
Communications and Network, 2018, 10, 180-195
http://www.scirp.org/journal/cn

ISSN Online: 1947-3826
ISSN Print: 1949-2421

DOI: 10.4236/cn.2018.104015 Nov. 5, 2018 180 Communications and Network

Performance Comparison and Simulink Model
of Firewall Free BSD and Linux

Fontaine Rafamantanantsoa*, Haja Louis Rabetafika

University of Fianarantsoa, Fianarantsoa, Madagascar

Abstract
In recent years, the number of users connected to the Internet has expe-
rienced a phenomenal growth. The security of systems and networks become
essential. That is why the performance of Linux firewall and Berkeley Soft-
ware Distribution (BSD) are of paramount importance in security systems
and networks in all businesses. The following evaluates the firewall based tool
that we have developed in Python and Scapy, which performs time measure-
ments by serving packets traversing the firewall test. Several results were pre-
sented: the speed of the firewall under FreeBSD in terms of service time
compared to the speed of the firewall under Linux as the number of rules in-
creases; the speed of the filtering rule of a firewall stateless in terms of service
time compared to the filtering rule of an active firewall gradually as the num-
ber of rules increases. Then, for care of simplicity, we have presented the
queue M/M/1/K to model the performances of firewalls. The resulting model
was validated using Simulink and mean squared error. The analytical model
and Simulink of the firewalls are presented in the article.

Keywords
Firewall, Ipfw, Iptables, Python, Scapy, Simulink, Statefull Firewall,
Stateless Firewall

1. Introduction

The Web has become increasingly popular. The number of Internet users con-
tinues to increase; therefore the number of malicious sources and hacking be-
comes significant. That is why firewalls such as IP cop Linux and BSD PF sense
are of paramount importance.

Various studies [1] [2] [3] proposed modeling, analysis, simulation and man-
agement of firewall policy; the work [4] [5] [6] presented designs, implementa-

How to cite this paper: Rafamantanant-
soa, F. and Rabetafika, H.L. (2018) Perfor-
mance Comparison and Simulink Model of
Firewall Free BSD and Linux. Communica-
tions and Network, 10, 180-195.
https://doi.org/10.4236/cn.2018.104015

Received: July 27, 2018
Accepted: November 3, 2018
Published: November 5, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/cn
https://doi.org/10.4236/cn.2018.104015
http://www.scirp.org
https://doi.org/10.4236/cn.2018.104015
http://creativecommons.org/licenses/by/4.0/

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 181 Communications and Network

tions firewall with software and hardware tools. [7]-[16] studied firewall filtering
management and classifying packets in a secure architecture. In this paper there
is a presentation tool which was developed in python and Scapy 2.2.0. Its inter-
face was performed with Qt4 designer to measure the performance of the fire-
wall. There is also the presentation of the model in Simulink.

Optimization settings of the operating system and firewall are solutions to
improve performance. This task is not easy because the optimum values of these
parameters vary depending on hardware configurations and the law of the re-
quested service to the firewall.

This paper being divided into 4 sections, we will evaluate and model the per-
formance of the firewall. In Section 1 we present the performance of the firewall.
Configuration experiments and experimental results of firewalls will be consi-
dered respectively in Section 2 and 3. A simple model to represent the behavior
of a firewall will be given at the end of the article.

2. Performance of Firewall

A firewall is a device used to prevent unauthorized access to network.
To properly evaluate the performances of a firewall, the system must meet the

following conditions:
 A computer on which the firewallis settled.
 A client machine that is the tool for performance measurement that was de-

veloped in Python and Scapy.
 A network connecting the firewall and the client machine

Five metrics are used to measure the ability of the firewall:
 The number of requests processed per second is a measure of the number of

requests set by the tool Scapy for a period of time.
 The size of the packet to be sent to the firewall is set to 512 bytes equal to the

size of the Ethernet frame.
 The number of rules attached to the firewall.
 The status of the firewall that is stateless or has a state.
 Access in terms of rank in the firewall rule.

2.1. Methodology for Performance Analysis

The main steps for performance evaluation are:
 Sending packets to the firewall by specifying metrics.

From the Scapytool, we send the packets from the computer with two network
cards connected to a network with the firewall which also has two network cards
ensuring the return packets are synchronized by the clock between machines.
 Analysis of the pcap file generated by the sending packet.
 From the written paper to the pcap data, we get the time departures and ar-

rivals of packets.
 Analysis of the performance of the firewall.

We calculate the service time E[S] is sending the packet. We compare the
speed of sending time for each metric.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 182 Communications and Network

Figure 1 shows the experimental configuration.
Figure 1 shows that the time E[S] is the mean service time for a request as the

packet traverses the firewall. E[S] can be calculated by subtracting the time be-
tween output and input firewall packet time. Packets are sent from the machine
where the benchmark is installed i.e. where the tool developed in python and
Scapy is installed. The machine has an IP address 172.16.1.230 with the first
network card for the firewall and the first network card having an IP address
172.16.1.232. After arriving at its firewall the packages will be returned via the
second network card with an IP address 172.16.2.232. The firewall on the ma-
chine where the benchmark is set by the second network card with an IP address
172.16.2.229 is to ensure clock synchronization between the machines. Access to
the firewall rule in terms of rank is the last rule of each measure.

2.2. Architecture of Firewall

The function of the firewall is twofold: to strengthen security policy and log
network traffic. Strengthening of a security policy based on whether to accept or
reject a connection based on specific filtering rules to force a network to comply
with a given policy. Logging in turn, is to record all aspects of trafficking in or-
der to better analyze results. A firewall is a key component in designing a secure
network.

However, being a transit point for all network traffic, a firewall can also be a
single point of failure. Therefore, its choice and its location are import tasks for
securing network infrastructures.

Figure 2 shows the architecture of firewall considered.

3. Configuring Experiments

The characteristics of the test system used are shown in Table 1.
Table 1 summarizes the hardware and software used for the experiments.

FreeBSD 9.0 was installed in dual boot on the same machine without any hard-
ware modification with Ubuntu 13.10 operating system using the last version
1.4.18 IP tables.

To obtain reliable results, each experiment was launched for five minutes.
E[S] is the service time of the packet passing through the firewall.

Table 1. Characteristics of hardware and software used in the experiments.

 Firewall Client

CPU 2.60 GHz 2.40 GHz

NIC
3COM and Qualcomm Atheros

Attansic
Realtek Semiconduct or and carte VIA

Technonolies

RAM 2Go 1Go

Operating System Ubuntu 13.10 et FreeBSD 9.0 Debian 7.0

Firewall iptables and ipfw

Tool Scapy and python

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 183 Communications and Network

Figure 1. Experimental configuration.

Figure 2. Architecture of firewall.

3.1. Presentation of the Measurement Tool

Python is an object-language, multi-paradigm and multi-platform program-
ming. It promotes structured imperative and object-oriented programming.

Scapy is a free software for handling network packets written in python lan-
guage.

Qt (pronounced officially cute in English (/kju: t/) commonly but mistakenly
pronounced QT) is:
 Object-oriented and developed in C++ Qt Development Framworks, a sub-

sidiary of Digia PLC.
 In some ways a framework when used for designing graphical user interfaces

or in the application architecture using the mechanisms of signals and slots
for example.

We developed in python and Scapy 2.2.0 and its interface was made with Qt4
Designer. This tool sends packets from the machine tool with the python Scapy
through the firewall and back to the machine tool with the python Scapy, on ar-
rival at the source host through the second network card to ensure the clock
synchronization.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 184 Communications and Network

3.2. Extracted from Source Code

4. Experimental Results Firewall

A series of experiments were conducted to examine the performance of the fire-
wall.

Taking measures to assess performance, varying the number of rules and the
rank of the rule for the firewall, we performed measurements with UDP and
TCP protocols. First, all access has been granted, i.e. the chain input, output and
transfer to the firewall are open. After the input and output channels were
closed, but the transfer line remained open.

We conclude that success to cross the firewall depends on the chain transfer
even if the input and output channels are closed.

The Matlab tool was used for the activities of modeling, curves and compari-
son with firewalls and stateless firewalls; in particular depending on the number
of rules using both TCP and UDP protocols.

Figure 3 shows a graphic interface of the tool for measuring the performance
of the firewall.

Description of the Measurement Tool

1) This is the text area of the destination IP address that is the IP of the firewall
where packets are sent. Radio buttons are used to check the exact type of
protocol used.

2) This is the text area of the port used by the tool when sending the packets.
3) This is the text area of the number of rules attached to the firewall that are

automatically generated by the tool.
4) This is the text area of the number of requests sent per second; its requests

will be sent to the firewall.
5) This is the text area for the second period of the experiment. Here it is five

minutes.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 185 Communications and Network

Figure 3. Graphical interface tool for measuring the performance of the firewall.

6) This is the text area of the size in bytes of the packet sent. Here it is set to 512

bytes equal to the size of the Ethernet frame.
7) This is the text area of the rank of the rules to the firewall.
8) This is the display area of the result of the experiment as the time of service

obtained is displayed, as well as times of departures and arrivals of packets.
The start button is used to start the measurement after the text boxes are
filled.

The stop button is used to stop the measure during launch.
The curve button is used to display the curve representative of the service time

E[S] based on the number of rules to the firewall.
Table 2 shows the service time E[S] as a function of number of rules under

FreeBSD and Linux using TCP.
Figure 4 shows the curve of the service time E[S] as a function of number of

rules under FreeBSD and Linux using TCP.
Figure 4 shows that FreeBSD and Linux using TCP, the average service time

request protocol for E[S] as a function of the number of rules slowed gradually
as the function of the rules increases. This can be explained by the slowdown in
service time caused by the increase in number of rules caused by the increase in
access to the rules of the firewall time.

The formula of the curve of the service time E[S] as a function of number of
rules in FreeBSD using TCP Matlab is given by:

21.5 05 0.0027 0.031y e x x= − + +

The formula of the curve of the service time E[S] as a function of the number
of rules under Linux using TCP Matlab is given by:

21.5 05 0.0027 0.045y e x x= − + +

Table 3 shows the service time E[S] as a function of the number of rules un-
der FreeBSD and Linux using the UDP protocol.

Figure 5 shows the curve of the service time E[S] as a function of the number
of rules under FreeBSD and Linux using the UDP protocol.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 186 Communications and Network

Figure 5 shows that FreeBSD and Linux using UDP, the average service time
request protocol for E[S] as a function of the number of rules slowed gradually
as the number of rules increases. This can be explained by the increase of the
rules caused by the increase in access time to the rules of the firewall.

The formula for the curve of the service time E[S] as a function of the number
of rules in FreeBSD using UDP Matlab is given by:

Figure 4. Curve service time E[S] as a function of number of rules under FreeBSD and
Linux using TCP.

Figure 5. Curve service time E[S] as a function of number of rules under FreeBSD and
Linux using UDP.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 187 Communications and Network

Table 2. Service time E[S] as a function of number of rules under FreeBSD and Linux
using TCP.

FreeBSD Linux

Number of the rules E[S] Number of the rules E[S]

10 0.05 10 0.07

20 0.078 20 0.088

30 0.11 30 0.12

40 0.12 40 0.13

50 0.13 50 0.15

60 0.135 60 0.155

70 0.14 70 0.16

80 0.144 80 0.166

90 0.15 90 0.17

100 0.156 100 0.174

Table 3. Service time E[S] as a function of number of rules under FreeBSD and Linux
using UDP.

FreeBSD Linux

Number of the rules E[S] Number of the rules E[S]

10 0.09 10 0.10

20 0.14 20 0.15

30 0.18 30 0.19

40 0.22 40 0.23

50 0.24 50 0.25

60 0.26 60 0.27

70 0.27 70 0.28

80 0.28 80 0.30

90 0.29 90 0.31

100 0.30 100 0.32

22.8 05 0.0052 0.046y e x x= − + +

The formula for the curve of the service time E[S] as a function of the number
of rules under Linux using the UDP protocol Matlab is given by:

22.5 05 0.0051 0.058y e x x= − + +

We can conclude that its figures service time E[S] with FreeBSD is faster than
service time E[S] under Ubuntu. So the firewall FreeBSD is faster than Ubuntu
Linux firewall.

Table 4 shows the filtering rule of stateless firewalls and stateful firewalls, ser-
vice time E[S] as a function of the number of rules.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 188 Communications and Network

Figure 6 shows the curve of the filtering rule firewall stateless and statefull
firewall, service time E[S] based on the number of rules.

Figure 6 shows the rule with the filtering stateless firewall and statefull fire-
wall, the average service time for a request E[S] as a function of number of rules
gradually slowed. This can be explained by the slowdown in service time caused
by the increase in access to the rules of the firewall time.

The formula for the curve of the filtering rule of stateless firewall with Matlab
is given by:

22.4 05 0.00056 0.029y e x x= − +−

Table 4. Rule filtering firewall stateless and stateful firewall, service time E[S] as a
function of number of rules.

Stateless firewall Statefull firewall

Number of the rules E[S] Number of the rules E[S]

10 0.02 10 0.03

20 0.03 20 0.04

30 0.04 30 0.05

40 0.05 40 0.06

50 0.06 50 0.07

60 0.07 60 0.09

70 0.10 70 0.14

80 0.15 80 0.18

90 0.18 90 0.19

100 0.21 100 0.23

Figure 6. Curve rule filtering firewall stateless and statefull.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 189 Communications and Network

The formula for the curve of the filtering rule of statefull firewall with Matlab
is given by:

22.1 05 1.3 05 0.028y e x e x−= − − +

We conclude by these figures that the rule of filtering stateless firewalls is
faster in terms of service time compared to the filtering rule statefull firewalls.
This speed in time of stateless firewall is relative to the statefull firewalls due ve-
rification packets to a connection over it. That is to say, they check that each
packet of a connection is the result of the previous packet in the other direction;
whereas with stateless firewalls, it looks at each packet independently of the oth-
ers and compared to a list of preconfigured rules.

5. Analytical Model Firewall

For a period of five minutes the simulation, we obtain this model.
By analyzing data from the log files located in /var/log firewall University of

Fianarantsoa at the National School of Computer Science, that is to say by im-
porting data with the software located in Matlab script, this software gives an
average value of the number of requests per second λ 100, we conclude that the
arrival traffic follows the law of Poisson, the number of objects used in a given
period is exponential, number of firewall is 1 and the length of the queue is a
fixed constant.

We see that with the number of requests per second 100, the firewall at the
University of Fianarantsoa in the National School of Computer does not choke.
So the queue type: M/M/1/K.

λ: Arrival rate;
µ: Service rate.
Define the traffic intensity (Traffic Intensity) or occupancy rate ρ server (rho)

by:

µ
λρ =

When a customer arrives when there is already a k customers in the system.
The queue is stable without condition.
p(n): stationary probability;
k: capacity of the line, either waiting or in service;
n = 0, …, k.

() ()0np n ρ ρ=

()
0

1
k

n
p n

=

=∑

() 1
0

1 10
1k kn

n

p ρ
ρρ +

=

−
= =

−∑

Finally () 1

1
1

n
kp n ρ ρ

ρ +

−
=

−
.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 190 Communications and Network

The service takes place with a rate in each state where the system contains at
least one client

() ()
1

1
1

1 0
1

kk

k
n

p n p ρ ρµ µ µ
ρ

+

+
=

− = − =  −∑

The utilization rate is the probability that the server of the queue is busy:

() () 1
1

11 0
1

kk

k
n

U p n p ρρ
ρ +

=

− = = − =  −
∑

Average Customer Q

() () 1

1
1

1 1
1 1

k kk

k
n

k k
Q np n

ρ ρρ
ρ ρ

+

+
=

− + +
= =

− −∑

Average residence time R

QR
X

=

6. Simulation with Matlab

By varying the length of the wire waiting 10 to 2000 with a default length of the
firewall equal to 1000, we also vary from 20 to 120 the number of requests sent
per second λ for each length of wire waiting in the block Event-Based Random
Number. Here is the exponential distribution, to each value of λ for a length of
thread waiting we run the Simulink model for 5 minutes and we got the curves
of the simulation. After we pooled data obtained from all the values of λ for a
length of wire waiting and we got the final curve.

Figure 7 shows the model in Simulink.
In this Figure 7, the bloc Event-Based Random Number generates in a ran-

dom manner based on a number events. It generates a new random number each
time an entity arrival on the server occurs. Here is the exponential distribution,

Figure 7. Model Simulink.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 191 Communications and Network

the mean value is equal to 1
λ

 where λ is the number of requests sent per

second we ranged from 20 to 120. T after the port, there our binding block
Time-Based entity Generator is designed to generate entities that meet the crite-
ria that we specify. The inter-generation time is the time interval between two
successive events of generation. After the IN port, it will link to the Schedule
Timeout block which determines a timer event for each entity arrival. This block
refers to a beginning of a path of the entity that is relevant to the time. After the
IN port, it will link to the block FIFO queue which is a first in, first out queue
that’s length was varied from 10 to 2000 by the input sequence. Port #n, w, #to,
TO are respectively related to scope, Queue Length signal which shows the curve
length of the queue, Queue waiting time witch shows the curve of latency queue,
Timeout which shows the flow curve and Instantaneous Entity counting scope
that shows the curve of the number of packets waiting.

After the IN port, it will block binding Cancel Timeout cancels an expiration
event name as the block timing schedule previously provided to the entity arriv-
al. It allows us to limit the time that the entity passes along the paths of the entity
designated in the simulation. This means it blocks one end of a path of an entity
that is relevant for the time. The possibility of canceling event timeout before
they occur allows us to apply the time an entity path. After the IN port, it will
link to the Single Server block which represents the firewall in our case and ports
w and util are linked respectively to signal scope server utilization which shows
the curve using the server, the server waiting time which shows the latency serv-
er, port t is related to the block Event-Based Random Number, by the mean val-
ue is equal to the average value of E[S]. After the IN port, it will link to the Enti-
ty Sink block which provides a way to end a path entity.

Table 5 shows the use of the server.
For the length of queue equal to 1000 we got the following lines: Figure 8

shows the curve of server usage.

6.1. Resolution of the Mean Squared Error

The mean squared error is a measure of the average error, weighted by the
square of the error. It answers the question, “what is the magnitude of the error
of prediction”, but does not indicate the direction of errors. Because it is a quan-
tity in square, the square error is influenced more by large errors than smaller
errors. Its range is 0 to infinity, a score of 0 being a perfect score.

Here the mean squared error represents the difference between the curve of
the model and the measured curve.

()2

1

1 N

i i
i

MSE F O
N =

= −∑

where Fi = the prediction values of the parameter;
Oi = the value corresponding verification (observed or analyzed);
N = the number of check points (grid points or observation points) in the ve-

rification area.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 192 Communications and Network

Figure 8. Server utilization curve.

Table 5. Use server.

Number of requests per second λ Using the server

20 0.33

40 0.62

60 0.70

80 0.85

100 0.98

120 0.99

6.2. Calculating the Mean Squared Error Using the Server

0.000279072
6

MSE =

MSE = 0.00682.
The mean squared error of the server utilization is very low, therefore the

model curve of the measured curve and the use of the server are similar.
Curve using the server shows that there is strong growth until congestion

firewall and reach the maximum value equal to 1 because the number of treat-
ments increases and at the time of congestion firewall curve becomes constant.

This can be explained by the increased length of the queue causes the late ar-
rival of rejection according to the number of requests per second since the
processing queue is long and the length of the queue decreases, the arrival of re-
jection is advanced according to the number of requests per second for
processing the queue is short.

Table 6 shows the throughput according to the number of requests per
second.

Figure 9 shows the flow curve as a function of the number of requests per
second.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 193 Communications and Network

Table 6. Table flow.

Number of requests per second λ Rate

20 21

40 42

60 59

80 78

100 99

Figure 9. Flow curve based on the number of requests per second.

6.3. Calculating the Mean Squared Error Rates

()2

1

1 N

i i
i

MSE F O
N =

= −∑

where
Fi = the prediction values of the parameter;
Oi = the value corresponding verification (observed or analyzed);
N = the number of check points (grid points or observation points) in the ve-

rification area.

0.000279072
6

MSE =

MSE = 0.00682.
The mean squared error rates are very low; therefore the model curve and the

measured curve rates are similar.
The rate curve shows that there are growing rates according to the length of

the queue until the arrival of rejection. And when the rejection rate curve de-
creases, it can be explained by the rejection of the firewall to check for rejection.
If the length of the queue increases, the arrival of the discharge is delayed ac-
cording to the number of requests per second. If the processing queue is long
and if the length of the queue decreases, the arrival of rejection is advanced ac-
cording to the number of requests per second for processing the queue is short.

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 194 Communications and Network

We can conclude that in terms of resources if the length of the queue increases
the percentage of the Central Processing Unit (CPU) used increases, this can be
explained by the growth of treatment until the arrival of rejection and decrease
in the length of the queue causes the decrease in the percentage of CPU used
compared to high waiting queue, this can be explained by the decrease in treat-
ment until the arrival of rejection.

We set the default length of the queue to 1000.

7. Conclusion

This paper presented the performance evaluation and modeling of a firewall. In
Section 1 we presented the performance of the firewall. Configurations, experi-
ments and experimental results of the firewall are examined respectively in Sec-
tions 2 and 3. A simple mode which represented the behavior of a firewall is
given at the end of the article. We developed a tool in python and Scapy 2.2.0
and its interface has been achieved with Qt4 designer which sent packets from
the machine through the firewall and back to the machine with the Python Sca-
pytool. On arrival at the firewall, packets are sent to the source host through the
second network card to ensure clock synchronization. Our measurements have
led us to conclude that the filtering rule of stateless firewall is faster in terms of
service time compared to the filtering rule of statefull firewall. We compared two
filtering rules as they are increasingly implemented on the firewall. The mean
squared errors are very low so the curves are similar. Our measurements have
also led us to conclude that the firewall FreeBSD is faster in terms of service time
compared to the for Linux firewall.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Al-Shaer, E. and Hamed, H. (2004) Modeling and Management of Firewall Policies.

IEEE Transactions on Network and Service Management, 1, 2-10.

[2] Fulp, E.W. (2005) Optimization of Network Firewalls Policies Using Directed Acyc-
lic graphs. Proceedings of the IEEE Internet Management Conference, Wake Forest
University, 1-2.

[3] Zaliva, V. (2008) Firewall Policy Modeling, Analysis and Simulation: A Survey
Source-Forge. Tech Rep.

[4] Wagner, A. and Consecom, A.G. (2012) Firewall Analysis by Symbolic Simulation,
Bern University of Applied Sciences, Biel Switzerland. Ulrich Fiedler, Berlin, Zu-
rich.

[5] Schuba, C.L. (1997) On the Modeling, Design, and Implementation of Firewall
Technology. Purdue University, West Lafayette.

[6] Qui, L.L., Varghese, G. and Suri, S. (2001) Fast Firewall Implementations for Soft-
ware and Hardware-Based Routers. Proceedings Ninth International Conference on

https://doi.org/10.4236/cn.2018.104015

F. Rafamantanantsoa, H. L. Rabetafika

DOI: 10.4236/cn.2018.104015 195 Communications and Network

Network Protocols, ICNP 2001, Riverside, 11-14 November 2001.

[7] Srinivasan, V., Suri, S. and Varghese, G. (1999) Packet Classification Using Tuple
Space Search. Computer ACM SIGCOMM Communication Review.

[8] Al-Shaer E.S., Woo, T., et al. (2004) Modeling and Management of Firewall Policies.
IEEE Transactions on Network and Service Management, 1, 2-10.

[9] Eppstein, D. and Muthukrishnan, S. (2001) Internet Packet Filter Management and
Rectangle Geometry. Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, Washington DC, 7-9 January 2001, 827-835.

[10] Hari, B., Suri, S. and Parulkar, G. (2000) Detecting and Resolving Packet Filter Con-
flicts. Proceedings IEEE INFOCOM 2000 Conference on Computer Communica-
tions, Tel Aviv, 26-30 March 2000.

[11] Atkinson, R. (1995) RFC-1825 Security Architecture for the Internet Protocol.
Network Working Group.

[12] Avolio, F.M. and Ranum, M.J. (1994) A Network Perimeter with Secure External
Access. Internet Society (ISOC).

[13] Al-Shaer, E. and Hamed, H. (2002) Design and Implementation of Firewall Policy
Advisor Tools.

[14] Bartal, Y., Mayer, A., Nissim, K. and Wool, A. (1999) Firmato: A Novel Firewall
Management Toolkit. Proceedings of the 1999 IEEE Symposium on Security and
Privacy, Oaklan, 6 August 2002, 3-4.

[15] Chapman, D. and Zwicky, E. (2000) Building Internet Firewalls. 2nd Edition, Oriel-
ly & Associates Inc., Newton.

[16] Cheswick, W. and Belovin, S. (1995) Firewalls and Internet Security. Addison-Wesley,
Boston.

https://doi.org/10.4236/cn.2018.104015

	Performance Comparison and Simulink Model of Firewall Free BSD and Linux
	Abstract
	Keywords
	1. Introduction
	2. Performance of Firewall
	2.1. Methodology for Performance Analysis
	2.2. Architecture of Firewall

	3. Configuring Experiments
	3.1. Presentation of the Measurement Tool
	3.2. Extracted from Source Code

	4. Experimental Results Firewall
	Description of the Measurement Tool

	5. Analytical Model Firewall
	6. Simulation with Matlab
	6.1. Resolution of the Mean Squared Error
	6.2. Calculating the Mean Squared Error Using the Server
	6.3. Calculating the Mean Squared Error Rates

	7. Conclusion
	Conflicts of Interest
	References

