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Abstract 
Orthogonal Frequency Division Multiplexing (OFDM) is readily employed in 
wireless communication to combat the intersymbol interference (ISI) effect 
with limited success because as the capacity of MIMO systems increases, other 
destructive effects affect the propagation channels and/or overall system per-
formance. As such, research interest has increased, on how to improve per-
formance in the mediums where fading and ISI permeate, working on several 
combinatorial techniques to achieving improved effective throughput. In this 
study, we propose a combined model of the Space-Time Trellis Code (STTC) 
and Single-Carrier Frequency Domain Equalization (SC-FDE) to mitigate 
multiple-fading and interference effects. We present analytical performance 
results for the combined model over spatially correlated Rayleigh fading 
channels. We also show that it is beneficial to combine coding with equaliza-
tion at the system’s receiving-end ensuring overall performance: a better per-
formance over the traditional space-time trellis codes. 
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1. Introduction 

Wireless communication is constantly expanding in scope, complexity, and 
high demand of data usage thereby boosting its research profile. As demand 
rises, there is a prevailing need to address multipath fading and intersymbol 
interference (ISI) [1]. In mobile outdoors environment, where a characteriz-
ing-mark is the absence of the line-of-sight, multipath fading and ISI influence 
is unavoidable. To mitigate this effect, a multicarrier scheme—OFDM—has 
constantly been incorporated in mobile designs. OFDM performs Fast Fourier 
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Transform (FFT) operation on transmitted and received signals over parallel 
subcarrier thereby reducing or eliminating interference [2] [3]. Although 
OFDM has proven limited success in combating ISI and multipath fading, it 
has inherent drawback because as the capacity of MIMO systems increases, 
other destructive effects affect the propagation channels and/or overall system 
performance [4]. Equalization techniques (time and frequency domain), as 
well as space-diversity techniques, are being applied to mitigate these effects [5] 
[6] [7] [8]. As such, research interest has increased, on how to improve perfor-
mance in the mediums where slow and fast fading and ISI permeate, working on 
several combinatorial techniques to achieving improved effective throughput. In 
this study, space-time coding technique (STTC) was combined with SC-FDE 
using the rank-determinant criteria. SC-FDE has a similar performance as 
OFDM [9] [10], however SC-FDE has a lower average peak-to-power ratio 
than OFDM, making its dynamic range of power amplification lesser than 
OFDM. The background information on STTC and SC-FDE was examined, as 
well as the effect on the overall performance when combining coding with 
equalization at the receiver.  

2. Background Space-Time Codes Theory 

Tarokh et al. [8] pioneered the concept of space-time coding. Data sequence is 
propagated in space over nt number of transmit antennas, and in time, over t 
symbol periods yielding (nt × t) codeword and coding rate that is a fraction of 
the number of sequence over the symbol period. 

Performance Analysis of Space-Time Codes 

The performance of any wireless communication system is a measure of the 
percentage number of bits in error. The performance index of space-time-code is 
determined by the BER performance: a measure of the distance attributes of the 
code [11]. The BER performance analysis of space-time code can be examined by 
considering the Pairwise Error Probability (PEP). Generally, in the design of 
space-time codes, quasi-static fading model of MIMO is usually adopted [12]. 

Considering a space-time coding system with nt transmit antenna and nR re-
ceive antenna over spatially correlated Rayleigh fading channel. The received 
sequence is denoted by 

R HX N= +                              (1) 

where X, H, and N denote the transmitted signal, channel matrix, and additive 
white noise, respectively, and corresponding dimensions tn T×  where T is the 
symbol durations through nt transmit antennas, t tn n× , and 1rn × . Suppose 
the channel is known to the receiver, and a codeword  

1 2 1 2 1 2
1 1 1 2 2 2

n n n
l l lc c c c c c c c c c=      was transmitted and the receiver decides er-

roneously in favor of signal 1 2 1 2 1 2
1 1 1 2 2 2

n n n
l l le e e e e e e e e e=     , then a difference 

matrix can be obtained as [8] [13]: 
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                 (2) 

In the Rayleigh fading channel, the Ricean factor equals to zero. Therefore, the 
average pairwise error probability (PEP, or simply ( )P C E→ ) between two ar-
bitrary codewords C and E over independent and identically distributed Ray-
leigh fading channels is written as [7]  

( ) ( )( ) 12π

0

1 det d
π r tTn nP C E I ηϑ β

−
→ = + ∆∫                 (3) 

( )( )( ) 1

0

2π

1

1 1 d
π

r
ii

ϑ ηλ ϑ β
−∆

=
= + ∆∏∫                    (4) 

where 
ϑ  is the spatio-temporal correlation matrix; 
( )r ϑ∆  is the rank of ϑ∆ ; 

η  is the effective signal-to-noise-ratio, SNR; 

β  is intergrated over the maximum at 
π
2

β = . Equation (4) is obtained from  

the Gaussian Q-function. 
Ensuring that the code is not rank-deficient, suppose the Rayleigh fading 

channel is stable per frame, Equation (4) can thus be reduced to [14] 

( ) ( )( )( )
π

1
2

10

1 1 d
π

Rr C
i RiP C E Cηλ β

−

=
→ = +∏∫               (5) 

when r tR R R= ⊗ . rR  and tR  are the receive and transmit correlation ma-
trices, respectively. At high SNR, Equation (5) results in  

( ) ( ) ( )( )
π

112
10

1 d
π

RR r Cr C
i RiP C E Cη λ β−− −

=
→ ≅ ∏∫               (6) 

In space-time coding, for slow fades, the rank-determinant criterion is usually 
used [9] [15]. So, 

( ) ( )( )
1 1

4

r
R

n
r C

i Ri

pP C E Cλ
−

=

 → ≅ + 
 

∏                  (7) 

However, for high SNR using the rank-determinant criterion, Equation (7) 
leads to 

( )
( )

( )( )
14

r R
R r

n r C
r C n

i Ri

pP C E Cλ
−

−
=

 → ≤  
 

∏                (8) 

where ( )rn
i RCλ−  is the rn th power of ( )i RCλ . 

Maximization of the rank of the error matrix RC  gives the diversity gain.  

Coding gain is obtained by maximizing the ( )( )
1

R rr C n
i Ri Cλ−

=∏  quantity. 

3. System Model of STTC and SC-FDE 

Consider a single carrier block transmission after serial binary bits being mapped 
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into parallel bits, and the cyclic prefix (CP) inserted into the blocks of bits, as 
shown in Figure 1. The prefixed data stream is grouped (L-blocked) into serial 
combination and sent through the channel. This explains the simplicity of the 
single-carrier block transmission at the transmit side [10] [16]. In combining 
with STTC, the output streams from the encoder are appended with the cyclic 
prefix, which must be longer than the channel delay spread. These N + L streams 
of data are sent through the wireless channel after parallel conversion. 

Assuming s(t) was encoded into nt streams of data x(t) expressed as  

( ) [ ]

1 1 1
0 1
2 2 2
0 1

0 1

0 1
T T T

t

t
t

N N N
t

x x x
x x x

X t X X X

x x x

 
 
 = =  
 
  

 

 

    

 

 
           (9) 

and when appended with CP of length L becomes 
1 1 1 1

1 0 1
2 2 2 2

1 0 1

t t

t t

x x x x
x x x x
−

−

 
 

… 



                      (10) 

At the receiver, the received signal is given by  

( ) ( )1
nj i j

t ij t tir h t x t η
=

= +∑                       (11) 

where ( )1,2,j =   is the number of receive antennas, j
tη  is the effective SNR 

additive white Gaussian noise at time t of antenna j; ( )i
tx t  is the transmitted 

signal from i number of transmit antenna; ( )ijh t  is the complex channel coef-
ficient. By considering the channel to be slowly fading, then Equation (11) can 
be written as  

[ ]CP iR H X η= +                           (12) 

 

STTC 
encoder CP insertion P/SMapping

Input

Data

x(t)

H

S/PS/P
r(t) 

Y (f)=Ƒ(R (f))

FFTFFT CP removalFDEIFFTSTTC decoder
y (t)s(t)

s(t)

 
Figure 1. A single-carrier Space Time Trellis Code (STTC) model. 
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where CPH  is a block-wise circulant square matrix of size T × T in the form: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 2 1
1 0 1 2

1 2 0

CP

H H L H L H
H H H L H

H

H L H L H

 − − 
 − =  
 

− − …  





    



        (13) 

Obtaining the singular value decomposition, CPH  becomes H
CPΛ  , where 

CPΛ  is a diagonal matrix whose elements are obtained by a block-wise FFT of 
( ) ( ) ( )0 1 1H H H L −   ,   is the Discrete Fourier Transform (DFT) ma-

trix. 

( )
2π

1
0 e

j klL T
CP l H l

−−

=
Λ =∑                      (14) 

The eigenvectors of CPH  are independent of channel matrices H(l) [7], CPΛ  
bears the full information of the channel which the FFT operation requires. Ap-
plying FFT operation on the received vector, we have 

( ) ( ) ( ) ( )[CPY f R f X f fη= = Λ +                    (15) 

Performing equalization using the minimum mean square, which minimizes 
the mean square error between the estimated and received symbols, and assum-
ing an MMSE equalizer coefficient, we write Equation (15) as 

CP wy WH Xρ η= +                        (16) 

where ρ  is the signal-to-noise ratio, W is the equalizer coefficient, and wη , 
noise as a result of equalization. Performing inverse FFT on Equation (16) re-
sults 

( )1 1 1 1
CP wF y F WH F x Fρ η− − − −= +                 (17) 

which is consistent with [17]. 

4. Simulation Results 

The Bit Error Rate (BER) evaluation of the combined model over spatially cor-
related Rayleigh fading channels was done. Table 1 shows the parameters used 
for simulation. 
 
Table 1. Major simulation parameters. 

MIMO channel type 3GPP ITU Pedestrian A 

Fading distribution Rayleigh 

FFT size 512 

Channel bandwidth 5 MHz 

Cyclic prefix length 40 

Modulation scheme QPSK 

Antenna configuration 2 × 2 

Channel coding None 

Channel estimation and equalization Minimum Mean Square Error (MMSE) 
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It was observed from the results shown in Figure 2 that for the same condi-
tions and low SNR; that is, SNR ≤ 15 dB, the BER performances of basic STTC 
and STTC-FDE using MMSE systems were virtually the same. However, BER 
performance improves marginally as the channel becomes noisy for STTC-FDE 
as compared to the basic STTC. This result demonstrates that although it is 
possible to achieve higher level of coding gain with trellis coding alone, but in 
wireless communication systems targeting at broadband and mobile transmis-
sions commonly face the challenge of fading channels that are both time and 
frequency selective, the use of space-time coding with equalization in the fre-
quency domain improves the performance of the systems. 

Figure 3 shows the average pairwise error probability (PEP) of basic STTC 
and STTC-FDE using MMSE. Minimum PEP results in space-time code when 
the Euclidean distance is maximized. It was observed that at low SNR, the PEP 
was high in both systems. At high SNR (i.e. SNR ≥ 12 dB), the PEP was reduced 
for both STTC-MMSE. The diversity order played a key role in obtaining the 
PEP. It was observed that the plot of STTC-MMSE gradually slopes down from a 
low SNR to high SNR. For the STTC, PEP gap was maintained evenly. At BER = 
10−4, the PEP obtained for STTC-MMSE had a gain of 6 dB compared to the 
STTC. 

The operation of having to decode the transmitted symbol in the time domain 
could explain the gain. The probability that the decoder would select an errone-
ous signal was low due to the fact that equalization and the FFT/IFFT operations 
were carried out before the STTC decoding. More studies are continuing on 
large antenna configuration. 
 

 
Figure 2. Average BER-SNR performance of STTC and STTC-MMSE. 
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Figure 3. Average PEP-SNR performance plot of STTC and STTC-MMSE. 

5. Conclusion 

This paper has examined the performance of wireless communication when 
space-time trellis code is combined with Equalization in single-carrier transmis-
sion. In combining the two techniques, it was observed that BER increases mar-
ginally for STTC-MMSE compared to the basic STTC. Pairwise Error Probability 
shows an improved performance of STTC-MMSE over the traditional STTC. 
The error analysis obtained shows the viability of implementing a combination 
of diversity with frequency equalization in wireless communication.  
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