
Communications and Network, 2018, 10, 51-64 
http://www.scirp.org/journal/cn 

ISSN Online: 1947-3826 
ISSN Print: 1949-2421 

 

DOI: 10.4236/cn.2018.103005  Jul. 18, 2018 51 Communications and Network 
 

 
 
 

Coarse Graining Method Based on Noded 
Similarity in Complex Network 

Yingying Wang, Zhen Jia*, Lang Zeng 

College of Science, Guilin University of Technology, Guilin, China 

 
 
 

Abstract 
Coarse graining of complex networks is an important method to study 
large-scale complex networks, and is also in the focus of network science to-
day. This paper tries to develop a new coarse-graining method for complex 
networks, which is based on the node similarity index. From the information 
structure of the network node similarity, the coarse-grained network is ex-
tracted by defining the local similarity and the global similarity index of 
nodes. A large number of simulation experiments show that the proposed 
method can effectively reduce the size of the network, while maintaining some 
statistical properties of the original network to some extent. Moreover, the 
proposed method has low computational complexity and allows people to 
freely choose the size of the reduced networks. 
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1. Introduction 
Many complex systems in reality can be abstracted into complex networks [1] for 
research. Complex network has been one of the most active tools for the study of 
complex systems. It has important applications in many fields such as biology, 
economics and finance, as well as society, electricity, transportation and so on. 

Since the similar topological properties of real-world complex networks, it is 
a hot topic to study the commonness of networks and the universal methods to 
deal with them [2]-[9]. However, many networks are known to exhibit rich. It 
is not enough to study the dynamic properties of small-scale networks, which 
may only reflect some local information of large-scale networks, while direct 
research on large-scale networks is computationally prohibitive. For example, 
the World-Wide-Web produces new web links every day. If the pages on the 
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World-Wide-Web are thought of as the nodes and the hyperlinks between them 
as edges, then the World-Wide-Web is a huge complex network and continues 
growing. It is difficult to deal with this kind of large-scale networks, coarse 
graining of complex networks is the latest way to overcome such difficulty in the 
world. Given a complex network with N nodes and E edges, which is considera-
bly large and hard to be delt with, the coarse-graining technique aims at map-
ping the large network into a mesoscale network, while preserving some topo-
logical or dynamic properties of the original network. This strategy is based on 
the idea of clustering nodes with similar or same nature together. 

In the past decade, some well-known coarse-graining methods have been 
proposed [10]-[21]. Historically, these methods can be classified into two cate-
gories: one is based on the eigenvalue spectrum of the network. Its main goal is 
to reduce the network size while keeping some dynamic properties of the network. 
For example, D. Gfeller et al. proposed a spectral coarse-graining algorithm (SCG) 
[11] [12], Zhou and Jia proposed an improved spectral coarse-graining algorithm 
(ISCG), Zeng and Lü proposed a path-based coarse graining [13] [14]. All these 
coarse-graining methods are developed to maintain the synchronization ability. 
Another coarse-graining method is based on topological statistics of the network, 
for instance, the k-core decomposition [10], the box-counting techniques [15] 
[16], the geographical coarse-graining method introduced by B. J. Kim, et al. in 
2004. And referring to literature [18], the network reduction is related to seg-
menting the central nodes by implementing the k-means clustering techniques, 
etc. These methods can well maintain some of the original networks. In 2018, 
our research team proposed a coarse-graining method based on the generalized 
degree (GDCG) [19]. Specifically, the GDCG approach provides an adjustable ge-
neralized degree by parameter p for preserving a variety of significant properties 
of the initial networks during the coarse-graining processes. 

In general, degree is the simplest and most important concept to describe the 
attributes of a single node. In undirected networks, the degree of node i is de-
fined as the nature of nodes, is not only related to the degree of the nodes, but 
also to the degree of their neighbor nodes, the number of edges connected to i, 
i.e., the number of neighbor nodes of node i. Actually, the nature of nodes is not 
only related to the degree of the nodes, but also to the degree of their neighbor 
nodes. From the point of view of information transmission, the more common 
neighbors of two nodes, the more similar information they receive and the abili-
ty to receive information. From the perspective of information transfer, the 
more common neighbors the two nodes have, the more similar information they 
receive and the ability to receive information. In this paper, based on the similari-
ty index of nodes, we introduce a new possible coarse-graining technique. Ac-
cording to the number of common-neighbor of nodes in the network, the algo-
rithm describes the similarity between nodes and extracts the reduced network by 
merging similar nodes. The method is computationally simple, and more impor-
tantly, the size of the reduced network can be accurately controlled. Numerical 
simulations on three typical networks, including the ER random networks, WS 
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small-world networks, SF networks reveal that the proposed algorithms can ef-
fectively preserve some topological properties of the original networks. 

2. Definition of Node Similarity 
Consider a complex network ( ),G V E=  consisted of N nodes, where V is the 
set of nodes and E is the set of edges. The adjacency matrix ( )ijA a=  describes 
the topology of the network. In general, 1ija =  indicates the presence of an 
edge, while 0ija =  stands for the absence of edges. For an undirected un-
weighted network, whose adjacency matrix A must be symmetric matrix, i.e. 

ij jia a=  and the sum of the i’th row (or the i’th column) elements of the matrix 
A is exactly the degree ik  of the node i. Here we use the Jaccard similarity in-
dex to calculate the similarity between node pairs. The similarity between any 
node i and node j in the network is defined as: 

( ) ( )
( ) ( )

,ij

i j
s

i j
Γ ∩Γ

=
Γ ∪Γ

                       (1) 

Let ( )iΓ  denote the set of neighbor nodes of node i, ( )iΓ  is the cardinali-
ty of the set ( )iΓ . Mathematically, ( ) ii kΓ = . ( ) ( )i jΓ ∩Γ  is the common 
neighbor node set of node i and j， ( ) ( )i jΓ ∪Γ  is the union of the neighbor 
nodes of node i and j. By Equation (1), ij jis s= , it shows that the similarity with 
the node i itself is 1. And if the node i and the node j have no common neighbor 
nodes, then their similarity is zero, i.e., 0ijs = ,so 0 1ijs≤ ≤ . Because ijs  de-
scribe the degree of local structure similarity between the node i and j. We treat 

ijs  as the local similarity index. 
The similarity between the node i and other nodes in the network can be ex-

pressed by a Ndimension vector ( )T
1 2, , ,i i i iNs s s s= 

. The larger the value 

1

N

ij
j

s
=
∑  is, the more nodes in the network are locally similar to the node i. There-
fore, we extend the Equation (1), the global similarity index for node i in the 
network is defined as follows: 

1
.

N

i ij
j

gs s
=

= ∑                          (2)  

The larger igs  is, the more likely the node i will be the cluster center of some 
similar nodes. 

3. Noded Similarity Coarse-Graining Scheme 
It is noted that coarse-graining methods have to solve two main problems: one is 
the emergence of nodes, that is, to determine which nodes should be merged; 
And the second is how to update the edges in the process of coarse graining. In 
the following content, the noded similarity coarse-graining scheme is introduced 
from these two sides. 

3.1. Nodes Condensation Based on Similarity Index 

Suppose we are going to coarse grain a network containing N nodes to a smaller 
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one with N  ( N N< ) nodes. First, we need to select N  cluster center, per-
form the clustering algorithm to get the corresponding N  cluster, then merge 
nodes in the same cluster. 

In order to select N  suitable nodes as the cluster centers, it is necessary to 
ensure that the extracted cluster centers have as much high global similarity as 
possible (with as many nodes as possible in the network). It is also required that 
the local similarity between the two clustering centers should not be too high 
(otherwise, they may belong to the same cluster, only one of them could be the 
clustering center). 

The detailed steps for selecting N  clustering are shown as follows. 
Step 1: Get the local similarity and the global similarity of each node in the 

network. The sequence 1 2
, , ,

Nv v vgs gs gs  of the generalized degree of N nodes 
has been sorted in decrease order. 

Step 2: Set SV  be the set of cluster centers. Firstly, put the node 1v  which cor-
responding to the maximum global similarity 1v

gs  into SV , denoting { }1SV v= . 
Secondly, pick the node 2v  corresponding to the second largest global similarity 

2vgs , if 
1 2v v

Ns
N

β< ×


 (N and N  are the size of the coarse-grained networks 

and original networks respectively, β  is an adjustable parameter). It indicates 
that the node 2v  and 1v  are not in the same cluster, so 2v  could be the 
second cluster center. Push 2v  into SV , denoting { }1 2,SV v v= . Otherwise, if 

1 2v v
Ns
N

β≥ ×


, which means that the local similarity between the node 2v  and 

1v  is too high and these two nodes may belong to the same cluster. Then 2v  
cannot be put into SV  as a new cluster center. Continue to select the cluster 
centers in the order of 1 2

, , ,
Nv v vgs gs gs , the new cluster center node iv  has to 

satisfy: 
i jv v

Ns
N

β< ×


, j Sv V∈ . In this way, stop selecting the new cluster centers 

until the number of SV  reaches N , denoting { }1 2, , ,S NV v v v=


 . 

Step 3: Take 1 2, , , Nv v v


  as the cluster centers respectively, their corres-
ponding clustering sets are described as 1 2, , , NM M M



 . And then cluster the 
remaining N N−   nodes in the network (the collection of the remaining nodes 
is represented as: S SV V V= − ). In order to find the clustering set jM  that the 
node iv  of the SV  belong to, our objective is to find: 

2
min

i j
j S i S

v vv V v V
s s

∈ ∈

−∑                        (3) 

where, ivs  ( jvs ) is corresponding to the local similarity of the node iv  ( jv ) 

with other nodes in the network. 
2

i jv vs s−  is the 2L  norm between nodes 

iv  and jv , which is also called the Euclidean distance. Repeat operations until 

all nodes in SV  are merged with N  cluster centers. Finally, we will get N  
clustering sets. 
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3.2. Updating Edges of the Reduced Networks 

N  clustering sets have been obtained from the section 3.1, merge nodes in each 
cluster and get N  coarse-grained nodes. To keep the connectivity of the re-
duced network, the following step is to update edges, the detailed content is as 
following: 

Definition of weight. The set of nodes in ith cluster is defined as iM  ( iM  is 
also the ith node in coarse-grained networks). We re-encode the weight, specifi-
cally: 

,
, , 1, 2, , , ,

i j
i j

M M ij
i M j M

W a i j N i j
∈ ∈

= = ≠∑ 

               (4) 

where, ija  is the element in the adjacency matrix ( )ijA a=  of the original 
network. And i jM MW  is the weight of the edge between node iM  and jM . 

Definition of edge. The edge i jM Me  between nodes iM  and jM  is defined 
by: 

( )0       max ,

1            otherwise

i j
i j

M M i j
M M

NW M Me N


<= 




             (5) 

,i jM M  separately represent the number of the nodes in ith, jth cluster. As 
presented above, the framework can preserve the edges between the clusters 
(each cluster corresponds to a coarse-grained node) that are closely related to 
each other in original networks. Moreover, it can prevent the network from re-
ducing into a fully connected network. And removing the weight of the edges, 
only displaying the topology structure of the coarse-grained networks, is condu-
cive to keep some statistical properties of the original networks. In particular, if 
the network becomes disconnected after deleting the edge i jM Me , then recon-
nect the edge i jM Me  in order to ensure the connectivity of the network. Now we 
can create an undirected unweighted network after two steps as described above. 

3.3. A Toy Example 

To better illustrate the algorithm we proposed, this section will apply the noded 
similarity coarse-graining scheme on the small toy network, as shown in Figure 1. 

A 9-node toy example is shown in Figure 1(a). Here, we use the noded simi-
larity coarse-graining method to reduce the network into 7 nodes, and 0.7β =  
to meet the required coarse-grained network size. First of all, calculate and sort 
the global similarity of nodes in decrease order as  

3 4 8 9 5 6 1 7 2, , , , , , , ,gs gs gs gs gs gs gs gs gs . It can be found that: 3 4 3.1gs gs= =  and 

8 9 2.65gs gs= = . Intuitively, the two yellow circular nodes like the two green 
diamond nodes have totally equal topological roles. According to step 2 of sec-
tion 3.1, put the largest global similarity node 3 into the set SV , namely, node 3 
is the first cluster center corresponding the clustering set 1M . Then take the 
node 4 to compare with the cluster center node 3. From the Equation (1),  

( ) ( ) { }3 4 2,5Γ = Γ = , 34
71 0.7
9

s = > × . Hence the node 4 cannot be placed as a  
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Figure 1. A toy example based on the node similarity coarse-graining method. (a) A 
9-node simple network with adjacency matrix A; (b) The reduced network with adjacency 
matrix A . 

 
cluster center into to the set SV . And so on, the set of cluster center 

{ }3,8,5,6,1,7,2SV =  with the collection of the remaining nodes { }4,9SV =  can 
be obtained, while each element in SV  corresponds to the clustering sets: 

1 2 3 4 5 6 7, , , , , ,M M M M M M M . It is not difficult to calculate  

4 3 9 8

2 2
0v v v vs s s s− = − =∑ ∑  according to Equation (3). The distance between  

the node 4 and the cluster center node 3 is the smallest one, so the node 4 should 
be merged with the cluster center node 3 together. They belong to the same 
clustering set 1M ; akin to the node 4, the node 9 and the cluster center node 8 
belong to the same clustering set 2M . At this point, seven coarse-grained nodes 
have been obtained. There are only 0, 1 or 2 three kinds of weight between the 
coarse grained nodes. So take the node 5 7,M M and node 1 3,M M  as an exam-
ple to update edges. By Equation (4), 5 7

1M MW = , 1 3
2M MW = , following the  

definition in Equation (3), ( )5 7 5 7
7 7max ,

9
1

9M M M MW = => ,  

( )1 3 1 3
7 14max ,
9 9

2M M M MW == > , so 5 7
1M Me = , 1 3

1M Me = . For the nodes 

that are not connected in the original network, their edge weight are still set to 0 
in the coarse-grained network. Then we can create the coarse grained network 
with adjacency matrix A , as shown in Figure 1(b). 

4. Numerical Demonstrations 
This section is devoted to an extensive numerical demonstration to investigate 
several properties of the noded similarity coarse-graining networks, including 
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the average path length, average degree and clustering coefficient. Recently, the 
average path length, average degree and clustering coefficient are the three most 
concerned topological properties in the research of complex networks. They de-
scribe more explicit information about the various aspects in the networks. Spe-
cifically, we will give a clearer definition in the following sections. And for sim-
plicity, we main consider three typical networks (the ER random networks, the 
WS small-world networks and the SF scale-free networks). To better illustrate 
the effect of the proposed method on these topological properties. We investi-
gate our method with different values of β . On the other hand, under the op-
timal β , we further investigate the effect with the structural parameters of dif-
ferent networks. For simplicity, we consider the ER random networks with con-
necting probability 0.01, 0.02, 0.03, 0.04, 0.05p = . The WS small-world net-
work algorithm is proposed by Newman and Eatts in 1998, which is obtained by 
randomly rewiring each edge of the original networks on the basis of the near-
est-neighbor coupled networks. We adjust the rewiring probability with 

0.1, 0.2, 0.3p =  and coordinator number 4, 6, 8K = . In terms of SF networks, 
the degree distribution follows the power-law distribution. When the power-law 
exponent γ  increases from small to large, the power-law networks change 
from the highly heterogeneous networks to the highly homogeneous networks. 
Since γ  typically lies between 2 and 3 for many real-world systems. We main 
consider the cases with 2.05, 2.25, 2.5, 2.75, 3γ = . 

Additionally, for each type of the artificial complex networks, we fix the size 
of these networks as 1000N = , and for each type of the typical complex net-
works, we consider 1000, 900, 800, 700, 600, 500, 400, 300, 200,100N = . The 
results of all the illustrated experiments are the average of ten independent si-
mulation runs. 

4.1. Average Path Length 

The average path length L between two nodes is defined by: 

( ) 1

2
1 ij

i j N
L d

N N ≤ < ≤

=
− ∑                      (6) 

where N is the size of the network, ijd  is the shortest path length from i to j. 
Figure 2 & Figure 3 show the evolution of the average path length of the 

above mentioned networks with noded similarity coarse-graining method. From 
Figure 2(a), one can see that for the ER networks the average path lengths are 
almost the same with the adjustable parameter β  varying from 0.1 to 0.6. It 
means that the value of β  does not have a great impact on the ER networks. 
Therefore, we randomly pick 0.6β =  to get the results shown in Figure 3(a). 
Under each p, the average path length can be well preserved, especially for 

700N ≥ . For the WS networks, when 600 800N≤ ≤ , the larger β  is, the 
better effect of maintaining the average path length will be. And the curve with 

1.1β =  has the best result. Moreover, when 1.1, 600Nβ = > , the proposed 
method can well preserve the average path length of the original networks with  
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Figure 2. Evolutions of the average path length under different β. (a) ER network; (b) WS networks; (c) SF networks. 
 

 
Figure 3. Evolutions of the average path length under different structural parameters. (a) ER network; (b) WS networks; (c) SF networks. 
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different rewiring probability p and coordinator number K. For the SF networks 
under optimal 0.5β = , the average path length is better maintained with 

2.75, 700Nγ ≥ >  as shown in Figure 3(c). 

4.2. Average Degree 

Average degree k  is a critical index to weigh the relatively connectedness of 
the whole network. Given the adjacent matrix A of a network, the corresponding 

k  is given by: 

1 1

N N

i ij ji
i i

k A A
= =

= =∑ ∑                        (7) 

1

1 N

i
i

k k
N =

= ∑                          (8) 

The evolutions of average degree k  versus the parameter β  with the 
node similarity coarse-graining processes for the three types of networks are 
shown in Figure 4. Similar to the phenomenon exists in Figure 2, ER random 
networks are not sensitive to different values of β . For the WS networks, the 
curves under 0.9,1,1.1β =  are obviously better than 0.7, 0.8β =  in preserv-
ing the clustering coefficient of the original networks with 200 600N≤ ≤ . And 
the effect of keeping the clustering coefficient is better with a relatively smaller  

 

 
Figure 4. Evolutions of the average degree under different β. (a) ER network; (b) WS networks; (c) SF networks. 
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β  in the SF networks. 
As displayed in Figure 5, the average degree can be preserved in three kinds 

of coarse-grained networks with the optimal β . In ER networks, the curve of 
average degree is approximately linear with 0.01, 500p N= > . With the in-
crease of p, the volatility of the curve increases, but it also roughly keeps the av-
erage degree. From Figure 5(b), the average degree for all WS networks can be 
well preserved regardless of the structural parameters. In SF networks, the node 
similarity algorithm can better keep the average degree of the original networks 
with the increase of γ . Moreover, the average degree of the coarse grained net-
works is within 1 degree relative to the average degree of original networks even 
the size of the original networks is reduced to half. As you can see, the SF networks 
are superior to the above two networks in maintaining the average degree. 

4.3. Clustering Coefficient 

The clustering coefficient measures the edge connection probability between the 
neighbor nodes in a network. The clustering coefficient iC  of node i with the  

 

 
Figure 5. Evolutions of the average degree under different structural parameters. (a) ER network; (b) WS 
networks; (c) SF networks. 
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average degree ik  is defined as: 

( )
2

1
i

i
i i

EC
k k

=
−

                        (9) 

where iE  gives actual number of edges between ik  neighbor nodes of node i. 
The overall level of clustering in a network is measured as the average of the 
clustering coefficients of all nodes: 

1

1 N

i
i

C C
N =

= ∑                          (10) 

The result shows that the optimal parameter β  corresponding to the best 
performance on preserving different statistical properties is the same. From the 
result shown in Figure 7(a), when the connecting probability p increase, the ef-
fect of maintaining the clustering coefficient in ER networks becomes more 
prominent. When 0.03, 100p N> = , the clustering coefficient of coarse-grained 
networks are in the range of 0.8 which agree with the plan of updating edges. 
The WS networks are typically with high clustering coefficient. The curves tend 
to decrease sharply with the increase of K and the decrease of the rewiring proba-
bility p. When N  is less than the threshold value 200, all curves turn to rise. But 
in general, the clustering coefficient of the original networks can be effectively 
maintained of certain structural parameters. In Figure 7(c), different curves  

 

 
Figure 6. Evolutions of the clustering coefficient under different β. (a) ER network; (b) WS networks; (c) SF networks. 
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Figure 7. Evolutions of the clustering coefficient under different structural parameters. (a) ER network; (b) WS 
networks; (c) SF networks. 

 
coincide with each other especially 500N > . Which indicate that the clustering 
coefficient property can be well preserved in the SF networks. 

5. Conclusions and Discussions 
The coarse-graining techniques are promising ways to study the large-scale 
complex networks. In this paper, we have developed a new algorithm to reduce 
the sizes of complex networks. This method is based on the local similarity and 
the global similarity of nodes, which is more suitable for the original intention of 
coarse graining. Particularly, we introduce a tuning parameter β  in the algo-
rithm to obtain the best effect of keeping the statistical properties. The study 
found that the optimal parameter β  for different types of networks was differ-
ent. Specifically, the ER networks are not sensitive to β ; the WS networks re-
quire larger β ; and in the SF networks, the smaller β  is, the better the statis-
tical properties will be maintained. Results from extensive numerical experi-
ments indicate that the average path length, the average degree and the cluster-
ing coefficients can be preserved during the coarse-graining processes.  
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