the ratio of the reduction of uncertainty of the IDS input given the IDS 
output. In practice, the value of CID is in the range of [0; 1]. Here, a large value of 
CID implies that the IDS is more capable of accurate classification of events. 

The mutual information H(X) is defined as given in Equation (3), and the 
corresponding mutual information that an event has occurred H(X |Y) is given 
in Equation (4). 

( ) ( ) ( ) ( ) ( )log log 1 log 1
x

H X p x p x B B B B= − = − − − −∑         (3) 

( )
( ) ( ) ( ) ( )

( )
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1 log log 1

1 1 log 1 log 1

x y p x p y x p x p y x
H X Y

p y

B PPV B NPV

B NPV B PPV

γ γ

α α

−   =

= − − − −

− − − − − −

∑ ∑

      (4) 

Substituting the equations, CID we obtain Equation (5). 

( ) ( )
( ) ( ) ( )( ) ( ) ( )

log 1 log 1
1 log log 1 1 1 log 1 log 1ID

B B B B
C

B PPV B NPV B NPV B PPVγ γ α α
− − − −

=
− − − − − − − − − −

(5) 

In Equation (5), CID is intrusion detection capability, B is base rate, γ is false 
negative (FN) rate, α is false positive (FP) rate, PPV is positive predictive value 
and NPV is negative predicative value. 
• Base rate (B): This is a measure of the environment in which IDS operates. 

When B = 0 or B = 1 (the input is 100% normal or 100% intrusion). In prac-
tice, it can be quite difficult to measure or control the base rate in an IDS. 
This is because the base rate is often seen as an operation parameter partly 
due to the fact that it is used to measure the IDS environment. The estima-
tion of prior probabilities and base rate B has been presented in [8]. 

• False Positive (FP) Rate: This is the probability that the IDS outputs an alarm 
when there is no intrusion; 

• False Negative (FN) Rate: This is the probability that an IDS does not output 
an alarm when there is an intrusion; 

• Positive Predictive Value (PPV): This is the probability that there is an intru-
sion when the IDS output an alarm. That is, given IDS alarms, how many of 
them are real intrusions. It is mathematically expressed in Equation (6) [5] [8]; 

( )
( ) ( )

1
1 1

B
PPV

B B
γ

γ α
−

=
− + −

                    (6) 
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• Negative Predictive Value (NPV): This is the probability that there is no in-
trusion when the IDS does not output an alarm. That is given that there are 
no IDS alerts; does it mean that there are really no intrusions? Mathemati-
cally, it can be expressed in Equation (7) [8]. 

( )( )
( )( )

1 1
1 1

B
NPV

B B
α

α γ
− −

=
− − +

                   (7) 

3.2. Receiver Operating Characteristics (ROC) 

The receiver operating characteristics (ROC) curve shows a graphical illustration 
of the detection probability against false alarm rate. This means that the curve is 
capable of showing the probability of detection as seen by the detector at a de-
fined false alarm rate. Alternatively, the curve shows the detector’s captured false 
rate at a stated probability of detection [7]. During World War II, the ROC curve 
was used for the first time to analyze radar signals before its usage in signal de-
tection theory. The 1941 Harbor attack motivated the US army to embark on re-
searches on how to improve on accurate detection of the Japanese aircraft as 
seen from the radar signals captured by the US army. In order to achieve this 
critical task, they employ the principle of the Receiver Operating Characteristics 
[19] to determine the capabilities of the radar receiver operators to effectively 
distinguish between various signals captured from different radars. Generally, 
ROC analysis helps to select optimal solutions while disregarding sub-optimal 
solutions. 

3.3. Expected Cost 

For a given operating point of a particular detector, it is possible to determine 
the expected cost by analyzing the outputs of the decision tree as illustrated in 
Figure 2. 
 

 
Figure 2. Decision tree showing the detector’s expected cost [7]. 
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As shown in the decision tree of Figure 2, the squares represent sequence of 
actions, which are being controlled by the decision maker, while the circles 
represent uncertain events that are outside the control of the decision maker. 
However, these events give useful information on the operation of the detector, 
and subsequent actions to be taken on the reports. In addition, the decision tree 
can provide useful tips on the risks involved when some actions and events are 
combined. Again, it is seen that cost correspond to the consequences, and re-
flects the cost of a wrong decision. For example, the cost of not giving a response 
when there is no alarm (NA), and the cost of not providing a response when 
there is intrusion is represented with C. Here, the cost of no response when there 
is an intrusion is zero, and the higher the cost, the outcome reduces in value and 
less appreciated. It should be noted that the probability of occurrence is attached 
to each uncertain event. As seen on the decision tree, three probabilities P1, P2, 
and P3 are worth describing. P1 refers to the probability that the detector is able 
to report an alarm, P2 is the conditional probability that there is no intrusion 
given that the detector did not report an alarm, and P3 is the conditional proba-
bility that there is no intrusion given that the detector actually reports an alarm. 

Conventionally, the decision tree is read from left to right [20], and in order to 
calculate the expected cost associated with any given operating point, costs are 
carefully calculated for all paths on the decision tree, and the probabilities P1, 
P2, and P3 are computed. Without loss of generality, cost ratio is defined as in 
Equation (8); 

C
C

C
γ

α

=                             (8) 

where Cγ refers to the cost of responding to the presence of intrusion and Cα is 
the cost of responding to an intrusion where there is actually no intrusion. In 
most practical scenarios, it can be assumed that the cost of correct responses to 
intrusion is negligibly small or zero [21]. 

1) Expected Cost Calculation: The formulae depicting the total probability as 
shown in (9) and (10) can be used to evaluate the probabilities of the detector’s 
reports [22]. 

( ) ( ) ( ) ( ) ( )( )1 | | 1 1p P NA P NA NI P NI P NA I p pα γ= = + = − − +      (9) 

( ) ( ) ( ) ( ) ( ) ( ) ( )11 | | 1 1p P A P AN I P NI P A I P I p pα γ− = = + = − + −   (10) 

The Bayes Theorem as reported in [16] can be used to calculate the probabili-
ties of the state of the system with respect to the reports given by the detector as 
shown in Equations (11)-(14). 

( ) ( ) ( )
( )

( )( ) ( )( )
( )( )2

1

| 1 1 1 1
|

1 1
P NA NI P NI p p

p P NI NA
P NA p p p

α α
α γ

− − − −
= = = =

− − +
(11) 

( ) ( ) ( )
( ) ( )( )1

2

|
1 |

1 1
P NA I P I p pp P I NA

P NA p p p
γ γ

α γ
− = = = =

− − +
     (12) 

( ) ( ) ( )
( )

( ) ( )
( ) ( )3

1

| 1 1
|

1 1 1
P A NI P NI p p

p P NI A
P A p p p

α α
α γ

− −
= = = =

− − + −
   (13) 
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( ) ( ) ( )
( )

( ) ( )
( ) ( )3

1

| 1 1
1 |

1 1 1
P A I P I p p

p P I A
P A p p p

γ γ
α γ

− −
− = = = =

− − + −
   (14) 

As shown in Table 1, the expected cost, which is dependent on the detector’s 
report, is shown mathematically by finding the sum of the products of the prob-
abilities together with the cost of the node following the response. 

At any operating point, the expected cost of operating the IDS is given in Eq-
uations (15) and (16): 

( )( ){ } ( ) ( ) ( ){ }1 1

1 1

min , 1 1 1 min 1 , 1
1EX

p C p p p C p p
C

p p
γ α γ α− − − − −

= +
−

 (15) 

( )( ){ } ( ) ( ){ }min , 1 1 min 1 , 1EXC C p p C p pγ α γ α= − − + − −       (16) 

3.4. Selection of Optimal Operating Point 

In practice, the optimal operating point is described as the most suitable point 
achievable by the given IDS in terms of its intrusion detection capabilities, and 
minimization of the expected cost. Therefore, choosing an optimal operating 
point would be equivalent to the best choice of values for the parameters α and γ 
that can provide the desired least expected cost. 

3.5. The Base-Rate Fallacy 

On the concept of base-rate fallacy, there seems to be a very large difference be-
tween the amounts of events seen as normal and the amount of intrusion events, 
which are very few. This huge difference can results in the generation of multitudes 
of false alarms. Here, fallacy maintains that due to the low probability of a real at-
tack, especially when an IDS triggers an alarm, the probability of intrusion occur-
ring could be very minimal. Furthermore, Gu et al. [5] argued that the base-rate is 
significantly small as compared with the composite attacks in the evaluation da-
ta-set. Here, it is assumed that the base-rate content in the 1998 DARPA intrusion 
detection evaluation is given as p = 6.52 × 10−5, unless stated otherwise. 

4. System Architecture for Software Intrusion Detection  
Evaluation System  

Introducing the cost-based extensions on CID metric makes it achieve similar 
capability as ROC which integrates cost analysis and more practically beneficial, 
because the various operating points for the IDS will have an associated cost 
function [23]. The objective is to choose the operating point with the highest CID 
at the least expected cost. 

4.1. Determining the Optimal Operating Point CID 

A mathematical formula as shown in Equation (5) is derived from an informa-
tion theoretic point of view. To ease computation, a software intrusion detection 
evaluation system (SIDES) package is developed. The application provides a tool 
for calculating the intrusion detection capability CID of IDS using values from the  
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Table 1. Expected cost of response with respect to the detectors’ report. 

 RESPONSE 

Detectors Report No Response (NR) Response (R) 

No alarm (NA) ( )( )21
1 1

pp C
p p

γ
α γ

− =
− − +

 ( )( )
( )( )2

1 1
1 1

p
p

p p
α

α γ
− −

=
− − +

 

Alarm (A) 
( )

( ) ( )3

1
1

1 1
p

p C
p p

γ
α γ

−
− =

− + −
 ( )

( ) ( )3

1
1 1

p
p

p p
α

α γ
−

=
− + −

 

 
Receiver Operating Characteristics (ROC) reported in [24]. The ROC was based 
on the dataset reported in [11]. The proposed package was designed to receive 
metrics such as Base rate (B), False Positive rate (FP or α), False Negative rate 
(FN or γ), Positive Predictive Value (PPV), Negative Predictive Value (NPV) 
and calculates intrusion detection capability CID. 

4.2. Algorithm of the SIDES Package 

The algorithm for the SIDES package is as shown in Algorithm 1. 
 

Algorithm 1. Algorithm for SIDES package. 

1: Start 

2: Verification Page 

3: 

4: if Verification = TRUE then 

5: Step4 

6: else 

7: Step1 

8: end if 

9: Input α, Band (1 − γ) 

10: Calculate PPV← ( ) ( )
( )

1 1
1

B B
B
γ α

γ
− + −

−
−  

11: Calculate NPV← ( )( )
( )

1 1
1 1

B
B
B

α
γ

α
− −

−
+

−
−  

12: Calculate ( ) ( ) ( ) ( )log 1 log 1H B BX B B− − − −=  

13: Calculate 

( ) ( ) ( ) ( )( ) ( ) ( )| 1 log log 1 1 1 log 1 log 1H X Y B PPV B NPV B NPV B PPVγ γ α α= − − − − − − − − − −  

14: Calculate CID← ( ) ( )
( )

|H XH X
H X

Y−
−  

15: Output CID 
16: Stop 

 
Using this application and the Receiver Operating Characteristics (ROC) val-

ues reported in [24], the results obtained provide a useful guide in the choice of 
the optimal operating and a fair comparison of the IDSs. The point with the 
highest CID is regarded as the best ID capability of the system and gives the most 
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optimized operating point for the IDS. This is without recourse to the cost im-
plication of operating at this optimal point. It is therefore necessary to attach a 
corresponding cost to this point. 

4.3. Expected Cost 

To introduce cost function into CID, we adopt the decision tree analysis method 
[7]. We compute the corresponding cost attached to each value of CID. To have 
an acceptable trade-off between cost and capability, CID and CEX values are plot-
ted against α. The lowest point on the CEX curve is matched with the highest 
point on the CID curve to determine the optimal operating point. More specifi-
cally, the observable deviations in the values of the expected cost could be very 
useful metric suitable for the comparison of two intrusion detectors. 

4.4. Design of SIDES 

Text fields were used to receive input; False Positive rate (α), False Negative rate 
(γ) and Base rate (B). “Reset values” button was designed to clear the input val-
ues. Calculate PPV and calculate NPV buttons were designed to calculate PPV 
and NPV respectively. Calculate CID button was designed to calculate the intru-
sion detection capability of the IDS given the initial inputs received. The results 
panel is designed to display the calculated values PPV, NPV and CID. Back home 
button was designed to take the user back to initial information window. Exit 
button was designed to close the package. 

5. Results and Discussion 
5.1. Results of Analysis 

Results of CID values were computed using data extracted from two ROC curves 
reported in [7]. Here, two ROC curves derived from the results reported in [11] 
are used to represent two intrusion detection systems, denoted as IDS1 and IDS2, 
respectively. As in [7], IDS1 ROC curve can be approximated as given in Equa-
tions (17) and (18). 

( )( )1.191 0.6909 1 exp 65625.64γ α− = × − −              (17) 

( )( )1.191 0.4909 1 exp 11932.6γ α− = × − −              (18) 

Initial findings revealed that in 666,000 network session over a typical day, 
about 43 intrusion attempts were detected. Based on the assumption that the in-
trusion responses are achieved per session each time intrusion detectors are ap-
plied, the base-rate of intrusion is given as in (19). 

5Total number of intrusion attempts 43 6.52 10
Total number of network sessions 660000

B −= = = ×      (19) 

Hence, we can estimate the probability of intrusion by the base-rate 
56.52 10p −= × . The results obtained from estimating the probability of intru-

sion are as depicted in Figure 3 and Figure 4, for IDS1 and IDS2, respectively. 
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Figure 3. A plot of CID values computed for IDS1. 

 

 
Figure 4. A plot of CID values computed for IDS2. 

5.2. Selection of Optimal Operating Point 

In practice, the point at which the highest intrusion detection capability and its 
threshold yields the most suitable threshold is referred to as the optimal operat-
ing point. Here, the optimal operating point for IDS1 occurs at α = 0.003, 1 − γ = 
0.6807 corresponding to CID of 0.45567, while that of IDS2 occurs at α = 0.001, 1 
− γ = 0.47112, and CID of 0.2403. From the foregoing, IDS2 achieves a better ID 
capability than IDS1. By extension, comparing the two detectors based on the 
above analysis, we can conclude that IDS2 is better than IDS1. However, this is 
without recourse to the cost of operating at the selected optimal point. 

5.3. Minimum Expected-Cost Operating Point 

For the derivation of minimum expected-cost operating point, the decision tree 
as shown in Figure 2 is adopted. Here, the tree is evaluated from the right hand 
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side to the left. For instance, if the cost ratio C equals 1000, this means that it 
could be a thousand times more expensive to fail in response to an intrusion 
than to respond to no intrusion. Assume also that the base rate (probability of 
intrusion) were 6.52 × 10−5 as in [5]. 

From Figure 5, the maximum CID for IDS1 occurs at α = 0.0003, with a CID 
value of 0.4557. The minimum corresponding cost occurs at α = 0.0003, with an 
expected cost of 0.0211. Hence, the optimal operating point for IDS1 is 0.4557, 
0.0211. 

From Figure 6, the maximum CID for IDS1 occurs at α = 0.0010, with a CID 
value of 0.2403. The minimum corresponding cost occurs at α = 0.0010, with an 
expected cost of 0.0355. Thus, the optimal operating point for IDS2 is 0.2403, 
0.0355. 
 

 
Figure 5. A plot of CID and CEX values computed for IDS1. 

 

 
Figure 6. A plot of CID and CEX values computed for IDS1. 
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5.4. Comparison of IDS1 and IDS2 

A comparative analysis of IDS1 and IDS2 is as shown in Table 2. 
IDS1 is a better detector with a CID of 0.2154 per session higher than the CID of 

IDS2 and an expected cost of 0.0144 per session less than that of IDS2. The effect 
of the various input parameters on CID and CEX is examined. 

5.5. Effect of Different Base Rates on CID 

Ideally, an IDS may not be able to effectively control the base rate but it is a very 
important factor to be considered when presenting reports on intrusion detec-
tion capability because the base rate defines the environment of operation [5]. 
To study the effect of low base rate on Intrusion Detection capability, CID values 
were computed for different base rate values. The impact of different base rates 
on CID is as shown in Figure 7. 

From Figure 7, assuming an IDS whose base rate B = 10−4, FP = 0.1 and FN = 
0.1, In a case where the value of FP is decreased from 0.1 to 0.01, correspon-
dingly, CID changes from 0.17 to 0.36. However, if FN is decreased by the same 
magnitude, the CID only changes from about 0.17 to 0.20. This shows that CID is 
more responsive to variations in false positive (FP) than false negative (FN). 
Hence, for low base rates, reducing FP will improve CID more than the same re-
duction in FN. 
 
Table 2. Analysis of IDS1 and IDS2 when C = 1000 and p = 6.52 × 10−5. 

 IDS1 IDS2 

α 0.0003 0.0010 

1 − γ 0.3699 0.4711 

CID 0.4557 0.2403 

CEX 0.0211 0.0355 

 

 
Figure 7. The effect of Base rate (B) for changes in α against fixed γ. 
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5.6. Effect of False Positive on CID 

The base rate B was fixed and for each value of FP (α), the FN (γ) values were 
varied and the corresponding CID calculated. A plot of False Positives rates 
against CID is shown in Figure 8. 

From Figure 8 (B = 0.0001), when FP (α) is increased from 0.01 to 0.02 for γ 
= 0.01 (a difference of 0.01),CID changes from 0.44 to 0.37 (a difference of 0.07). 
However, when FP changes from 0.01 to 0.03 (a difference of 0.02), CID changes 
from 0.44 to 0.33 (a difference of 0.11). Hence, for low base rate B, little changes 
in False Positive result in large changes in CID as shown in Figure 8. 

5.7. Effect of False Negative Rate on CID 

The base rate B is fixed while for each value of FN, the FP values are varied and 
the corresponding CID calculated. A plot of False Positive rates on against CID is 
as shown in Figure 9. 

From Figure 9 (α = 0.001), when FN is increased from 0.1 to 0.2 (a difference 
of 0.1), CID changes from 0.58 to 0.49 (a difference of 0.09). However, when FN 
changes from 0.1 to 0.15 (a difference of 0.05), CID changes from 0.58 to 0.54 (a 
difference of 0.04). Only large changes in FN will significantly affect CID. Hence, 
for low base rate B, only a large variation of FN (γ) have a significant effect on 
CID as shown in Figure 9. 

5.8. Effect of Cost Ratio C on Expected Cost 

As pointed out in [1], the major drawback in the expected cost analysis pre-
sented in Section V is that the cost ratio C is chosen subjectively. Thus the effect 
of cost ratio on the expected cost is examined. 

From Figure 10, it is shown that the various plots of C indicate that the 
sharpest drop in the expected cost is between α = 0.0001 and α = 0.0002. As the 
FP increases, the expected cost remains fairly constant. This shows that to mi-
nimize expected cost, it is imperative that FP (α) is very low. This agrees with 
 

 
Figure 8.The effect of FP (α) on CID. 
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Figure 9. The effect of FN (γ) on CID. 

 

 
Figure 10. Effect of cost ratio C on Expected cost CEX. 

 
Gu et al. [5] that in realistic IDS operation environment, it can be reasonably 
assumed that 1B α γ< < . Furthermore, Figure 10 implies that for large val-
ues of FP, the expected cost remains the same. 

6. Conclusion and Future Work 

In this paper, the concept of cost analysis in intrusion detection capability (CID) 
in a typical IDS environment with a low base rate is presented. Information 
theoretic analysis is used to model IDS and determine the intrusion detection 
capability of the detector. The decision tree method was introduced to compute 
the expected cost of operation for each operating point. Findings revealed that 
the optimal operating point is the point of intersection between the maximum 
CID and the expected cost curve. Cost-based extension of CID can be a very useful 
method to appropriately evaluate IDS to determine the type and capabilities of 
an IDS to be deployed in a particular network. This is of great importance in de-
termining the suitability of an IDS in a given environment regarding the ability 
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of the detector to classify events appropriately at the least expected cost. Future 
work could include investigating the impact of cost ratio on the expected cost. In 
addition, future studies can compare the results of this study with other func-
tional forms of the ROC curves (power, polynomial and exponential curves). 
Furthermore, future studies could be directed towards a single metric mathe-
matical model that combines cost analysis with CID.  
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